CS261: Exercise Set #9

For the week of May 25-29, 2015

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on Piazza.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 41

Prove that for every randomized online algorithm \mathcal{A} for the online (integral) bipartite matching problem, there exists a deterministic online algorithm \mathcal{A}' for the online fractional bipartite matching problem such that, for every input and every edge e of the input, the fractional weight that \mathcal{A}' assigns to e equals the probability that \mathcal{A} outputs a matching that includes e.

Conclude that if there is a *c*-competitive randomized online algorithm for the online (integral) bipartite matching problem, then there is a *c*-competitive deterministic online algorithm for the online fractional bipartite matching.

Exercise 42

Prove that the converse of Exercise 41 is false.

[Hint: take \mathcal{A}' to be the WaterLevel algorithm from lecture, and consider the 8-cycle.]

Exercise 43

Give an infinite family of instances demonstrating that the greedy algorithm for the online Steiner tree problem is $\Omega(\log n)$ -competitive, where n is the number vertices.

[Hint: generalize the example from lecture.]

Exercise 44

Show how to maintain a uniformly random sample from a data stream using a minimal amount of space. More precisely, give a randomized streaming algorithm that keeps track of only a single element $x \in U$ (i.e., $\lceil \log_2 |U| \rceil$ bits) such that, for every data stream $x_1, x_2, \ldots, x_n \in U$, at every time step $i \in \{1, 2, \ldots, n\}$, the current value of x is equally likely to be any of $\{x_1, x_2, \ldots, x_i\}$.

Exercise 45

Prove that every deterministic streaming algorithm that computes the number of distinct elements of a data stream uses $\Omega(n)$ space, where n is the length of the data stream.

[Hint: adapt the reduction from Lecture #18.]