
CS261: Problem Set #1

Due by 11:59 PM on Tuesday, April 21, 2015

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group.

(2) Turn in your solutions by email to cs261submissions@gmail.com. Please type your solutions if pos-
sible and feel free to use the LaTeX template provided on the course home page.

(3) Write convincingly but not excessively.

(4) Some of these problems are difficult, so your group may not solve them all to completion. In this case,
you can write up what you’ve got (subject to (3), above): partial proofs, lemmas, high-level ideas,
counterexamples, and so on.

(5) Except where otherwise noted, you may refer to your course notes and the specific supplementary
readings listed on the course Web page only. You can also review any relevant materials from your
undergraduate algorithms course.

(6) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(7) If you discuss solution approaches with anyone outside of your group, you must list their names on the
front page of your write-up.

(8) Refer to the course Web page for the late day policy.

Problem 1

[ESTIMATED DIFFICULTY LEVEL: Not too bad.] The goal of this problem is to compute a “path
decomposition” of a flow. The input is a flow network (as usual, a directed graph G = (V,E), a source s, a
sink t, and a positive integral capacity ue for each edge), as well as a flow f in G. As always with graphs,
m denotes |E| and n denotes |V |.

The desired output is a collection of s-t paths P1, . . . , Pk with nonnegative weights g1, . . . , gk and directed
cycles C1, . . . , C` with nonnegative weights h1, . . . , h` such that:

(P1) For every edge e ∈ E, the total weight on e across all paths and cycles is exactly fe:∑
i : e∈Pi

gi +
∑

j : e∈Cj

hj = fe;

and

(P2) the combined number k + ` of paths and cycles is at most m.

Prove that every flow admits a decomposition with properties (P1) and (P2). Can you compute such a
decomposition in O(mn) time?

[Hint: Try a greedy approach, beginning with the paths.]

1

Problem 2

[ESTIMATED DIFFICULTY LEVEL: A bit difficult.] Consider a directed graph G = (V,E) with source s
and sink t for which each edge e has a positive integral capacity ue. Recall from Lecture #2 that a blocking
flow in such a network is a flow {fe}e∈E with the property that, for every s-t path P of G, there is at
least one edge of P such that fe = ue. For example, our first (broken) greedy algorithm from Lecture #1
terminates with a blocking flow (which, as we saw, is not necessarily a maximum flow).

Recall also from Lecture #2 Dinic’s algorithm:

1. Initialize fe = 0 for every e ∈ E.

2. While there is an s-t path in the residual graph Gf :

(a) Compute the layered graph Lf , by computing the residual graph Gf and running breadth-first
search (BFS) in Gf starting from s, aborting once the sink t is reached, and retaining only the
forward edges. (Recall that a forward edge in BFS goes from layer i to layer (i+ 1), for some i.)

(b) Compute a blocking flow b in Lf .

(c) Set f := f + b. (You should check that since b is a feasible flow in the residual network Gf , f + b
is a feasible flow in the original network G.)

3. Return f .

The termination condition implies that the algorithm can only halt with a maximum flow. We argued in
lecture that every iteration of the main loop increases d(f), the length (i.e., number of hops) of a shortest
s-t path in Gf , and therefore the algorithm stops after at most n iterations. Its running time is therefore
O(n ·BF), where BF is the amount of time required to compute a blocking flow in the layered graph Lf . We
know that BF = O(m2) — our first broken greedy algorithm already proves this — but we can do better.

Consider the following algorithm, inspired by depth-first search, for computing a blocking flow in Lf :

Initialize. Initialize the flow variables be to 0 for all e ∈ E. Initialize the path variable P as the empty
path, from s to itself. Go to Advance.

Advance. Let v denote the current endpoint of the path P . If there is no edge out of v, go to Retreat.
Otherwise, append one such edge (v, w) to the path P . If w 6= t then go to Advance. If w = t then
go to Augment.

Retreat. Let v denote the current endpoint of the path P . If v = s then halt. Otherwise, delete v
and all of its incident edges from Lf . Remove from P its last edge. Go to Advance.

Augment. Let ∆ denote the smallest residual capacity of an edge on the path P (which must be
an s-t path). Increase be by ∆ on all edges e ∈ P . Delete newly saturated edges from Lf , and let
e = (v, w) denote the first such edge on P . Retain only the subpath of P from s to v. Go to Advance.

And now the analysis:

(a) Prove that the running time of the algorithm, suitably implemented, is O(mn). (As always, m denotes
|E| and n denotes |V |.)
[Hint: How many times can Retreat be called? How many times can Augment be called? How many
times can Advance be called before a call to Retreat or Augment?]

(b) Prove that the algorithm terminates with a blocking flow b in Lf .

[For example, you could argue by contradiction.]

(c) Suppose that every edge of Lf has capacity 1. Prove that the algorithm above computes a blocking
flow in linear (i.e., O(m)) time.

[Hint: can an edge (v, w) be chosen in two different calls to Advance?]

2

Problem 3

[ESTIMATED DIFFICULTY LEVEL: A bit difficult.] This problem outlines a still-faster algorithm for
computing a blocking flow in the layered graph Lf . We use the fact that Lf is a directed acyclic graph.
Assume that there is no edge (s, t) in Lf . By the capacity of a vertex v, we mean the minimum of the total
capacity of its incoming edges and the total capacity of its outgoing edges:

u(v) = min{
∑

e∈δ−(v)

ue,
∑

e∈δ+(v)

ue}. (1)

As usual, δ−(v) and δ+(v) denote the incoming and outgoing edges of vertex v, respectively.
Here is a sketch of the algorithm:

1. Insert all vertices of Lf other than s and t into a heap, using vertex capacities (1) as keys.

2. Topologically sort the vertices of Lf , so that all edges of Lf go from an earlier vertex to a later vertex
in the ordering. (Recall from CS161 that this can always be done for a directed acyclic graph, and it
requires only linear time.)

3. Initialize be = 0 for every e ∈ E.

4. While the heap is non-empty:

(a) Extract from the heap the vertex v with smallest remaining capacity (in the sense of (1)).

(b) If v has zero capacity, delete it and all of its incident edges from Lf . Update (i.e., decrease) the
remaining capacity of other vertices as appropriate.

(c) Otherwise, if v has positive capacity ∆:

i. Push ∆ units of flow from v to t. Do this greedily, as follows. First, the outgoing edges of v are
saturated in an arbitrary order, leaving at most one partially saturated edge. All saturated
edges are deleted from Lf . If there is a partially saturated edge, then its remaining capacity
is decreased accordingly. Remaining capacities of vertices are also decreased as appropriate.
This operation is then repeated on the first vertex (in the topological ordering) that received
flow from this process, and so on all the way to t.

ii. Analogously, pull ∆ units of flow back from v to s, deleting edges and updating remaining
capacities appropriately.

iii. Delete from Lf the vertex v and all of its remaining incident edges.

And now the analysis:

(a) Explain why it is always possible to push ∆ units of flow from v to t and to pull ∆ units of flow from
v back to s.

(b) Give a brief proof that the algorithm terminates with a blocking flow of Lf .

(c) Explain why a suitable implementation of this algorithm runs in O(n2 log n) time. Fill in implementa-
tion details as needed for your argument. (This gives an O(n3 log n)-time algorithm for the maximum
flow problem.)

[Hints: You might want to review all of the operations supported by a heap. First prove a bound of
O(m log n) for the time needed for all of the operations other than the non-saturating pushes.]

(d) Optional; do not hand in. Read about “Fibonacci heaps” — for example, in the CLRS book or
on Wikipedia — and explain how to use them to obtain an improved implementation of the algorithm
that runs in time O(n2). (This gives an O(n3)-time algorithm for the maximum flow problem.)

3

Problem 4

[ESTIMATED DIFFICULTY LEVEL: A bit difficult.] In this problem we’ll analyze a different augmenting
path-based algorithm for the maximum flow problem, which is based on the idea of scaling. In contrast to
the Edmonds-Karp algorithm of Lecture #2, rather than looking for short augmenting paths, we look for
augmenting paths along which it’s possible to send a lot of flow.

Here is the algorithm (as usual, assume that every capacity ue is a positive integer):

1. Initialize fe = 0 for every edge e.

2. Let ∆ be the smallest power of 2 that is at least maxe∈E ue.

(a) While ∆ ≥ 1:

i. While there exists an s-t path P in Gf such that every edge of P has residual capacity at
least ∆:
A. Pick an arbitrary such path P .
B. Let ∆P denote the minimum residual capacity of an edge of P .
C. Augment the flow f by sending ∆P units of flow on the path P .

ii. Divide ∆ by 2.

3. Return f .

Here is the analysis:

(a) Give a linear-time algorithm that, given Gf and ∆, either computes an s-t path P of Gf such that
every edge of P has residual capacity at least ∆, or determines that no such path exists.

(b) Argue that the algorithm in the problem statement terminates with a maximum flow.

(c) Prove that at the conclusion of an iteration of the outer while loop with parameter ∆, the value of the
current flow f is within m∆ of the value of a maximum flow.

[Hint: generalize the proof of correctness of the Ford-Fulkerson algorithm given in Lecture #2.]

(d) Argue that the inner while loop executes O(m) times for each value of ∆.

(e) Conclude that the algorithm in the problem statement solves the maximum flow problem correctly
in O(m2 logU) time, where U = maxe∈E ue. (Since the running time is logarithmic in U and hence
polynomial in the description length of the edge capacities, this is a polynomial-time algorithm. There
are some parameter values, such as when m,U = Θ(n), where this algorithm is faster than any of the
other ones that we’ve studied.)

Problem 5

[ESTIMATED DIFFICULTY LEVEL: Somewhat difficult.] In this problem we’ll revisit the special case of
unit-capacity networks, where every edge has capacity 1 (see also Exercise 4).

(a) Recall the notation d(f) for the length (in hops) of a shortest s-t path in the residual network Gf .
Suppose G is a unit-capacity network and f is a flow with value F . Prove that the maximum flow
value is at most F + m

d(f) .

[Hint: use the layered graph Lf discussed in Problems 2 and 3 to identify an s-t cut of the residual
graph that has small residual capacity. Then argue as in Problem 4(c).]

(b) Explain how to compute a maximum flow in a unit-capacity network in O(m3/2) time.

[Hints: use Dinic’s algorithm and Problem 2(c). Also, in light of part (a) of this problem, consider the
question: if you know that the value of the current flow f is only c less than the maximum flow value
in G, then what’s a crude upper bound on the number of additional blocking flows required before
you’re sure to terminate with a maximum flow?]

4

Problem 6

[ESTIMATED DIFFICULTY LEVEL: Somewhat difficult.] The goal of this problem is to suggest variants
of the Push-Relabel algorithm that speed up the practical running time without ruining its worst-case
complexity. Recall that the algorithm maintains the invariant (called INV in Lecture #3) that h(v) ≤ h(w)+1
for all edges (v, w) in the residual graph of the current preflow. We proved in Lecture #3 that if f is a flow
(not just a preflow) with this invariant, then it is a maximum flow. Heights were monotone increasing, and
the running-time analysis depended on bounding the number of times vertices can increase their heights.
Practical experience shows that the algorithm is almost always much faster than suggested by the worst case,
and that the practical bottleneck of the algorithm is relabeling vertices (and not the non-saturating pushes
that govern the worst-case theoretical bound). The goal of the problems below is to decrease the number of
relabelings by increasing heights more aggressively. As usual, assume you have a directed graph G with n
vertices, m edges, capacities {ue}e∈E , source s, and sink t.

(a) The Push-Relabel algorithm of Lecture #3 starts by setting fe = ue on all edges e leaving the source,
fe = 0 on all other edges, h(s) = n, and h(v) = 0 for all other vertices v. Give an O(m)-time procedure
for initializing vertex heights that is better than the one we constructed in lecture. Your method should
set the height of each vertex v to be as high as possible given the initial preflow (subject to INV).

(b) In this part we add a new step, called gap relabeling, to the Push-Relabel algorithm. This step will
increase the labels of lots of nodes by a potentially large amount. Consider a preflow f and heights h
such that INV holds. A gap in the heights is an integer 0 < h < n so that no vertex has height exactly
h. Assume that h is a gap value, and let A be the set of nodes v with heights satisfying n > h(v) > h.
Gap relabeling is the process of changing the heights of all vertices in A so that they are equal to n.
Prove that gap relabeling maintains the invariant INV (and hence this more aggressive Push-Relabel
algorithm still terminates with a flow guaranteed to be maximum).

(c) In lecture we proved that h(v) ≤ 2n − 1 throughout the algorithm. Here we will have a variant that
has h(v) ≤ n throughout. The idea is that we “freeze” all vertices when they get to height n; that
is, vertices at height n are no longer considered eligible for Push and Relabel operations, even if they
have positive excess. With this modification, at the end of the algorithm, we have a preflow and height
function that satisfy INV, and such that all excess is at vertices with height n. Let B be the set of
nodes v so that there is a path from v to t in the residual graph of the current preflow. Let A = V \B.
Prove that at the end of the algorithm, (A,B) is a minimum-capacity s-t cut.

(d) The algorithm in part (c) computes a minimum s-t cut but fails to find a maximum flow (as it ends
with a preflow with non-zero excesses). Give an algorithm that takes the preflow f at the end of the
algorithm of part (c) and converts it into a maximum flow in at most O(mn) time.

[Hint: consider vertices with excess, and try to send the excess back to s using only reverse edges in
the residual graph. A lemma from Lecture #3 might be useful.]

5

