
Bounds on the Price of Anarchy in the KP Model

CS 364A Algorithmic Game Theory, Fall 2004

Paper Reading Project

Nikola Milosavljevic

1 Introduction

The topic of this report is the Koutsoupias-Papadimitriou (KP) game-theoretic model for a class
of job-scheduling problems. It contains a presentation of the results from the original paper by
Koutsoupias and Papadmitriou [1] and a follow-up paper by Czumaj and Vöcking [4]. The papers
address the problem of bounding the ratio between the worst case Nash equilibrium and optimum
allocation of a set of jobs to a set of machines.

First we introduce the details of the KP model, then give an overview of the results and present
some of the proofs in more detail. The attempt is made to provide some intuition about the ideas
and proof techniques used to obtain the sharp bounds. For a positive integer n, [n] denotes the set
{1, 2, . . . , n}. For any non-negative real x, we define log x := max{log2 x, 1}.

2 The KP Model and the Problem Statement

The KP model was first introduced in [4]. The original context was not job scheduling, but network
routing. The authors want to study the behavior of a communication network with one source and
one sink, whose users are allowed to behave selfishly in choosing source-sink paths along which to
send their packets.

The attention is ultimately restricted to a very specific class of simple networks, in which the
network links and network flows (from various users) can be identified with machines and jobs,
respectively. Since both papers discuss only this subset of network topologies, throughout this
report the context and the terminology of job-scheduling will be used.

Now we describe the details of the model. The basic setup of the game is the following

• There is a set of n jobs that act as selfish players. Let wi (i ∈ [n]) denote the sizes (weights)
of the jobs, which are fixed and known. Without loss of generality, we assume w1 ≤ w2 ≤
· · · ≤ wn.

• There is a set of m machines on which the jobs are to be scheduled for execution. Let sj

(j ∈ [m]) denote the speeds of the machines (size of a job that can be executed in unit
amount of time), also fixed and known parameters. Without loss of generality we assume
s1 ≥ s2 ≥ · · · ≥ sm.

1



• One job can be assigned to one machine only. Splitting jobs among several machines is not
allowed. The outcome of the game is a particular assignment (j1, . . . , jn) ∈ [m]n of jobs to
machines. As always, a deterministic outcome is equivalent to a pure strategy of the players.

• Given an outcome, the load of machine j is defined as the time needed to execute all jobs
scheduled on it

Cj =
∑

ji=j

wi

sj
.

• The cost that a given player i incurs in a given outcome is defined as the total load on its
machine

• The social cost of an outcome is the maximum load over all machines, max
j∈[m]

Cj

• As always, each player is interested in selecting a strategy which minimizes its own cost given
the other players’ strategies, and regardless of how that affects the social cost.

We also consider mixed strategies, i.e. probability distributions over [m], one for each player.
Each player chooses a machine, independently of the others, according to its mixed strategy. Let
pj

i be the probability that job i selects machine j. Clearly, any set of mixed strategies must satisfy
∑m

j=1 pj
i = 1. Once we have mixed strategies, all the above defined quantities become random

variables (not the social optimum, for obvious reasons), so we are interested in their expected
values.

• The expected load of machine j

lj = E[Cj ] =
n
∑

i=1

wip
j
i

sj
.

• The expected cost for player i if it is assigned to machine j is actually the load of machine j
conditioned on the event that job i is assigned to it

cj
i = E[Cj|ji = j] =

wi +
∑

k 6=i wkp
j
k

sj
= lj + (1 − pj

i )
wi

sj
.

• The social cost is the expectation of the maximum load over all machines, C = E

[

max
j∈[m]

Cj

]

The rest of the report will deal only with the mixed strategy version of the game, noting as always
that the pure strategy case is then recovered as a special case.

As noted above, each player ultimately wants to select a strategy that minimizes her own cost
given the current strategies of other players. This goal is captured by standard notion of Nash

equilibrium. In this case it is defined to be a set of probabilities pj
i (i ∈ [n], j ∈ [m]) such that for

job i, a non-zero probability pj
i is assigned only to those machines j that minimize the cost cj

i , i.e.

that satisfy cj
i ≤ cj′

i for all j′ ∈ [m].

Optimal assignment (social optimum) is defined as a (deterministic) assignment that minimizes
the maximum load.

OPT = min
(j1,j2,...,jn)∈[m]n

max
j∈[m]

∑

i:ji=j
wi

sj

2



In this class of games, like in many others, a Nash equilibrium does not necessarily achieve the
social optimum. Therefore the natural question to consider is the one of estimating the price of

anarchy, defined in this case as PoA = max(C/OPT), where the maximum is taken over all pos-
sible combinations of job sizes and machine speeds. The work presented in [1] and [4] successfully
answers this question by showing tight upper and lower bounds on the price of anarchy in the
job-scheduling model.

As already mentioned, the model is originally introduced in more general setting, namely that
of network routing. In this framework, the players are the data packets that need to be transported
from source to sink. A player’s strategy is a routing path, and the incurred cost is the cost of the
path. The cost is some function of the total traffic routed through individual links on the path. It
is easy to see that for a general network topology and general cost functions the interactions among
the players can be far more complicated that those in the job-scheduling model described above.
However, when the network consists only of parallel links from source to sink, then selecting paths
becomes equivalent to selecting individual edges. If we further assume that the cost functions of
edges are linear in the amount of traffic, we recover the job-scheduling model.

Apparently, [4] was the paper to propose the price of anarchy in network routing as a useful
measure of network performance. The justification is that in certain settings, such as the Internet,
the network users indeed act without coordination. As a consequence, most of the time the network
is actually in a Nash equilibrium. Then the proposed quantity is a measure of how much network
performance is lost due to the lack of a central authority which would ensure that the social opti-
mum is achieved by dictating the users’ behavior. Although [1] and [4] solve the problem only for
the case of several simple network topologies, the price of anarchy has been extensively studied for
more general classes of networks [7]. The idea of investigating how bad a Nash equilibrium can be
with respect to the socially optimal outcome turned out to be interesting in different settings [2]
[3] [8], and lead to various nontrivial conclusions.

Besides introducing the general concept, [4] gives tight bounds for m = 2 and weak bounds
for m ≥ 3. The more recent paper of Czumaj and Vöcking [1] shows tight bounds on the price of
anarchy for any m, thus completely answering the question for the case of scheduling. Next we list
the more detailed descriptions of these contributions.

3 Overview of the Results

We first present the results of the Koutsoupias and Papadimitriou paper [4]. Most of them are
special cases of the tight bound given in the second paper, so we won’t bother to show the complete
proofs, but only sketch and comment on some of them.

• If m = 2 and s1 = s2, then PoA = 3/2, independent of n.

• If m = 2 and s2 ≤ φs1, where φ = (1+
√

5)/2, then PoA ≥ 1+s2/(s1 +s2). In particular, the
price of anarchy for two machines of different speeds can get as large as φ (when s2 = φs1).
This result also does not depend on n. The paper does not give the corresponding upper
bound for this case.

• For m ≥ 3 and equal speeds, a lower bounds PoA = Ω(log m/ log log m) is shown. The
proof consists of simple observation that the mixed strategy given by pj

i = 1/m for all i, j is

3



equivalent to the occupancy problem of m balls being thrown at m bins uniformly at random.
The claim then follows from the well known analysis of expected maximum occupancy.

• For m ≥ 3, the authors also prove an upper bound PoA ≤ 3 +
√

4m lnm if the speeds are

equal and PoA = O
(√

sm

s1

∑

j
sj

s1

√
log m

)

for the case of different speeds. The idea of this

proof is essentially the same one that is used for its improved analog in [1]. The latter will
be presented in full detail, and the differences between the two will be pointed out to show
how the more careful analysis leads to a better bound.

Koutsoupias and Papadimitriou also consider a variant of the cost function with fixed initial

loads on machines as additional parameters, as well as the batch model where each player’s cost is
halved, reflecting the fact that in this model tasks on one machine are executed in random batch
order. We do not discuss these variations separately, because as pointed out in [1], they seem to
have been abandoned in more recent literature, and they do not affect the sharp bounds.

The result of [1] are much more interesting, as they completely resolve the questions posed by
[4], at least for the simple parallel networks. In particular, the paper gives an asymptotically tight
upper and lower bounds on the price of anarchy for any m, both for the case of equal speeds and
the case of different speeds. Specifically, it shows that the PoA is (asymptotically) upper bounded
and lower bounded by the expression

min





log m

log log log m
,

log m

log
(

log m
log(s1/sm)

)





In particular, this implies the asymptotic upper bound of log m/ log log log m. Since this is the
main contribution of the two papers, in the rest of the report we will go through (most of the)
proofs in more detail. To that end, we first establish some infrastructure which appears to be the
key ingredient in all the proofs.

Recall that the goal is to estimate the maximum ratio of C and OPT, taken over all possible
input parameters (job and machine counts, job weights, machine speeds). This is achieved through
an intermediate step, namely estimating the maximum expected load c = maxj∈[m] lj. Note that
c < C in general, that is maximum expected load is less than expected maximum load. However,
c is also easier to compute and analyze, since the random variable under the expectation has a
much simpler distribution. Fortunately, the authors are able to use the estimate of c to get both
the upper and lower bound for C, with respect to OPT.

Another idea is to capture the structural properties of a Nash equilibrium by distinguishing
certain machines at which important events happen. More precisely, imagine that the machines 1
to m are arranged in a sequence from left to right in the order of increasing indices (or nonincreasing
speeds), then scan them from left to right and mark the positions at which the expected load drops
below integer multiples of OPT for the first time. It turns out that most of the reasoning is based
on looking at these transition points and their close vicinity. Tracking various quantities over this
subset of machines gives us a handle on the equilibrium distribution of loads.

Let’s also state this formally and introduce the notation, because it will make the main proofs
much easier to present. For k ≥ 1 define jk to be the smallest index in {0} ∪ [m] such that
ljk+1 < kOPT, or if no such index exists jk = m. We will often be referring to the obvious facts
that lj≤jk

≥ kOPT and ljk+1 < kOPT, since they form the basis of many arguments.

4



4 The Proof of the Upper Bound

The goal of this section is to show the following asymptotic upper bound on the worst coordination
ratio (price of anarchy)

PoA = O



min





log m

log log log m
,

log m

log
(

log m
log(s1/sm)

)







 (1)

The proof proceeds in two steps. The first step bounds the ratio c/OPT, which serves as an
auxiliary quantity

c = OPT · O
(

min

{

log m

log log m
, log

(

s1

sm

)})

(2)

and the second step bounds C/OPT as a function of c/OPT.

C = OPT · O
(

log m

log
(

log m · OPT
c

)

)

(3)

Combining (2) and (3) clearly yields the desired bound. We begin by separately proving the two
estimates of c

Lemma 1 c = OPT · O
(

log m
log log m

)

Lemma 2 c = OPT · O
(

log
(

s1

sm

))

which obviously imply (2) above.

Proof of Lemma 1 Before stating the formal proof we give a few intuitive arguments:

• Even though the expected load of the fastest machine is not necessarily highest in every Nash
equilibrium, it must always be roughly within OPT from the maximum. If this was not the
case, then the jobs on the most heavily loaded machine would certainly prefer the fastest
machine. Therefore, to estimate c it suffices to estimate l1.

• One expects that in a typical equilibrium the expected loads roughly decrease as the speeds
decrease (from s1 to sm). Still, they cannot decrease too rapidly if we have a Nash equilibrium.
Otherwise, jobs would want to migrate from faster to slower machines, if they are significantly
less loaded.

These three facts together enable us to upper bound c. The speed in which the expected load de-
cays in the machine sequence is captured by the relative distance between the “marked” machines
j1, j2, . . ..

Formally, one can show that l1 ≥ c − OPT (first intuitive point above). Any job is of size at
most s1OPT , because otherwise no machine would be able to process it in OPT time. In particular,
one such job has a positive probability for the most loaded (in expected sense) machine. Now if it
were l1 < c − OPT, then it would be better for this job to switch to machine 1 (with probability
1), which is a contradiction.

5



Our notion of load that slowly decreases with speed is captured by the fact jk ≥ (k + 1)jk+1,
which we show next. Consider the jobs with positive probability of one of the fist jk+1 machines.
Their total weight is certainly at least as large as the expected total weight on this subset of
machines, which is at least

(k + 1)OPT(s1 + s2 + · · · + sjk+1
) ≥ OPT(s1 + s2 + · · · + s(k+1)jk+1

)

If it were jk < (k + 1)jk+1, then it follows that at least one of these jobs is optimally allocated
beyond jk. This is either impossible (if jk = m), or the size of this job is at most sjk+1OPT. So its
cost at jk + 1 is at most

ljk+1 +
sjk+1OPT

sjk+1
< (k + 1)OPT

which violates the Nash condition.

So since j1 ≤ m by definition, it follows jk = O(m/k!). Also, we have jbc/OPTc−1 ≥ 1. This eas-
ily implies that c/OPT is roughly “inverse factorial” of m, which is O(log m/ log log m), by Stirling
formula. This completes the proof.

Proof of Lemma 2 The second estimate directly follows from the fact that the speeds de-
crease geometrically within the subsequence of marked machines, sjk+2+1/sjk+1 ≥ 2. This relation
is established by considering a specific job i that has a non-zero probability in one of the heavily
loaded machines (j ≤ jk+2), but its optimal placement is outside that set. Such job must exist,
since for every j ≤ jk+2 the expected load is more than OPT. Once we this i, it gives us a way of
comparing sjk+2+1 to sjk+1. We simply note that wi is at most sjk+2+1OPT , to make the optimum
achievable, and also at least 2sjk+1OPT , to prevent the tendency of i to completely migrate from
j ≤ jk+2 to some j′ ≥ jk. This easily implies the claim about the geometric decrease in speed.
Thus, there can be at most O(log(s1/sm)) “markings” in the sequence. Every marking contributes
an OPT toward l1, which is very close to c, as shown before. This completes the proof of the
lemma, at least at an intuitive level.

Next step is to upper bound C/OPT given c/OPT to obtain (3). This part of the proof has
the familiar “maximum occupancy” flavor. Here is the outline of the steps, which should make the
previous statement clear.

• Tail-bounding the probability that the actual loads on machines Cj exceed the maximum
expected load c by a large amount. Hoeffding inequality is used in this case.

• Applying the union bound to get the same type of concentration result for the maximum

load.

• Upper bounding C = E[maxj∈[m] Cj ] by plugging the previous result into the definition of
expectation.

The most interesting part is bounding the deviation of Cj . This step deals with with the
specifics of the model, while the other two are fairly straightforward calculations, the details of
which we will skip occasionally. Even though both papers prove their upper bounds using the same
high level plan described above, the proof in [1] does the tail-bounding part more carefully. That
is where the sharpness of their bound comes from. Here are the details of the approach.

6



Note that each Cj is a sum of indicator variables

Cj =
∑

i∈[n]

wi

sj
J j

i

where J j
i is 1 with probability pj

i and zero otherwise.

For the terms whose pj
i is bounded away from zero, say pj

i > 1/4, tail-bounding is fairly
straightforward

C
(1)
j =

∑

i:pj
i >1/4

wi

sj
J j

i ≤
∑

i:pj
i>1/4

wi

sj
· 4E[J j

i ] = 4E







∑

i:pj
i >1/4

wi

sj
J j

i






≤ 4c

This bound holds with probability 1. If pj
i is arbitrarily close to zero, the previous approach does

not work. However, each of the remaining terms with high probability does not contribute to the
sum, in any case its contribution cannot exceed 12OPT, as Lemma 3 below shows. Then we can

apply the Hoeffding inequality to bound the probability that the total contribution C
(2)
j exceeds

αc, where α > 1 will be conveniently chosen later.

Lemma 3 0 < pj
i ≤ 1

4 ⇒ wi

sj
≤ 12OPT ∀i ∈ [n], j ∈ [m]

Proof The argument uses the result proved before, about the geometric decay of speeds. Intu-
itively, if j is between jk+1 and jk−1 for some k, then wi must be small enough to prevent migration
to j′ = jk+2 +1, since the speed of j ′ is at least twice that of j, and current expected load is greater
by at most by 3OPT. The result follows just from comparing (the appropriate bounds on ) the two
expected loads

(k − 1)OPT +
3

4
· wi

sj
≤ (k + 2)OPT +

wi

2sj

Note that what proof really requires for the probability is pj
i ≤ 1/2 − ε, for ε > 0. This is

because the probabilities pj
i and pj′

i also enter the equation when determining which machine is
better for player i. In other words, from player i’s perspective the speed ratio of 2 is modified by a

multiplicative factor of (1 − pj
i )/(1 − pj′

i ) which can be arbitrarily close to 1 − pj
i . We do not want

this factor to be too small and make the effective speed ratio less than or equal to 1, because that
invalidates our argument (one of the necessary incentives for switching is gone).

Another technical point is dealing with the case when j is close enough to 1 so that the required
jk+2 is not defined, i.e. there is no machine with expected load so high. This happens when
k = bc/OPTc − 3. In this case, taking machine 1 works just as well. Again, the result follows from
the Nash condition

(c − 4OPT) +
3

4
· wi

sj
≤ c + OPT

This concludes the proof of the lemma.

After applying the Hoeffding bound and doing some algebraic manipulation we get the result

P[Cj ≥ (4 + α)c] ≤ (e/α)αc/(12OPT) for every α > 1

Then the union bound yields

P

[

max
j∈[m]

Cj ≥ (4 + α)c

]

≤ m(e/α)αc/(12OPT) for every α > 1 (4)

7



By increasing α we can make the decay of (4) arbitrarily fast beyond (4 + α)c. Finally, it takes
some more manipulation to deduce the value of α in which the expectation becomes bounded. It
turns out that if we set

α =
OPT

c
· Θ





log m

log
(

OPT·log m
c

)





the tail of the distribution adds at most a constant to the expectation. Thus we have shown the
desired bound.

4.1 Identical Machines

For this case the authors show a simplified proof which also improves the bound for the gen-
eral case (1). The improvement consists of showing that the multiplicative constant hidden in
O-notation is actually at most 1, which implies that the worst price of anarchy is upper bounded
by log m/ log log m up to a constant additive factor.

Here is the basic idea of the simplified proof. Consider a machine j with really high expected
load which is close to the cost of Nash equilibrium. When all speeds are equal, one can show that
every job that has a positive probability on j, contributes to the expected load Cj roughly equally,
in particular at least Cj − OPT. This follows easily from the Nash condition. So when Cj is large
fraction of OPT, then it is bounded just by bounding the number of participating jobs. After doing
the calculations, this bound turns out to be what is needed, that is log m/ log log m (notice no
O-notation) with probability 1. For smaller Cj the Hoeffding bound can used to prove that the tail
is small, and the authors claim that again a bound of log m/ log log m+O(1) is obtained with high
probability. Once the high probability bounds on each Cj are established, the proof can be easily
completed like in the general case.

For the sake of comparison, it is worth mentioning that the approach of Koutsoupias and
Papadimitriou yields a weaker corresponding bound of O(

√
m log m) because the proof does not

classify the jobs according to how much they contribute to the expected load on certain machine.
Instead, each job’s contribution is trivially bounded by its size, and the Azuma-Hoeffding bound is
applied to the sum of the contributions. The authors themselves point out that the proof does not
use most structural properties of Nash equilibria.

5 Proof of the Lower Bound

The goal of this section is to prove that the upper bound (1) from the previous section is asymptot-
ically tight. This is done by first exhibiting a pure strategy Nash equilibrium that asymptotically
matches the first component of the upper bound, i.e. achieves the worst case c/OPT ratio of equa-
tion (2). Of course, to match the other half of the bound we need a mixed strategy, since for pure
strategies c = C always. It turns out that (3) this can also be matched by introducing a small
amount of randomization into the exiting pure strategy.

5.1 Lower Bound for Pure Strategies

Fortunately, the key properties of the Nash equilibria that the previous proofs depend on (Lemmas
1 and 2) can be matched one by one, quite independently of each other, and in a very straightforward
way. So the design is quite natural in the sense that each property can be easily mapped back to

8



the lemmas that constitute the proofs of the upper bounds. Here is the description with the some
intuitive justifications.

• There are K + 1 groups of machines, numbered 0, 1, . . . ,K. The value of K will be defined
later. For each 0 ≤ k ≤ K, the number of jobs on each machine in group k is equal to k. We
are attempting to design the groups of machines according to the definition.

• The groups are of different sizes. For each 0 ≤ k ≤ K, group k+1 has exactly k+1 times fewer
machines than group k. Let the smallest group be of size 1, therefore groups 1 (and 0) have
K! machines. This construction aims to achieve the required distribution of the “markings”
established by Lemma 1.

• Machines within a group have equal speeds. For 1 ≤ k ≤ K, group k + 1 is exactly 2 times
slower than group k. Let the slowest group have unit speed, therefore group 0 has speed 2K .
This satisfies the requirement of geometric speed decay, Lemma 2.

Having defined the parameters and the strategies, we easily prove that the bound is actually
achieved. Obviously, the maximum load is K, attained on any machine in group K. On the other
hand, we get the social optimum of at most 2 (if we move each job from its current group prescribed
by the Nash equilibrium, say k, to group k − 1) and at least 1 (because of the large jobs of size
2K cannot be processed faster than that by any machine). It is also easy to verify that the system
is indeed in Nash equilibrium, because each group k is loaded just enough to prevent migration
from group k +1. These are all very trivial calculations so we won’t bother to show them formally.
Perhaps it is enough to provide a pictorial explanation, see figure below

So the coordination ratio is Θ(K) in this case. We can choose any value of K such that the
total number of machines does not exceed m which we are given beforehand. In particular, we can
pick a K that satisfies K! ≤ m/e. Such K is O(log m/ log log m), which is exactly what (2) predicts
for this case.

5.2 Lower Bound for Mixed Strategies

Now allow players to randomize in such a way that the worst case gap between the maximum ex-
pectation c and the expected maximum C is achieved as a consequence. Once again, we can deduce
a rather clean rationale underlying the construction. Intuitively the simplest approach would be to
increase C without destroying the c/OPT ratio that we already have. Fortunately, this happens
to be possible.

9



Since within each group things are uniform (equal job sizes, machines equally loaded), by al-
lowing the jobs in single group to randomize we do not change the expectation for a single machine
as long as the randomization is also uniform. This follows from the occupancy argument. The
question is which group is the best choice. To answer this, we consider the situation in each group
as an instance of the occupancy problem and invoke the results of the probabilistic analysis (for
example, see [6]). We notice that the size of the possible gap between c and C that we can create
increases with the group index, because so does the ratio of balls and bins. On the other hand,
randomizing within group K of size 1 does not make sense. However, we can get around this by
“scaling up” the group sizes in the pure strategy example by a suitable (integer) factor, so that the
K-th group becomes large enough. It is straightforward to show that the first part of the proof
remains valid if the machines are just replicated together with their loads.

Suppose the chosen factor is B (the number of “bins” in the K-th group). Then the expected

maximum occupancy in group K is Θ
(

K + log B
log(log B/K)

)

and we need to achieve Θ
(

log m
log(log m/K)

)

.

Given the value of K computed above, the calculations show that log B = Θ(log m) is a good
choice, so B = mα where α is set to make B an integer. The only remaining constraint on α
stems from the fact that now in order not to overflow the total number of machines it must be
BK! ≤ m/e. But setting α < 1 allows K to remain the same asymptotically, so the above analysis
(which assumes this order of K) still holds. The authors of [1] pick α = 1/2 (B =

√
m), in the very

beginning of their lower bound proof, anticipating the problems that arise in randomized version.
The scaling is not strictly needed for the pure strategy example.

6 Remarks

Of course, the model that the papers mainly consider is far too simplified to be useful for the prob-
lems arising in real networks. The authors emphasize the importance of understanding the effects of
the lack of coordination in the case of parallel networks, before more realistic settings can be studied.

Observe that none of the presented bounds depend on number of jobs or their sizes. By re-
stricting the number of jobs or, say, the largest to smallest size ratio one might be able to get more
optimistic worst case results. Note that the worst case example exhibited in the proof of the lower
bound has a largest to smallest weight ratio of roughly 2K , and given the choice of K, this grows
almost as fast as the number of machines, in particular

2K = 2Θ(log m/ log log m) = 2ω(log m/(log m)ε) = ω(m1−ε)

for any small ε > 0.

Another possible extension would be to keep the simple topology and scheduling interpretation,
and consider more general class of cost functions. For example, one might allow speeds to vary de-
pending on the load, or the size of the job being executed. As an extreme case, each job could have
arbitrary different cost on each of the machines. For example, the case of unit weights and machine
specific constant cost functions has been studied in [5]. In network setting, it has been proposed
(also by [4]) to look at the “capacitated” cost functions of the form 1/(cap − min(cap,

∑

i wi)),
where cap is positive capacity of an edge, and

∑

i wi is the total traffic (load).

10



References

[1] Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case equilibria. In Proceedings of

the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 413–420. Society
for Industrial and Applied Mathematics, 2002.

[2] Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and Scott Shenker.
On a network creation game. In Proceedings of the twenty-second annual symposium on Prin-

ciples of distributed computing, pages 347–351. ACM Press, 2003.

[3] R. Johari, S. Mannor, and J. Tsitsiklis. Efficiency loss in a network resource allocation game:
the case of elastic supply, 2004.

[4] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. Lecture Notes in Com-

puter Science, 1563:404–413, 1999.

[5] Igal Milchtaich. Congestion games with player-specific payoff functions.

[6] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

[7] Tim Roughgarden and Éva Tardos. How bad is selfish routing? J. ACM, 49(2):236–259, 2002.

[8] Adrian Vetta. Nash equilibria in competitive societies, with applications to facility location,
traffic routing and auctions. In Proceedings of the 43rd Symposium on Foundations of Computer

Science, page 416. IEEE Computer Society, 2002.

11


