
CS364A: Exercise Set #9

Due by noon on Friday, December 6, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course staff (via Piazza or
office hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 17 Exercises

Exercise 72

Prove that for every ε ∈ (0, 1
2 ] and x ∈ [0, 1],

(1− ε)x ≤ (1− εx)

and
(1 + ε)x ≤ (1 + εx).

[Hint: Here’s one way you could structure your proof. For fixed ε, let fε(x) and gε(x) denote the functions
on the left- and right-hand sides. Verify that fε(0) = gε(0), fε(1) = gε(1), f ′ε(0) < g′ε(0), and f is convex.]

Exercise 73

The multiplicative weights algorithm, as described in lecture, requires knowledge of the time horizon T to
set the parameter ε. Modify the algorithm so that it doesn’t need to know T in advance and continues to
have time-averaged external regret O(

√
lnn/

√
T ).

[Hint: There is no need to redo the previous analysis from scratch. For example, you could consider restarting
the algorithm each time to get to a day t of the form 2i.]

Exercise 74

Suppose we modify the multiplicative weights algorithm so that the weight update step is wt+1(a) :=
wt(a) · (1 − εct(a)) (rather than wt+1(a) := wt(a) · (1 − ε)ct(a)). Show that this algorithm also has regret
O(
√

lnn/
√
T ).

[Hint: This time you should redo the analysis from class, making minor modifications as necessary.]
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Exercise 75

Modify the online decision-making setting so that every time step t an adversary chooses a payoff vec-
tor πt : A → [0, 1] rather than a cost vector. The time-averaged external regret is now defined as
1
T maxa∈A

∑T
t=1 π

t(a)− 1
T

∑T
t=1 π

t(at).
Suppose we modify the multiplicative weights algorithm so that the weight update step is wt+1(a) :=

wt(a) · (1 + ε)π
t(a) (rather than wt+1(a) := wt(a) · (1 − ε)c

t(a)). Show that this algorithm has regret
O(
√

lnn/
√
T ).

[Hint: Redo the analysis from class, making minor modifications as necessary. Use Exercise 72.]

Exercise 76

We assumed in class that costs are bounded between 0 and 1. Suppose instead they are bounded between 0
and cmax. Explain how to make minor modifications to the multiplicative weights algorithm so that it has
time-averaged regret O(cmax ·

√
lnn/

√
T ). (You can assume that T is known.) Note this implies O( c

2
max lnn
ε2 )

steps to achieve regret ε.

Exercise 77

Consider a (λ, µ)-smooth cost-minimization game (see Lecture 14). Let s1, . . . , sT be an outcome sequence
such that player i has time-averaged external regret Ri. Let σ denote the uniform distribution over this
multi-set of T outcomes. Prove that the expected cost of σ is at most λ

1−µ times the cost of an optimal
outcome, plus the error term 1

1−µ
∑n
i=1Ri.

Exercise 78

Consider T iterations of no-regret dynamics in a k-player game. Let pti denote the mixed strategy played by
player i in iteration t, and σt =

∏k
i=1 p

t
i the corresponding distribution over outcomes on day t.

In lecture we proved that the time-averaged joint distribution 1
T

∑T
t=1 σ

t is an approximate coarse cor-
related equilibrium, but did not claim anything about any individual distribution σt.

Prove that an individual distribution σt is an approximate coarse correlated equilibrium if and only if it
is an approximate Nash equilibrium (with the same error term).

Lecture 18 Exercises

Exercise 79

Suppose we instantiate the Blum-Mansour reduction using n copies of the multiplicative weights algorithm,
where n is the number of actions. What is the swap regret of the resulting “master” algorithm, as a function
of n and T?

Exercise 80

Let A denote the matrix of row player payoffs of a two-player zero-sum game. Prove that a pair of x̂, ŷ of
mixed distributions is a mixed Nash equilibrium if and only if it is a minimax pair, meaning

x̂ ∈ argmax
x

(
min
y
xTAy

)
and

ŷ ∈ argmin
y

(
max
x

xTAy
)
.
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Exercise 81

Prove that if (x1, y1) and (x2, y2) are mixed Nash equilibria of a two-player zero-sum game, then so are
(x1, y2) and (x2, y1).
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