
Lectures Notes on Algorithmic Game Theory

Stanford CS364A, Fall 2013

1

Tim Roughgarden

2

Version: July 28, 2014

1 c�2013–14, Tim Roughgarden. Comments and corrections are encouraged. Special thanks to the course TAs,
Kostas Kollias and Okke Schrijvers.

2Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford, CA 94305.
Email: tim@cs.stanford.edu.

2

Contents

Lecture #1: Introduction and Examples

Lecture #2: Mechanism Design Basics

Lecture #3: Myerson’s Lemma

Lecture #4: Algorithmic Mechanism Design

Lecture #5: Revenue-Maximizing Auctions

Lecture #6: Simple Near-Optimal Auctions

Lecture #7: Multi-Parameter Mechanism Design and the VCG Mechanism

Lecture #8: Combinatorial and Wireless Spectrum Auctions

Lecture #9: Beyond Quasi-Linearity

Lecture #10: Kidney Exchange and Stable Matching

Lecture #11: Selfish Routing and the Price of Anarchy

Lecture #12: More on Selfish Routing

Lecture #13: Potential Games; A Hierarchy of Equilibria

Lecture #14: Robust Price-of-Anarchy Bounds in Smooth Games

Lecture #15: Best-Case and Strong Nash Equilibria

Lecture #16: Best-Response Dynamics

Lecture #17: No-Regret Dynamics

Lecture #18: From External Regret to Swap Regret and the Minimax Theorem

Lecture #19: Pure Nash Equilibria and PLS-Completeness

Lecture #20: Mixed Nash Equilibria and PPAD-Completeness

The Top 10 List

Exercises

CS364A: Algorithmic Game Theory
Lecture #1: Introduction and Examples∗

Tim Roughgarden†

September 23, 2013

1 Mechanism Design: The Science of Rule-Making

This course is roughly organized into three parts, each with its own overarching goal. Here
is the first.

Course Goal 1 Understand how to design systems with strategic participants that have
good performance guarantees.

We begin with a cautionary tale. In 2012, the Olympics were held in London. One of
the biggest scandals of the event concerned, of all sports, women’s badminton. The scandal
did not involve any failed drug tests, but rather a failed tournament design that did not
carefully consider incentives.

The tournament design that was used is familiar from the World Cup soccer. There are
four groups (A,B,C,D) of four teams each. The tournament has two phases. In the first
”round-robin” phase, each team plays the other three teams in its group, and does not play
teams in other groups. The top two teams from each group advance to the second phase,
the bottom two teams from each group are eliminated. In the second phase, the remaining
eight teams play a standard ”knockout” tournament (as in tennis, for example): there are
four quarterfinals (with the losers eliminated), then two semifinals (with the losers playing
an extra match to decide the bronze model), and then the final (the winner gets the gold,
the loser the silver).

The incentives of participants and of the Olympics committee (and fans) are not neces-
sarily aligned in such a tournament. What does a team want? To get as good a medal as
possible, of course. What does the Olympics committee want? They didn’t seem to think
carefully about this question, but in hindsight it’s clear that they want every team to try
their best to win every match. Why, you ask, would a team ever want to lose a match?

∗ c⃝2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

Indeed, in the second ”knockout” phase of the tournament, where losing leads to instant
elimination, it’s obvious that winning is better than losing.

To understand the incentive issues, we need to explain how the eight winners from the
round-robin phase are paired up in the quarterfinals. The team with the best record from
group A plays the second-best team from group C in the first quarterfinal; similarly with the
best team from group C and the second-best time from group A in the third quarterfinal; and
similarly with the top two teams from groups B and D in the second and fourth quarterfinals.
The dominoes started to fall when, on the last day of round-robin competition, there was a
shocking upset: the Danish team of Pedersen and Juhl (PJ) beat the Chinese team of Qing
and Wunlei (QW), and as a result PJ won group D with QW coming in second (so both
teams advanced to the knockout round).

The first controversial match involved another team from China, Xiaoli and Yang (XY),
and the South Korean team of Kyung-eun and Ha-na (KH). Both teams had a 2-0 record
in group A play. Thus, both were headed for the knockout stage, with the winner and
loser of this match the top and second-best team from the group, respectively. Here was the
issue: the group-A winner would meet the fearsome QW team (which came in only second in
group D) in the semifinals of the knockout tournament (where a loss means a bronze medal
at best), while the the second-best team in group-A would not have to face QW until the
final (where a silver medal is guaranteed). Both the XY and KH teams found the difference
between these two scenarios significant enough to try to deliberately lose the match.1 This
unappealing spectacle led to scandal, derision, and, ultimately, the disqualification of the
XY and KH teams, as well as two group C teams (from Indonesia and another team from
South Korea) that used the same strategy, for the same reason.2

The point is that, in systems with strategic participants, the rules matter. Poorly designed
systems suffer from unexpected and undesirable results. The burden lies on the system
designer to anticipate strategic behavior, not on the participants to behave against their
own interests. Can we blame the badminton players for acting to maximize their medal
placement? To quote Hartline and Kleinberg [5]:

”The next time we bemoan people exploiting loopholes to subvert the intent of the
rule makers, instead of asking ’What’s wrong with these people?” let’s instead ask,
’What’s wrong with the rules?’ and then adopt a scientifically principled approach to
fixing them.”

There is a well-developed science of rule-making, the field of mechanism design. The goal
in this field is to design rules so that strategic behavior by participants leads to a desirable
outcome. Killer applications of mechanism design, which we will discuss in detail later,
include Internet search auctions, wireless spectrum auctions, matching medical residents to
hospitals, matching children to schools, and kidney exchange markets.

1That the teams feared the Chinese team QW far more than the Danish team PJ seems justified in
hindsight: PJ were knocked out in the quarterfinals, while QW won the gold medal.

2If you’re having trouble imagining what a badminton match looks like when both teams are trying to
lose, I encourage you to track down the video on YouTube.

2

s t

w

v

(x) = 1

(x) = x

(x) = x

(x) = 1 c

c

c

c

(a) Initial network

s t

w

v

(x) = 1 (x) = x

(x) = 1

(x) = 0

(x) = x c

c c

c

c

(b) Augmented network

Figure 1: Braess’s Paradox. The addition of an intuitively helpful edge can adversely affect
all of the traffic.

We’ll study some of the basics of the traditional economic approach to mechanism de-
sign, along with several complementary contributions from computer science that focus on
computational efficiency, approximate optimality, and robust guarantees.

2 The Price of Anarchy: When Is Selfish Behavior
Near-Optimal?

Sometimes you don’t have the luxury of designing the rules of a game from scratch, and want
instead to understand a game that occurs “in the wild” — the Internet or a road network,
for example.

Course Goal 2 When is selfish behavior essentially benign?

2.1 Braess’s Paradox

For a motivating example, consider Braess’s Paradox (Figure 1) [1]. There is a suburb s,
a train station t, and a fixed number of drivers who wish to commute from s to t. For the
moment, assume two non-interfering routes from s to t, each comprising one long wide road
(with travel time one hour, no matter how much traffic uses it) and one short narrow road
(with travel time in hours equal to the fraction of traffic using it) as shown in Figure 1(a).
The combined travel time in hours of the two edges on one of these routes is 1 + x, where
x is the fraction of the traffic that uses the route. The routes are therefore identical, and
traffic should split evenly between them. In this case, all drivers arrive at their destination
90 minutes after their departure from s.

Now, suppose we install a teleportation device allowing drivers to travel instantly from v

to w. The new network is shown in Figure 1(b), with the teleporter represented by edge

3

(v, w) with constant cost c(x) = 0, independent of the road congestion. How will the drivers
react?

We cannot expect the previous traffic pattern to persist in the new network. The travel
time along the new route s → v → w → t is never worse than that along the two original
paths, and it is strictly less whenever some traffic fails to use it. We therefore expect all
drivers to deviate to the new route. Because of the ensuing heavy congestion on the edges
(s, v) and (w, t), all of these drivers now experience two hours of travel time when driving
from s to t. Braess’s Paradox thus shows that the intuitively helpful action of adding a new
zero-cost link can negatively impact all of the traffic!

Braess’s Paradox shows that selfish routing does not minimize the commute time of the
drivers — in the network with the teleportation device, an altruistic dictator could dictate
routes to traffic in improve everyone’s commute time by 25%. We define the price of anarchy
(POA) to be the ratio between the system performance with strategic players and the best-
possible system performance — for the network in Figure 1(b), the ratio between 2 and 3

2

(i.e., 4

3
).

The POA was first defined and studied by computer scientists. Every economist and
game theorist knows that equilibria are generally inefficient, but until the 21st century there
had been almost no attempts to quantify such inefficiency in different application domains.

In our study of the POA, the overarching goal is to identify application domains and
conditions under which the POA is guaranteed to be close to 1, and thus selfish behavior
leads to a near-optimal outcome. Killer applications include network routing, scheduling, re-
source allocation, and simple auction designs. For example, modest overprovision of network
capacity guarantees that the POA of selfish routing is close to 1 [7].

2.2 Strings and Springs

As a final aside, we note that selfish routing is also relevant in systems that have no explicit
notion of traffic whatsoever. Cohen and Horowitz [3] gave the following analogue of Braess’s
Paradox in a mechanical network of strings and springs.

In the device pictured in Figure 2, one end of a spring is attached to a fixed support,
and the other end to a string. A second identical spring is hung from the free end of the
string and carries a heavy weight. Finally, strings are connected, with some slack, from the
support to the upper end of the second spring and from the lower end of the first spring to
the weight. Assuming that the springs are ideally elastic, the stretched length of a spring
is a linear function of the force applied to it. We can therefore view the network of strings
and springs as a traffic network, where force corresponds to traffic and physical distance
corresponds to cost.

With a suitable choice of string and spring lengths and spring constants, the equilibrium
position of this mechanical network is described by Figure 2(a). Perhaps unbelievably, sev-
ering the taut string causes the weight to rise, as shown in Figure 2(b)! An explanation for
this curiosity is as follows. Initially, the two springs are connected in series, and each bears
the full weight and is stretched out to great length. After cutting the taut string, the two
springs are only connected in parallel. Each spring then carries only half of the weight, and

4

(a) Before (b) After

Figure 2: Strings and springs. Severing a taut string lifts a heavy weight.

accordingly is stretched to only half of its previous length. The rise in the weight is the
same as the improvement in the selfish outcome obtained by deleting the zero-cost edge of
Figure 1(b) to obtain the network of Figure 1(a).

This construction is not merely theoretical; on YouTube you can find several physical
demonstrations of Braess’s Paradox that were performed (for extra credit) by past students
of CS364A.

3 Complexity of Equilibria: How Do Strategic Players
Learn?

Some games are easy to play. For example, in the second network of Braess’s Paradox
(Figure 1(b)), using the teleporter is a no-brainer for every individual — it is the best route,
no matter what other drivers do. In many other games, like the first-price auctions mentioned
in the next lecture, it’s much harder to figure out how to play.

Course Goal 3 How do strategic players reach an equilibrium? (Or do they?)

Informally, an equilibrium is a “steady state” of a system where each participant, assum-
ing everything else stays the same, want to remain as-is. Hopefully, you didn’t learn the
definition of a Nash equilibrium from the movie A Beautiful Mind.

5

In most games, the best action to play depends on what the other players are doing.
Rock-Paper-Scissors, rendered below in “bimatrix” form, is a canonical example.

Rock Paper Scissors
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1

Scissors -1,1 1,-1 0,0

One player chooses a row and the other a column. The numbers in the corresponding
matrix entry are the payoffs for the row and column player, respectively.

There is certainly no “determinstic equilibrium” in the Rock-Paper-Scissors game: what-
ever the current state, at least one player would benefit from a unilateral move.

A crucial idea, developed largely by von Neumann, is to allow randomized (a.k.a. mixed)
strategies. (In a game like Rock-Paper-Scissors, from your perspective, your opponent is
effectively randomizing.) If both players randomize uniformly in Rock-Paper-Scissors, then
neither player can increase their expected payoff via a unilateral deviation — indeed, ev-
ery unilateral deviation yields zero expected payoff to the deviator. A pair of probability
distributions with this property is a (mixed-strategy) Nash equilibrium.

Remarkably, with randomization, every game has at least one Nash equilibrium.

Nash’s Theorem (’51): Every bimatrix game has a Nash equilibrium.

Nash’s theorem holds more generally in games with any finite number of players.
Another piece of good news, that we’ll cover in the course: if a bimatrix game is zero-sum

— meaning that the payoff pair in each entry sums to zero, like in Rock-Paper-Scissors —
then a Nash equilibrium can be computed in polynomial time. This can be done via linear
programming or, if a small amount of error can be tolerated, via simple iterative learning
algorithms. There algorithmic results give credence to the Nash equilibrium concept as a
good prediction of behavior in zero-sum games.

Far more recently (mid-last decade), computer science contributed an important negative
result: under suitable complexity assumptions, there is no polynomial-time for computing
a Nash equilibrium in general (non-zero-sum) games [2, 4]. While the problem is not NP -
hard (unless NP = coNP), it is something called “PPAD-hard”, which we will explain and
interpret in due course.

This hardness result is interesting for at least two different reasons. On a technical
level, it shows that computing Nash equilibria is a fundamental computational problem of
“intermediate” difficulty (like factoring and graph isomorphism) — unlikely to be in P or
NP -complete. On a conceptual level, many interpretations of an equilibrium concept involve
someone — the participants or a designer — determining an equilibrium. For example, the
idea that markets implicitly compute a solution to a significant computational problem goes
back at least to Adam Smith’s notion of the invisible hand [8]. If all parties are boundedly
rational, then an equilibrium can be interpreted as a credible prediction only if it can be
computed with reasonable effort. Rigorous intractability results thus cast doubt on the
predictive power of equilibrium concepts (a critique that dates back at least to Rabin [6]).
While intractability is certainly not the first stone thrown at the Nash equilibrium concept, it

6

is one that theoretical computer science is ideally situated to make precise. This perspective
also provides novel motivation for our study of “easier” equilibrium concepts, like correlated
equilibria and coarse correlated equilibria.

4 What Computer Science Brings to the Table

There is, of course, a very rich literature on mechanism design and equilibria in economics. In
this course, we’ll see how computer scientists have complemented this literature in a number
of novel ways. The traditional economics approach to the topics we study tends to focus on
“Bayesian” (i.e., average-case) analyses; emphasizes exact solutions and characterizations;
and usually ignores computational issues. Computer science has offered a focus on and a
language to discuss computational complexity; popularized the widespread use of approxi-
mation bounds to reason about models where exact solutions are unrealistic or unknowable;
and encouraged more robust performance guarantees.

5 Target Audience

These notes assume a background in undergraduate theoretical computer science — basic
algorithms and NP-completeness. They do not assume any background in game theory
or economics. (Conversely, this course is no substitute for a traditional game theory or
microeconomics economics.) The level is meant to be accessible to a Masters or 1st-year
PhD student with an affinity for theory.

References

[1] D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung,
12:258–268, 1968.

[2] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of two-player Nash equilibria.
Journal of the ACM, 56(3), 2009.

[3] J. E. Cohen and P. Horowitz. Paradoxical behavior of mechanical and electrical networks.
Nature, 352(8):699–701, 1991.

[4] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing
a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

[5] J. D. Hartline and R. D. Kleinberg. The badminton and the science of rule making. The
Huffington Post, August 13 2012. http://www.huffingtonpost.com/jason-hartline/
badminton-and-the-science-of-rule-making b 1773988.html.

7

[6] M. O. Rabin. Effective computability of winning strategies. In M. Dresher, A. W. Tucker,
and P. Wolfe, editors, Contributions to the Theory Games, volume 3, pages 147–157.
Princeton, 1957.

[7] T. Roughgarden. The price of anarchy is independent of the network topology. Journal
of Computer and System Sciences, 67(2):341–364, 2003.

[8] A. Smith. An Inquiry Into the Nature and Causes of the Wealth of Nations. Methuen,
1776.

8

CS364A: Algorithmic Game Theory

Lecture #2: Mechanism Design Basics

⇤

Tim Roughgarden†

September 25, 2013

1 Single-Item Auctions

The most sensible place to start our discussion of mechanism design — the science of rule-
making — is single-item auctions. Recall our overarching goal in this part of the course.

Course Goal 1 Understand how to design systems with strategic participants that have
good performance guarantees.

Consider a seller that had a single good, such as an slightly antiquated smartphone. This
is the setup in a typical eBay auction, for example. There is some number n of (strategic!)
bidders who are potentially interested in buying the item.

We want to reason about bidder behavior in various auction formats. To do this, we
need a model of what a bidder wants. The first key assumption is that each bidder i has a
valuation vi — its maximum willingness-to-pay for the item being sold. Thus bidder i wants
to acquire the item as cheaply as possible, provided the selling price is at most vi. Another
important assumption is that this valuation is private, meaning it is unknown to the seller
and to the other bidders.

Our bidder utility model, called the quasilinear utility model, is as follows. If a bidder
loses an auction, its utility is 0. If the bidder wins at a price p, then its utility is vi � p.
This is perhaps the simplest natural utility model, and it is the one we will focus on in this
course.1

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1
More complex utility models are well motivated and have been studied — to model risk attitudes, for

example.

1

2 Sealed-Bid Auctions

For now, we’ll focus on a particular simple class of auction formats: sealed-bid auctions.
Here’s what happens:

(1) Each bidder i privately communicates a bid bi to the auctioneer — in a sealed envelope,
if you like.

(2) The auctioneer decides who gets the good (if anyone).

(3) The auctioneer decides on a selling price.

There is an obvious way to implement step (2) — give the good to the highest bidder.
Today, this will be the only selection rule that we study.2

There are multiple reasonable ways to implement step (3) and the implementation signif-
icantly a↵ects bidder behavior. For example, suppose we try to be altruistic and charge the
winning bidder nothing. This idea backfires badly, with the auction devolving into a game
of “who can name the highest number”?

3 First-Price Auctions

A much more reasonable choice is to ask the winning bidder to pay its bid. This is called a
first-price auction, and such auction are common in practice.

First-price auctions are hard to reason about. First, as a participant, it’s hard to figure
out how to bid. Second, as a seller or auction designer, it’s hard to predict what will
happen. We’ll elaborate on the theory of first-price auctions in Problem Set #1 and in
later advanced material. For now, to drive the point home, imagine participating in the
following experiment. There’s an item being sold via a first-price auction. Your valuation
(in dollars) is the number of your birth month plus the day of your birth. Thus, your
valuation is somewhere between 2 (for January 1st) and 43 (for December 31st). Suppose
there is exactly one other bidder (drawn at random from the world) whose valuation is
determined in the same way. What bid would you submit to maximize your (quasilinear)
utility? Would your answer change if you knew there were two other bidders in the auction,
rather than one?

4 Second-Price Auctions

Let’s now focus on a di↵erent auction format, which is also common in practice, that is
much easier to reason about. To motivate it, think about what happens when you win an
eBay auction. If you bid $100 and win, do you necessarily pay $100? Not necessarily —
eBay uses a “proxy bidder” that increases your bid on your behalf until your maximum bid

2
When we study revenue maximization a few lectures hence, we’ll see why other winner selection rules

are important.

2

is reached, or until you are the highest bidder (whichever comes first). For example, if the
highest other bid is only $90, then you will only pay $90 (plus a small increment), rather
than your maximum bid $100. The upshot is: if you win an eBay auction, the sale price
equals the highest other bid (the second highest overall), plus a small increment.

A second-price or Vickrey auction is a sealed-bid auction in which the highest bidder wins
and pays a price equal to the second-highest bid.

Claim 4.1 In a second-price auction, every bidder has a dominant strategy: set its bid bi

equal to its private valuation vi. That is, this strategy maximizes the utility of bidder i, no
matter what the other bidders do.

This claim implies that second-price auctions are particularly easy to participate in —
you don’t need to reason about other the bidders in any way (how many there are, what their
valuations, whether or not they bid truthfully, etc.) to figure out how you should bid. Note
this is completely di↵erent from a first-price auction. You should never bid your valuation in
a first-price auction (that would guarantee zero utility), and the ideal amount to underbid
depends on the bids of the other players.
Proof of Claim 4.1: Fix an arbitrary player i, its valuation vi, and the bids b�i of the other
players. (Here b�i means the vector b of all bids, but with the ith component deleted. It’s
wonky notation but you need to get used to it.) We need to show that bidder i’s utility is
maximized by setting bi = vi. (Recall vi is i’s immutable valuation, while it can set its bid bi

to whatever it wants.)
Let B = maxj 6=i bj denote the highest bid by some other bidder. What’s special about a

second-price auction is that, even though there are an infinite number of bids that i could
make, only distinct outcomes can result. If bi < B, then i loses and receives utility 0.
If bi � B, then i wins at price B and receives utility vi �B.3

We now consider two cases. First, if vi < B, the highest utility that bidder i can get
is max{0, vi � B} = 0, and it achieves this by bidding truthfully (and losing). Second, if
vi � B, the highest utility that bidder i can get is max{0, vi �B} = vi �B, and it achieves
this by bidding truthfully (and winning). ⌅

The second important property is that a truthtelling bidder will never regret participating
in a second-price auction.

Claim 4.2 In a second-price auction, every truthtelling bidder is guaranteed non-negative
utility.

Proof: Losers all get utility 0. If bidder i is the winner, then its utility is vi � p, where p

is the second-highest bid. Since i is winner (and hence the highest bidder) and bid its true
valuation, p  vi and hence vi � p � 0. ⌅

3
We’re assuming here that ties are broken in favor of bidder i. The claim holds no matter how ties are

broken, as you should check.

3

The exercises ask you to explore further properties of and variations on the Vickrey
auction. For example, truthful bidding is the unique dominant strategy for a bidder in a
Vickrey auction.

5 Awesome Auctions

Taking a step back, we can claim the following.

Theorem 5.1 (Vickrey [3]) The Vickrey auction is awesome. Meaning, it enjoys three
quite di↵erent and desirable properties:

(1) [strong incentive guarantees] It is dominant-strategy incentive-compatible (DSIC),
i.e., Claims 4.1 and 4.2 hold.

(2) [strong performance guarantees] If bidders report truthfully, then the auction max-
imizes the social surplus

nX

i=1

vixi, (1)

where xi is 1 if i wins and 0 if i loses, subject to the obvious feasibility constraint
that

Pn
i=1 xi  1 (i.e., there is only one item).4

(3) [computational e�ciency] The auction can be implemented in polynomial (indeed,
linear) time.

All of these properties are important. From a bidder’s perspective, the DSIC property,
which guarantees that truthful reporting is a dominant strategy and never leads to nonnega-
tive utility, makes it particularly easy to choose a bid. From the seller’s or auction designer’s
perspective, the DSIC property makes it much easier to reason about the auction’s outcome.
Note that any prediction of an auction’s outcome has to be predicated on assumptions about
how bidders behave. In a DSIC auction, one only has to assume that a bidder with an ob-
vious dominant strategy will play it — behavioral assumptions don’t get much weaker than
that.

The DSIC property is great when you can get it, but we also want more. For example,
an auction that gives the item away for free to a random bidder is DSIC, but it makes no
e↵ort to identify which bidders actually want the good. The surplus-maximization property
states something rather amazing: even though the bidder valuations were a priori unknown
to the auctioneer, the auction nevertheless successfully identifies the bidder with the high-
est valuation! (Assuming truthful bids, which is a reasonable assumption in light of the
DSIC property.) That is, the Vickrey auction solves the surplus-maximization optimization
problem as well as if the data (the valuations) were known in advance.

4
Note that the sale price is not part of the surplus. The reason is that we treat the auctioneer as a player

whose utility is the revenue it earns; its utility then cancels out the utility lost by the auction winner from

paying for the item. We will discuss auctions for maximizing seller revenue in a few lectures.

4

The importance of the third property is self-evident to computer scientists. To have
potential practical utility, an auction should run in a reasonable amount of time — or even
in real time, for some applications. Auctions with super-polynomial running time are useful
only for fairly small instances.

The next several lectures strive for awesome auctions, in the sense of Theorem 5.1, for
applications beyond single-item auctions. The two directions we focus on are well motivated:
more complex allocation problems, like those that inevitably arise in sponsored search and
combinatorial auctions; and maximizing seller revenue in lieu of social surplus.

6 Case Study: Sponsored Search Auctions

6.1 Background

A Web search results page comprises a list of organic search results — deemed by some un-
derlying algorithm, such as PageRank, to be relevant to you query — and a list of sponsored
links, which have been paid for by advertisers. (Go do a Web search now to remind yourself,
preferably on a valuable keyword like “mortgage” or “asbestos”.) Every time you type a
search query into a search engine, an auction is run in real time to decide which advertisers’
links are shown, in what order, and how they are charged. It is impossible to overstate how
important such sponsored search auctions have been to the Internet economy. Here’s one
jaw-dropping statistic: around 2006, sponsored auctions generate roughly 98% of Google’s
revenue [1]. While online advertising is now sold in many di↵erent ways, sponsored search
auctions continue to generate tens of billions of dollars of revenue every year.

6.2 The Basic Model of Sponsored Search Auctions

We discuss next a simplistic but useful and influential model of sponsored search auctions,
due independently to Edelman et al. [1] and Varian [2]. The goods for sale are the k “slots”
for sponsored links on a search results page. The bidders are the advertisers who have a
standing bid on the keyword that was searched on. For example, Volvo and Suburu might
be bidders on the keyword “station wagon,” while Nikon and Canon might be bidders on the
keyword “camera.” Such auctions are more complex than single-item auctions in two ways.
First, there are generally multiple goods for sale (i.e., k > 1). Second, these goods are not
identical — slots higher on the search page are more valuable than lower ones, since people
generally scan the page from top to bottom.

We quantify the di↵erence between di↵erent slots using click-through-rates (CTRs). The
CTR ↵j of a slot j represents the probability that the end user clicks on this slot. Ordering the
slots from top to bottom, we make the reasonable assumption that ↵1 � ↵2 � · · · � ↵k. For
simplicity, we also make the unreasonable assumption that the CTR of a slot is independent
of its occupant. The exercises show how to extend the following results to the more general
and realistic model in which each advertiser i has a “quality score” �i (the higher the better)
and the CTR of advertiser i in slot j is the product �i↵j.

5

We assume that an advertiser is not interested in an impression (i.e., being displayed on
a page) per se, but rather has a private valuation vi for each click on its link. Hence, the
value derived by advertiser i from slot j is vi↵j.

6.3 What We Want

Is there an awesome sponsored search auction? Our desiderata are:

(1) DSIC. That is, truthful bidding should be a dominant strategy, and never leads to
negative utility.

(2) Social surplus maximization. That is, the assignment of bidders to slots should maxi-
mize

Pn
i=1 vixi, where xi now denotes the CTR of the slot to which i is assigned (or 0

if i is not assigned to a slot). Each slot can only be assigned to one bidder, and each
bidder gets only one slot.

(3) Polynomial running time. Remember zillions of these auctions need to be run every
day!

6.4 Our Design Approach

What’s hard about mechanism design problems is that we have to jointly design two things:
the choice of who wins what, and the choice of who pays what. Even in single-item auctions,
it is not enough to make the “correct” choice to first design decision (i.e., giving the good
to the highest bidder) — if the payments are not just right, then strategic participants will
game the system.

Happily, in many applications including sponsored search auctions, we can tackle this
two-prong design problem one step at a time.

Step 1: Assume, without justification, that bidders bid truthfully. Then, how should we
assign bidders to slots so that the above properties (2) and (3) hold?

Step 2: Given our answer to Step 1, how should we set selling prices so that the above
property (1) holds?

If we successfully answer both these questions, then we have constructed an awesome
auction. Step 2 ensures the DSIC property, which means that bidders will bid truthfully
(assuming as usual that a bidder with an obvious dominant strategy does indeed play that
strategy). This means that the hypothesis in Step 1 is satisfied, and so the final outcome of
the auction is indeed surplus-maximizing (and is computed in polynomial time).

We conclude this lecture by executing Step 1 of sponsored search auctions. Given truthful
bids, how should we assign bidders to slots to maximize the surplus? As an exercise, you
should show that the natural greedy algorithm is optimal (and runs in near-linear time):
assign the jth highest bidder to the jth highest slot for j = 1, 2, . . . , k.

Can we implement Step 2? Is there an analog of the second-price rule — sale prices that
render truthful bidding a dominant strategy for every bidder? Next lecture we’ll derive an
a�rmative answer via Myerson’s Lemma, a powerful tool in mechanism design.

6

References

[1] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the Generalized
Second-Price Auction: Selling billions of dollars worth of keywords. American Economic
Review, 97(1):242–259, 2007.

[2] H. R. Varian. Position auctions. International Journal of Industrial Organization,
25(6):1163–1178, 2007.

[3] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of
Finance, 16(1):8–37, 1961.

7

CS364A: Algorithmic Game Theory

Lecture #3: Myerson’s Lemma

⇤

Tim Roughgarden†

September 30, 2013

1 The Story So Far

Last time, we introduced the Vickrey auction and proved that it enjoys three desirable and
di↵erent guarantees:

(1) [strong incentive guarantees] DSIC. That is, truthful bidding should be a dominant
strategy (and never leads to negative utility).

Don’t forget the two reasons we’re after the DSIC guarantee. First, such an auction is
easy to play for bidders — just play the obvious dominant strategy. Second, assuming
only that bidders will play a dominant strategy when they have one, we can confidently
predict the outcome of the auction.

(2) [strong performance guarantees] Social surplus maximization. That is, assuming
truthful bids (which is justified by (1)), the allocation of goods to bidders should
maximize

Pn
i=1 vixi, where xi the amount of stu↵ allocated to bidder i.

(3) [computational e�ciency] The auction can be implemented in polynomial (indeed,
linear) time.

To extend these guarantees beyond single-item auctions to more complex problems, like
the sponsored search auctions introduced last lecture, we advocated a two-step design ap-
proach.

Step 1: Assume, without justification, that bidders bid truthfully. Then, how should we
assign bidders to slots so that the above properties (2) and (3) hold?

Step 2: Given our answer to Step 1, how should we set selling prices so that the above
property (1) holds?

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

For instance, in sponsored search auctions, the first step can be implemented using a
simple greedy algorithm (assign the jth highest bidder the jth best slot). But what about
the second step?

This lecture states and proves Myerson’s Lemma, a powerful and general tool for imple-
menting Step 2. This lemma applies to sponsored search auctions as a special case, and we’ll
also see further applications later.

2 Single-Parameter Environments

A good level of abstraction at which to state Myerson’s Lemma is single-parameter environ-
ments. Such an environment has some number n of bidders. Each bidder i has a private
valuation vi, its value “per unit of stu↵” that it gets. Finally, there is a feasible set X. Each
element of X is an n-vector (x1, x2, . . . , xn), where xi denotes the “amount of stu↵” given to
bidder i. For example:

• In a single-item auction, X is the set of 0-1 vectors that have at most one 1 (i.e.,Pn
i=1 xi  1).

• With k identical goods and the constraint the each customer gets at most one, the
feasible set is the 0-1 vectors satisfying

Pn
i=1 xi  k.

• In sponsored search, X is the set of n-vectors corresponding to assignments of bidders
to slots, where each slot is assigned at most one bidder and each bidder is assigned at
most one slot. If bidder i is assigned to slot j, then the component xi equals the CTR
↵j of its slot.

3 Allocation and Payment Rules

Recall that a sealed-bid auction has to make two choices: who wins and who pays what.
These two decisions are formalized via an allocation rule and a payment rule, respectively.
That is, a sealed-bid auction has three steps:

(1) Collect bids b = (b1, . . . , bn)

(2) [allocation rule] Choose a feasible allocation x(b) 2 X ✓ Rn as a function of the
bids.

(3) [payment rule] Choose payments p(b) 2 Rn as a function of the bids.

We continue to use a quasilinear utility model, so, in an auction with allocation and
payment rules x and p, respectively, bidder i has utility

ui(b) = vi · xi(b)� pi(b)

on the bid profile (i.e., bid vector) b.

2

In lecture, we will focus on payment rules that satisfy

pi(b) 2 [0, bi · xi(b)] (1)

for every i and b. The constraint that pi(b) � 0 is equivalent to prohibiting the seller from
paying the bidders. The constraint that pi(b)  bi · xi(b) ensures that a truthtelling bidder
receives nonnegative utility (do you see why?).

There are applications where it makes sense to relax one or both of these restrictions on
payments, but we won’t cover any in these lectures.

4 Statement of Myerson’s Lemma

We now come to two important definitions. Both articulate a property of allocation rules.

Definition 4.1 (Implementable Allocation Rule) An allocation rule x for a single-parameter
environment is implementable if there is a payment rule p such the sealed-bid auction (x,p)
is DSIC.

That is, the implementable allocation rules are those that extend to DSIC mechanisms.
Equivalently, the projection of DSIC mechanisms onto their allocation rules is the set of
implementable rules. If our aim is to design a DSIC mechanism, we must confine ourselves
to implementable allocation rules — they form our “design space.” In this terminology,
we can rephrase the cli↵hanger from the end of last lecture as: is the surplus-maximizing
allocation rule for sponsored search, which assigns the jth highest bidder to the jth best
slot, implementable?

For instance, consider a single-item auction. Is the allocation rule that awards the good
to the highest bidder implementable? Sure — we’ve already constructed a payment rule,
the second-price rule, that renders it DSIC. What about the allocation rule that awards the
good to the second-highest bidder? Here, the answer is not clear: we haven’t seen a payment
rule that extends it to a DSIC mechanism, but it also seems tricky to argue that no payment
rule could conceivably work.

Definition 4.2 (Monotone Allocation Rule) An allocation rule x for a single-parameter
environment is monotone if for every bidder i and bids b�i by the other bidders, the alloca-
tion xi(z,b�i) to i is nondecreasing in its bid z.

That is, in a monotone allocation rule, bidding higher can only get you more stu↵.
For example, the single-item auction allocation rule that awards the good to the highest

bidder is monotone: if you’re the winner and you raise your bid (keeping other bids constant),
you continue to win. By contrast, awarding the good to the second-highest bidder is a non-
monotone allocation rule: if you’re the winner and raise your bid high enough, you lose.

The surplus-maximizing allocation rule for sponsored search, with the jth highest bidder
awarded the jth slot, is monotone. The reason is that raising your bid can only increase

3

your position in the sorted order of bids, which can only net you a higher slot, which can
only increase the click-through-rate of your slot.

We state Myerson’s Lemma in three parts; each is conceptually interesting and will be
useful in later applications.

Theorem 4.3 (Myerson’s Lemma [2]) Fix a single-parameter environment.

(a) An allocation rule x is implementable if and only if it is monotone.

(b) If x is monotone, then there is a unique payment rule such that the sealed-bid mecha-
nism (x,p) is DSIC [assuming the normalization that bi = 0 implies pi(b) = 0].

(c) The payment rule in (b) is given by an explicit formula (see (6), below).

Myerson’s Lemma is the foundation on which we’ll build most of our mechanism design
theory. Part (a) states that Definitions 4.1 and 4.2 define exactly the same class of allocation
rules. This equivalence is incredibly powerful: Definition 4.1 describes our design goal but
is unwieldy to work with and verify, while Definition 4.2 is far more “operational.” Usually,
it’s not di�cult to check whether or not an allocation rule is monotone. Part (b) states that,
when an allocation rule is implementable, there is no ambiguity in how to assign payments
to achieve the DSIC property — there is only one way to do it. (Assuming bidding zero
guarantees zero payment; note this follows from our standing assumption (1).) Moreover,
there is a relatively simple and explicit formula for this payment rule (part (c)), a property
we apply to sponsored search auctions below and to revenue-maximization auction design in
future lectures.

5 Proof of Myerson’s Lemma (Theorem 4.3)

Consider an allocation rule x, which may or may not be monotone. Suppose there is a
payment rule p such that (x,p) is a DSIC mechanism — what could p look like? The plan
of this proof is to cleverly invoke the stringent DSIC constraint to whittle the possibilities
for p down to a single candidate. We will establish all three parts of the theorem in one fell
swoop.

Recall the DSIC condition: for every bidder i, every possible private valuation bi, every
set of bids b�i by the other players, it must be that i’s utility is maximized by bidding
truthfully. For now, fix i and b�i arbitrarily. As shorthand, write x(z) and p(z) for the
allocation xi(z,b�i) and payment pi(z,b�i) of i when it bids z, respectively. Figure 1 gives
two examples of what the function x might look like.

We invoke the DSIC constraint via a simple but clever swapping trick. Suppose (x,p)
is DSIC, and consider any 0  y < z. Because bidder i might well have private valuation z

and can submit the false bid y if it wants, DSIC demands that

z · x(z)� p(z)| {z }
utility of bidding z

� z · x(y)� p(y)| {z }
utility of bidding y

(2)

4

z

x(z)

1

0

(a) 0-1 Monotone Curve

z

x(z)

1

0

(b) Piecewise Constant Monotone Curve

Figure 1: Examples of allocation curves x(·).

Similarly, since bidder i might well have the private valuation y and could submit the false
bid z, (x,p) must satisfy

y · x(y)� p(y)| {z }
utility of bidding y

� y · x(z)� p(z)| {z }
utility of bidding z

(3)

Myerson’s Lemma is, in e↵ect, trying to solve for the payment rule p given the alloca-
tion rule x. Rearranging inequalities (2) and (3) yields the following “payment di↵erence
sandwich,” bounding p(y)� p(z) from below and above:

z · [x(y)� x(z)]  p(y)� p(z)  y · [x(y)� x(z)] (4)

The payment di↵erence sandwich already implies one major component of Myerson’s
Lemma — do you see why?

Thus, we can assume for the rest of the proof that x is monotone. We will be slightly
informal in the following argument, but will cover all of the major ideas of the proof.

In (4), fix z and let y tends to z from above. We focus primarily on the case where x

is piecewise constant, as in Figure 1. In this case, x is flat except for a finite number of
“jumps”. Taking the limit y # z in (4), the left- and right-hand sides become 0 if there is no
jump in x at z. If there is a jump of magnitude h at z, then the left- and right-hand sides
both tend to z · h. This implies the following constraint on p, for every z:

jump in p at z = z · jump in x at z (5)

Thus, assuming the normalization p(0) = 0, we’ve derived the following payment formula,
for every bidder i, bids b�i by other bidders, and bid bi by i:

pi(bi,b�i) =
X̀

j=1

zj · jump in xi(·,b�i) at zj, (6)

where z1, . . . , z` are the breakpoints of the allocation function xi(·,b�i) in the range [0, bi]

5

A similar argument applies when x is a monotone function that is not necessarily piecewise
constant. For instance, suppose that x is di↵erentiable. Dividing the payment di↵erence
sandwich (4) by y � z and taking the limit as y # z yields the constraint

p

0(z) = z · x

0(z)

and, assuming p(0) = 0, the payment formula

pi(bi,b�i) =

Z bi

0

z · d
dzxi(z,b�i)dz (7)

for every bidder i, bid bi, and bids b�i by the others.
We reiterate that the payment formula in (6) is the only payment rule with a chance

of extending the given piecewise constant allocation rule x into a DSIC mechanism. Thus,
for every allocation rule x, there is at most one payment rule p such that (x,p) is DSIC
(cf., part (b) of Theorem 4.3). But the proof is not complete — we still have to check that
this payment rule works provided x is monotone! Indeed, we already know that even this
payment rule fails when x is not monotone.

We give a proof by picture that, when x is monotone and piecewise constant and p is
defined by (6), then (x,p) is a DSIC mechanism. The same argument works more generally
for monotone allocation rules that are not piecewise constant, with payments defined as
in (7). This will complete the proof of all three parts of Myerson’s Lemma.

Figures 2(a)–(i) depict the utility of a bidder when it bids truthfully, overbids, and
underbids, respectively. The allocation curve x(z) and the private valuation v of the bidder
is the same in all three cases. Recall that the bidder’s utility when it bids b is v · x(b) �
p(b). We depict the first term v · x(b) as a shaded rectangle of width v and height x(b)
(Figures 2(a)–(c)). Using the formula (6), we see that the payment p(b) can be represented
as the shaded area to the left of the allocation curve in the range [0, b] (Figures 2(d)-(f)).
The bidder’s utility is the di↵erence between these two terms (Figures 2(g)-(i)). When the
bidder bids truthfully, its utility is precisely the area under the allocation curve in the range
[0, v] (Figure 2(g)).1 When the bidder overbids, its utility is this same area, minus the area
above the allocation curve in the range [v, b] (Figure 2(h)). When the bidder underbids, its
utility is a subset of the area under the allocation curve in the range [0, v] (Figure 2(i)).
Since the bidder’s utility is the largest in the first case, the proof is complete.

6 Applying the Payment Formula: Sponsored Search

Solved

Myerson’s payment formula (6) is easy to understand and apply in many applications. For
starters, consider a single-item auction with the allocation rule that allocates the good to

1
In this case, the social surplus contributed by this bidder (v · x(v)) naturally splits into its utility (or

“consumer surplus”), the area under the curve, and the seller revenue, the area above the curve (in the range

[0, v]).

6

z

x(z)

1

0

v = b

(a) v · x(v)

1

0

v b

x(z)

z

(b) v · x(b) with b > v

z

x(z)

1

0

vb

(c) v · x(b) with b < v

1

0

z

x(z)

v = b

(d) p(v)

1

0

v b

x(z)

z

(e) p(b) with b > v

1

0

v z

x(z)

b

(f) p(b) with b < v

1

0

z

x(z)

v = b

(g) utility with b = v

b

x(z)

1

0

v z

(h) utility with b > v

1

0

v z

x(z)

b

(i) utility with b < v

Figure 2: Proof by picture that the payment rule in (6), coupled with the given monotone and
piecewise constant allocation rule, yields a DSIC mechanism. The three columns consider
the cases of truthful bidding, overbidding, and underbidding, respectively. The three rows
show the surplus v ·x(b), the payment p(b), and the utility v ·x(b)�p(b), respectively. In (h),
the solid region represents positive utility and the lined region represents negative utility.

7

the highest bidder. Fixing i and b�i, the function xi(·,b�i) is 0 up to B = maxj 6=i bj and 1
thereafter. The formula (6) is either 0 (if bi < B) or, if bi > B, there is a single breakpoint
(a jump of 1 at B) and the payment is pi(bi,b�i) = B. Thus, Myerson’s Lemma regenerates
the Vickrey auction as a special case.

Now let’s return to sponsored search auctions. Recall from last lecture that we have
k slots with click-through-rates (CTRs) ↵1 � ↵2 � · · · � ↵k. Let x(b) be the allocation
rule that assigns the jth highest bidder to the jth highest slot, for j = 1, 2, . . . , k. We’ve
noted previously that this rule is surplus-maximizing (assuming truthful bids) and monotone.
Applying Myerson’s Lemma, we can derive a unique payment rule p such that (x,p) is DSIC.
To describe it, consider a bid profile b; we can re-index the bidders so that b1 � b2 � · · · � bn.
For intuition, focus on the first bidder and imagine increasing its bid from 0 to b1, holding
the other bids fixed. The allocation xi(z,b�i) ranges from 0 to ↵1 as z ranges from 0 to b1,
with a jump of ↵j � ↵j+1 at the point where z becomes the jth highest bid in the profile
(z,b�i), namely bj+1. Thus, in general, Myerson’s payment formula specializes to

pi(b) =
kX

j=i

bj+1(↵j � ↵j+1) (8)

for the ith highest bidder (where ↵k+1 = 0).
Recall our assumption that bidders don’t care about impressions (i.e., having their link

shown), except inasmuch as it leads to a click. This motivates charging bidders per click,
rather than per impression. The per-click payment for bidder/slot i is simply that in (8),
scaled by 1

↵i
:

pi(b) =
kX

j=i

bj+1
↵j � ↵j+1

↵i
. (9)

Observe that the formula in (9) has the pleasing interpretation that, when its link its clicked,
an advertiser pays a suitable convex combination of the lower bids.

By historical accident, the sponsored search auctions used in real life are based on the
“Generalized Second Price (GSP)” auction [1, 3], which is a simpler (and perhaps incorrectly
implemented) version of the DSIC auction above. The per-click payment in GSP is simply the
next lowest bid. Since Myerson’s Lemma implies that the payment rule in (9) is the unique
one that yields the DSIC property, we can immediately conclude that the GSP auction is
not DSIC. It still has a number of nice properties, however, and is “partially equivalent” to
the DSIC auction in a precise sense. The Problems ask you to explore this equivalence in
detail.

References

[1] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the Generalized
Second-Price Auction: Selling billions of dollars worth of keywords. American Economic
Review, 97(1):242–259, 2007.

8

[2] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981.

[3] H. R. Varian. Position auctions. International Journal of Industrial Organization,
25(6):1163–1178, 2007.

9

CS364A: Algorithmic Game Theory

Lecture #4: Algorithmic Mechanism Design

⇤

Tim Roughgarden†

October 2, 2013

1 Knapsack Auctions

Next we design DSIC mechanisms for knapsack auctions. These will be single-parameter
environments, so Myerson’s Lemma will apply.

1.1 Problem Definition

In a knapsack auction, each bidder i has a publicly known size wi (e.g., the duration of a
TV ad) and a private valuation (e.g., a company’s willingness-to-pay for its ad being shown
during the Super Bowl). The seller has a capacity W (e.g., the length of a commercial break).
The feasible set X is defined as the 0-1 n-vectors (x1, . . . , xn) such that

Pn
i=1 wixi  W . (As

usual, xi = 1 indicates that i is a winning bidder.) Other situations such knapsack auctions
model include bidders who want files stored on a shared server, data streams sent through
a shared communication channel, or processes to be executed on a shared supercomputer.
(When there is a shared resource with limited capacity, you have a Knapsack problem.)
Note that k-item auctions (k identical copies of a good, one per customer) is the special case
where wi = 1 for all i and W = k. Here, di↵erent bidders can have di↵erent sizes.

Let’s try to design an awesome auction using our two-step design paradigm. Recall that
we first assume without justification that bids equal values and then decide on our allocation
rule. Then we pay the piper and devise a payment rule that extends the allocation rule to
a DSIC mechanism.

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

1.2 A Surplus-Maximizing DSIC Mechanism

Since awesome auctions are supposed to maximize surplus, the answer to the first step is
clear: define the allocation rule by

x(b) = arg max
X

nX

i=1

bixi. (1)

That is, the allocation rule solves an instance of the Knapsack problem1 in which the item
(i.e., bidder) values are the given bids b1, . . . , bn, and the item sizes are the a priori known
sizes w1, . . . , wn. By definition, when bidders bid truthfully, this allocation rule maximizes
the social surplus.

1.3 Critical Bids

Myerson’s Lemma (parts (a) and (b)) guarantees the existence of a payment rule p such that
the mechanism (x,p) is DSIC. This payment rule is easy to understand. Fix a bidder i and
bids b�i by the other bidders. Since the allocation rule is monotone and 0-1, the allocation
curve xi(·,b�i) is extremely simple: it is 0 until some breakpoint z, at which point it jumps
to 1 (Figure 1). Recall the payment formula

pi(bi,b�i) =
X̀

j=1

zj · jump in xi(·,b�i) at zj, (2)

where z1, . . . , z` are the breakpoints of the allocation function xi(·,b�i) in the range [0, bi]
Thus, if i bids less than z, it loses and pays 0. If i bids more than z, it pays z · (1� 0) = z.
That is, i pays its critical bid — the lowest bid it could make and continue to win (holding
the other bids b�i fixed). Note this is exactly what’s going on in the Vickrey auction.

1.4 Intractability of Surplus Maximization

The mechanism proposed in Section 1.2 maximizes social surplus, assuming truthful bids
— an assumption justified by its DSIC property. The mechanism thus solves the surplus-
maximization problem with unknown data (the vi’s) as well as if this data was known a
priori. But is the mechanism awesome in the sense of the Vickrey auction (Lecture 2)?
Recall this means:

(1) DSIC.

(2) Surplus-maximizing, assuming truthful bids.

1An instance of the Knapsack problem is defined by 2n + 1 numbers: item values v1, . . . , vn, item sizes
w1, . . . , wn, and a knapsack capacity W . The goal is to compute the subset of items of maximum total value
that has total size at most W . See any undergraduate textbook for more details.

2

z

x(z)

1

0

Figure 1: A monotone 0-1 allocation rule.

(3) Runs in polynomial time.

The answer is no. The reason is that the Knapsack problem is NP-hard. Thus, there is
no polynomial-time implementation of the allocation rule in (1), unless P = NP . Thus,
properties (2) and (3) are incompatible.

The fact that there is no awesome knapsack auction (assuming P 6= NP) motivates
relaxing at least one of the above three goals. But which one? First, note that relaxing the
DSIC condition will not help at all, since it is the second two properties that conflict.

A perfectly valid approach, which won’t get much airtime in this course, is to relax the
third constraint. This is particularly attractive for knapsack auctions, since the allocation
rule (1) can be implemented in pseudopolynomial time using dynamic programming (again,
see any undergraduate algorithms textbook for details). More generally, if your instances are
small or structured enough and you have enough time and computing power to implement
optimal surplus-maximization, by all means do so — the resulting allocation rule is monotone
and can be extended to a DSIC mechanism.2

2 Algorithmic Mechanism Design

2.1 The Holy Grail: DSIC For Free

Algorithmic mechanism design is one of the initial and most well-studied branches of algo-
rithmic game theory, and we won’t have time to do it justice. The dominant paradigm in
algorithmic mechanism design is to relax the second constraint (optimal surplus) as little
as possible, subject to the first (DSIC) and third (polynomial-time) constraints. For single-
parameter environments, Myerson’s Lemma implies that the following goal is equivalent:
design a polynomial-time and monotone allocation rule that comes as close as possible to
maximizing the social surplus.

2Be warned, though, that the payments also need to be computed, which generally requires solving n
more surplus-maximization problems (one per player). See also Exercise 16.

3

One of the reasons there has been so much progress in algorithmic mechanism design over
the past 15 years is that, on a technical level, it bears a strong resemblance to the relatively
mature field of approximation algorithms. The primary goal in approximation algorithms is to
design algorithms for NP-hard problems that are as close to optimal as possible, subject to a
polynomial-time constraint. Algorithmic mechanism design (for single-parameter problems)
has exactly the same goal, except the algorithms must additionally obey a monotonicity
constraint. Myerson’s Lemma implies that algorithmic mechanism design boils down to
algorithm design in an oddly restricted (via monotonicity) “computational model” — the
entire game-theoretic aspect of the design goal is neatly compiled into a relatively intuitive
extra constraint on the allocation rule.

It should be clear what the “holy grail” in algorithmic mechanism design is: for as many
NP-hard problems of interest as possible, to match the best-known approximation guarantee
for (not necessarily monotone) approximate surplus maximization algorithms — or even the
best-possible approximation guarantee, subject to P 6= NP . That is, we would like the
DSIC/monotone constraint to cause no additional surplus loss, beyond the loss we already
have to su↵er due to the polynomial-time constraint. Recall that we’ve been spoiled so far:
with exact surplus-maximization, the DSIC/monotone constraint is satisfied “for free”, and
exact surplus-maximization with unknown data reduces to exact surplus-maximization with
known data. Does an analogous reduction hold for approximate surplus maximization?

2.2 Knapsack Auctions (Reprise)

To explore the question above in a concrete setting, let’s return to knapsack auctions. There
are a number of heuristics for the knapsack problem that have good worst-case performance
guarantees. For example, consider the following allocation rule xG, which given bids b
chooses a feasible set — a set S of winners with total size

P
i2S wi at most the capacity W

— via a simple greedy algorithm. We assume, without loss of generality, that wi  W for
every i (it is harmless to delete bidders i with wi > W).

(1) Sort and re-index the bidders so that3

b1

w1
� b2

w2
� · · · � bn

wn
.

(2) Pick winners in this order until one doesn’t fit, and then halt.4

(3) Return either the step-2 solution, or the highest bidder, whichever creates more sur-
plus.5

3What makes a bidder attractive is a high bid and a small size. We trade these o↵ by ordering bidders
by “bang-per-buck” — the value contributed per unit of capacity used.

4One can also continue to follow the sorted order, packing any further bidders that happen to fit — this
will only do better.

5The reason for this step is that the solution in step 2 might be highly suboptimal if there a very valuable
and very large bidder. One can also sort the bidders in nondecreasing bid order and pack them greedily —
this will only do better.

4

The above greedy algorithm is a 1
2 -approximation algorithm for the Knapsack problem,

which gives the following guarantee.

Theorem 2.1 Assuming truthful bids, the surplus of the greedy allocation rule is at least
50% of the maximum-posible surplus.

Proof: (Sketch.) Consider truthful bids v1, . . . , vn, known sizes w1, . . . , wn, and a capacity
W . Suppose, as a thought experiment, we relax the problem so that a bidder can be chosen
fractionally, with its value pro-rated accordingly. For example, if 70% of a bidder with
value 10 is chosen, then it contributes 7 to the surplus. Here is a greedy algorithm for this
“fractional knapsack problem”: sort the bidders as in step (1) above, and pick winners in this
order until the entire capacity is fully used (picking the final winner fractionally, as needed).
A straightforward exchange argument proves that this algorithm maximizes the surplus over
all feasible solutions to the fractional knapsack problem.

Suppose in the optimal fractional solution, the first k bidders in the sorted order win
and the (k + 1)th bidder fractionally wins. The surplus achieved by steps (1) and (2) in the
greedy allocation rule is exactly the total value of the first k bidders. The surplus achieved
in step (3) in the greedy allocation rule is at least the total value of the (k+1)th bidder. The
better of these two solutions is at least half of the surplus of the optimal fractional solution,
which is at least the surplus of an optimal (non-fractional) solution to the original problem.
⌅

The greedy allocation rule is even better under additional assumptions. For example, if
wi  ↵W for every bidder i, with ↵ 2 (0, 1

2], then the approximation guarantee improves to
1� ↵, even if the third step of the algorithm is omitted.

We know that surplus-maximization yields a monotone allocation rule; what about ap-
proximate surplus-maximization? At least for the greedy allocation rule above, we still have
monotonicity (Exercise 18).

You may have been lulled into complacency, thinking that every reasonable allocation
rule is monotone. The only non-monotone rule we’ve seen in the “second-highest bidder
wins” rule for single-item auctions, which we don’t care about anyways. Warning: natural
allocation rules are not always monotone. For example, for every ✏ > 0, there is a (1 � ✏)-
approximation algorithm for the Knapsack problem that runs in time polynomial in the input
and 1

✏ — a “fully polynomial-time approximation scheme (FPTAS)”. The rule induced by
the standard implementation of this algorithm is not monotone, although it can be tweaked
to restore monotonicity without degrading the approximation guarantee (see the Problems
for details). This is characteristic of work in algorithmic mechanism design: consider an NP-
hard optimization problem, check if the state-of-the-art approximation algorithm directly
leads to a DSIC mechanism and, if not, tweak it or design a new approximation algorithm
that does, hopefully without degrading the approximation guarantee.

5

2.3 Black-Box Reductions

Algorithmic mechanism design has been extremely successful for the single-parameter prob-
lems we’ve been discussing so far. The state-of-the-art approximation algorithms for such
problems are generally either monotone or can redesigned to be monotone, like in the case
of knapsack auctions mentioned above and in the problems. This success has been so
widespread as to suggest the question:

Is there a natural single-parameter problem for which the best approximation guarantee
achievable by a polynomial-time algorithm is strictly better than the best approxima-
tion guarantee achievable by a polynomial-time and monotone algorithm?

Of course, a negative answer would be especially exciting — it would imply that, as with exact
surplus-maximization, the monotonicity/DSIC constraint can always be added “for free”.
One way of proving such a sweeping positive result would be via a “black-box reduction”: a
generic way of taking a possibly non-monotone polynomial-time algorithm and transmuting it
into a monotone polynomial-time algorithm without degrading the approximation guarantee.
Such a reduction would be very interesting even if the approximation factor su↵ered by a
constant factor.

Recent work by Chawla et al. [1] shows that there is no fully general black-box reduction
of the above type for single-parameter environments. There might well be large and impor-
tant subclasses of such environments, though, for which a black-box reduction exists. For
example, does such a reduction apply to all downward-closed environments where, like in all
of our examples so far, giving a bidder less stu↵ cannot render an outcome infeasible?6

3 The Revelation Principle

3.1 The DSIC Condition, Revisited

To this point, our mechanism design theory has studied only DSIC mechanisms. We reiterate
that there are good reasons to strive for a DSIC guarantee. First, it is easy for a participant
to figure out what to do in a DSIC mechanism: just play the obvious dominant strategy.
Second, the designer can predict the mechanism’s outcome assuming only that participants
play their dominant strategies, a relatively weak behavioral assumption. Nevertheless, non-
DSIC mechanisms like first-price auctions can also be useful in practice.

Can non-DSIC mechanisms accomplish things that DSIC mechanisms cannot? To answer
this question, let’s tease apart two separate assumptions that are conflated in our DSIC
definition:

(1) Every participant in the mechanism has a dominant strategy, no matter what its private
valuation is.

6If the DSIC constraint is weakened to an implementation in Bayes-Nash equilibrium, then there are
quite general black-box reductions. We’ll discuss these in more advanced lectures.

6

(2) This dominant strategy is direct revelation, where the participant truthfully reports all
of its private information to the mechanism.

There are mechanisms that satisfy (1) but not (2). To give a silly example, imagine a single-
item auction in which the seller, given bids b, runs a Vickrey auction on the bids 2b. Every
bidder’s dominant strategy is then to bid half its value.

3.2 Beyond Dominant-Strategy Equilibria

Suppose we relax condition (1). The drawback is that we then need stronger assumptions to
predict the behavior of participants and the mechanism’s outcome; for example, we might
consider a Bayes-Nash equilibrium with respect to a common prior (see Problem 6 on first-
price auctions) or a Nash equilibrium in a full-information model (see Problem 3 on the GSP
sponsored search auction). But if we’re willing to make such assumptions, can we do better
than with DSIC mechanisms?

The answer is “sometimes, yes.” For this reason, and because non-DSIC mechanisms
are common in practice, it is important to develop mechanism design theory beyond DSIC
mechanisms. We’ll do this in more advanced lectures. A very rough rule of thumb is that,
for su�ciently simple problems like those in our introductory lectures, DSIC mechanisms
can do anything non-DSIC mechanisms can. In more complex problems, like some discussed
in the advanced lectures, weakening the DSIC constraint (e.g., to implementation in Bayes-
Nash equilibrium) often allows you accomplish things that are provably impossible for DSIC
mechanisms (assuming participants figure out and coordinate on the desired equilibrium).
DSIC and non-DSIC mechanisms are incomparable in such settings — the former enjoy
stronger incentive guarantees, the latter better performance guarantees. Which of these is
more important will depend on the details of the application.

3.3 The Revelation Principle and the Irrelevance of Truthfulness

The Revelation Principle states that, given requirement (1) in Section 3.1, there is no need
to relax requirement (2): it comes “for free.”

Theorem 3.1 (Revelation Principle) For every mechanism M in which every partici-
pant has a dominant strategy (no matter what its private information), there is an equivalent
direct-revelation DSIC mechanism M

0.

Proof: The proof uses a simulation argument; see Figure 2. By assumption, for every
participant i and private information vi that i might have, i has a dominant strategy si(vi)
in the given mechanism M .

Construct the following mechanism M

0, to which participants delegate the responsibility
of playing the appropriate dominant strategy. Precisely, (direct-revelation) mechanism M

0

accepts sealed bids b1, . . . , bn from the players. It submits the bids s1(b1), . . . , sn(vn) to the
mechanism M , and chooses the same outcome (e.g., winners of an auction and selling prices)
that M does.

7

M"

M’"

outcome" (same)"
outcome"

s1(v1)"

s2(v2)"

sn(vn)"

."

."

."

."

."

v1"

v2"

vn"

."

."

."

."

."

."

."

Figure 2: Proof of the Revelation Principle. Construction of the direct-revelation mechanism
M

0, given a mechanism M with dominant strategies.

Mechanism M

0 is DSIC: If a participant i has private information vi, then submitting a
bid other than vi can only result in M

0 playing a strategy other than si(vi) in M , which can
only decrease i’s utility. ⌅

The point of Theorem 3.1 is that, at least in principle, if you design a mechanism to
have dominant strategies, then you might as well design for direct revelation (in auctions,
truthful bidding) to be a dominant strategy.

Many equilibrium concepts other than dominant-strategy equilibria, such as Bayes-Nash
equilibria, have their own Revelation Principle. Such principles state that, given the choice
of incentive constraints, direct revelation is without loss of generality. Thus, truthfulness per
se is not important; what makes mechanism design hard is the requirement that a desired
outcome (without loss of generality, truthful reporting) in an equilibrium of some type.
Varying the choice of equilibrium concept can lead to quite di↵erent mechanism design
theories, with stronger equilibrium concepts (like dominant-strategy equilibria) requiring
weaker behavioral assumptions but with narrower reach than weaker equilibrium concepts
(like Bayes-Nash equilibria).

References

[1] S. Chawla, N. Immorlica, and B. Lucier. On the limits of black-box reductions in mecha-
nism design. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing
(STOC), pages 435–448, 2012.

8

CS364A: Algorithmic Game Theory

Lecture #5: Revenue-Maximizing Auctions

⇤

Tim Roughgarden†

October 7, 2013

1 The Challenge of Revenue Maximization

1.1 Welfare-Maximization, Revisited

Thus far, we’ve focused on the design of mechanisms that maximize, exactly or approxi-
mately, the welfare objective

nX

i=1

vixi (1)

over all feasible outcomes (x
1

, . . . , xn) in some set X. Revenue is generated in welfare-
maximizing auctions, but only as a side e↵ect, a necessary evil to incentivize participants
to report their private information. This lecture begins our discussion of auctions that are
explicitly designed to raise as much revenue as possible.

We started with the welfare objective for several reasons. One is that it’s a fundamen-
tal objective function, relevant to many real-world scenarios. For instance, in government
auctions (e.g., to sell wireless spectrum), the primary objective is welfare maximization —
revenue is also important but is usually not the first-order objective. Also, in competi-
tive markets, it is often thought that a seller should focus on welfare-maximization, since
otherwise someone else will (potentially stealing their customers).

The second reason we started with welfare-maximization is pedagogical: welfare is special.
In every single-parameter environment (and even more generally, see Lecture #7), there is a
DSIC mechanism for maximizing welfare ex post — as well as if the designer knew all of the
private information (the vi’s) in advance. In this sense, one can satisfy the DSIC constraint
“for free.” This is an amazingly strong performance guarantee, and it cannot generally be
achieved for other objective functions.

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

1.2 One Bidder and One Item

The following trivial example is illuminating. Suppose there is one item and only one bidder,
with a private valuation v. With only one bidder, the space of direct-revelation DSIC auctions
is small: they are precisely the “posted prices”, or take-it-or-leave-it o↵ers.1 If the seller posts
a price of r, then its revenue is either r (if v � r) or 0 (if v < r).

Maximizing the welfare in this setting is trivial: just set r = 0, so that you always give
the item to the bidder for free. Note that this optimal posted price if independent of v.

Suppose we wanted to maximize revenue. How should we set r? Ex post (i.e., telepath-
ically knowing v), we would set r = v. But with v private, what should we do? It’s not
obvious how to reason about this question.

The fundamental issue is that, for the revenue objective, di↵erent auctions do better on
di↵erent inputs. With a single item and bidder, a posted price of 20 will do very well on inputs
where v is 20 or a little larger, and terribly on smaller inputs (for which smaller posted prices
will do better). Such trade-o↵s are familiar to students of algorithms. For example, di↵erent
sorting algorithms (e.g., InsertionSort vs. QuickSort) run faster on di↵erent inputs. Di↵erent
heuristics for the Traveling Salesman Problem (e.g., local search vs. linear programming)
have smaller solution error on di↵erent inputs. Welfare-maximization, where there is an
input-independent optimal DSIC mechanism, is special indeed.

1.3 Bayesian Analysis

Comparing di↵erent auctions for revenue maximization requires a model to reason about
trade-o↵s across di↵erent inputs. Today we introduce the most classical and well-studied
model for doing this: average-case or Bayesian analysis. Our model comprises the following
ingredients:

• A single-parameter environment (see Lecture #3).

• The private valuation vi of participant i is assumed to be drawn from a distribution Fi

with density function fi with support contained in [0, v
max

].2 We assume that the
distributions F

1

, . . . , Fn are independent (but not necessarily identical). In practice,
these distributions are typically derived from data, such as bids in past auctions.

• The distributions F

1

, . . . , Fn are known in advance to the mechanism designer. The
realizations v

1

, . . . , vn of bidders’ valuations are private, as usual. Since we focus on
DSIC auctions, where bidders have dominant strategies, the bidders do not need to
know the distributions F

1

, . . . , Fn.3

1Precisely, these are the deterministic such auctions. One can also randomize over posted prices, but the
point of the example remains the same.

2Recall Fi(z) denotes the probability that a random variable drawn from Fi has value at most z.
3The main results in today’s lecture apply more generally to “Bayes-Nash incentive-compatible” auctions;

in this case, the bidders must also know the distributions F1, . . . , Fn.

2

In a Bayesian environment, it is clear how to define the “optimal” auction — it is the auction
that, among all DSIC auctions, has the highest expected revenue, where the expectation is
with respect to the given distribution F

1

⇥F

2

⇥ · · ·⇥Fn over valuation profiles v (assuming
truthful bidding).

1.4 One Bidder and One Item, Revisited

With our Bayesian model, single-bidder single-item auctions are now easy to reason about.
The expected revenue of a posted price r is simply

r|{z}
revenue of a sale

· (1� F (r))| {z }
probability of a sale

.

Given a distribution F , it is usually a simple matter to solve for the best r. The optimal
posted price is called the monopoly price of the distribution F . Since DSIC mechanisms
are posted prices (and randomizations thereof), posting the monopoly price is the revenue-
maximizing auction. For instance, if F is the uniform distribution on [0, 1] (i.e., F (x) = x

on [0, 1]), then the monopoly price is 1

2

, achieving an expected revenue of 1

4

.
The plot thickens even with two bidders, where the space of DSIC auctions is larger. For

example, consider a single-item auction with two bidders with valuations drawn i.i.d. from
the uniform distribution on [0, 1]. We could of course run the Vickrey auction; its revenue
is the expected value of the smaller bid, which is 1

3

(exercise).
We could also supplement the Vickrey auction with a reserve price, analogous to the

“opening bid” in an eBay auction. In a Vickrey auction with reserve r, the allocation rule
awards the item to the highest bidder, unless all bids are less than r, in which case no one gets
the item. The corresponding payment rule charges the winner (if any) the second-highest bid
or r, whichever is larger. From a revenue vantagepoint, adding a reserve price r is both good
and bad: you lose revenue when all bids are less than r, but you gain revenue when exactly
one bid is above r (since the selling price is higher). In our case, adding a reserve price of
1

2

turns out to be a net gain, raising the expected revenue from 1

3

to 5

12

(exercise). But can
we do better? Perhaps using a di↵erent reserve price, or perhaps usually a totally di↵erent
auction format? While the rich space of DSIC auctions makes this an intimidating question,
the rest of this lecture provides a complete solution, originally given by Myerson [2].

2 Expected Revenue Equals Expected Virtual Welfare

Our goal is to characterize the optimal (i.e., expected revenue-maximizing) DSIC auction
for every single-parameter environment and distributions F

1

, . . . , Fn.4 We begin with a
preliminary observation.

4We won’t prove it today, but the auctions we identify are optimal in a much stronger sense; see the
discussion in Section 3.2.

3

Step 0: By the Revelation Principle from last lecture, every DSIC auction is equivalent
to — and hence has the same expected revenue as — a direct-revelation DSIC mechanism
(x,p). We can therefore consider only direct-revelation mechanisms from here on. We
correspondingly assume truthful bids (i.e., b = v) for the rest of the lecture.

The expected revenue of an auction (x,p) is

Ev

"
nX

i=1

p(v)

#
, (2)

where the expectation is with respect to the distribution F

1

⇥· · ·⇥Fn over bidders’ valuations.
It is not clear how to directly maximize the expression (2) over the space of DSIC mechanisms.
In this section, we derive a second formula for the expected revenue of an auction. This second
formula only references the allocation rule of a mechanism, and not its payment rule, and
for this reason has a form that is far easier to maximize.

As a starting point, recall Myerson’s payment formula from Lecture #3:

pi(bi,b�i) =

Z bi

0

z · x

0
i(z,b�i)dz. (3)

We derived this equation assuming that the allocation function xi(z,b�i) is di↵erentiable. By
standard advanced calculus, the same formula holds more generally for an arbitrary mono-
tone function xi(z,b�i), including piecewise constant functions, for a suitable interpretation
of the derivative x

0
i(z,b�i) and the corresponding integral. Similarly, all of the following

proof steps, which make use of calculus maneuvers like integration by parts, can be made
fully rigorous for arbitrary bounded monotone functions without significant di�culty. We
leave the details to the interested reader.5

Equation (3) states that payments are fully dictated by the allocation rule. Thus, at
least in principle, we can express the expected revenue of an auction purely in terms of its
allocation rule, with no explicit reference to its payment rule. Will the resulting revenue
formula will be easier to maximize than the original one? It’s hard to know without actually
doing it, so let’s do it.

Step 1: Fix i and v�i; recall that v�i is a random variable (as is vi), and we’ll integrate out
over it later.

By Myerson’s payment formula (3), we can write the expected payment by bidder i for
a given value of v�i as

Evi⇠Fi [pi(v)] =

Z v
max

0

pi(v)fi(vi)dvi =

Z v
max

0

Z vi

0

z · x

0
i(z,v�i)dz

�
fi(vi)dvi.

Note that in the first equality we’re exploiting the independence of bidders’ valuations —
the fixed value of v�i has no bearing on the distribution Fi from which vi is drawn.

5For example, every bounded monotone function is integrable, and is di↵erentiable except on a set of
measure zero.

4

This step is exactly what we knew was possible in principle — rewriting the payment in
terms of the allocation rule. For this to be useful, we need some simplifications.

Step 2: Whenever you have a double integral (or double sum) that you don’t know how to
interpret, it’s worth reversing the integration order. Here, reversing the order of integration
leads to a nice simplification, suggesting we’re on the right track:

Z v
max

0

Z vi

0

z · x

0
i(z,v�i)dz

�
fi(vi)dvi. =

Z v
max

0

Z v
max

z

fi(vi)dvi

�
z · x

0
i(z,v�i)dz

=

Z v
max

0

(1� Fi(z)) · z · x

0
i(z,v�i)dz.

Step 3: Integration by parts is also worth trying when attempting to massage an integral into
a more interpretable form, especially if there’s an obvious derivative hiding in the integrand.
Here, we again get some encouraging simplifications:

Z v
max

0

(1� Fi(z) · z)| {z }
f

· x0i(z,v�i)| {z }
g0

dz

= (1� Fi(z)) · z · xi(z,v�i)|vmax

0| {z }
=0�0

�
Z v

max

0

xi(z,v�i) · (1� Fi(z)� zfi(z))dz

=

Z v
max

0

✓
z � 1� Fi(z)

fi(z)

◆

| {z }
:='i(z)

xi(z,v�i)fi(z)dz.

Notice that we can interpret the final expression as an expected value, where z is drawn
from the distribution Fi.

Step 4: To simplify and help interpret the expression above, we introduce some new nota-
tion. The virtual valuation 'i(vi) of bidder i with valuation vi drawn from Fi is

'i(vi) = vi � 1�Fi(vi)

fi(vi)
.

Note that the virtual valuation of a bidder depends on its own valuation and distribution,
and not on those of the others.

For example, consider a bidder i with valuation drawn from the uniform distribution
on [0, 1]. Then Fi(z) = z, fi(z) = 1, and 'i(z) = z � 1�z

1

= 2z � 1 in [0, 1]. Notice that a
virtual valuation can be negative! See the exercises for more examples.

Steps 1–4 Summary: For every bidder i and valuations v�i,

Evi⇠Fi [pi(v)] = Evi⇠Fi ['i(vi) · xi(v)] . (4)

5

Remark 2.1 Virtual valuations play a central role in the design of Bayesian optimal auc-
tions. Is there any intuition for what they mean? One coarse way to interpret the formula

'i(vi) = vi|{z}
what you’d like to charge i

� 1� Fi(vi)

fi(vi)| {z }
“information rent” earned by bidder i

is to think of vi as the maximum revenue obtainable from bidder i, and the second term as
the inevitable revenue loss caused by not knowing vi in advance (a.k.a. “information rent”).
A second and more accurate interpretation of 'i(vi) is as the slope of a “revenue curve” at vi,
where the revenue curve plots the expected revenue obtained from an agent with valuation
drawn from Fi, as a function of the probability of a sale. The exercises elaborate on this
second interpretation.

Step 5: Take the expectation, with respect to v�i, of both sides of (4) to obtain:

Ev[pi(v)] = Ev['i(vi) · xi(v)] .

Step 6: Apply linearity of expectations (twice) to finish the derivation:

Ev

"
nX

i=1

pi(v)

#
=

nX

i=1

Ev[pi(v)] =
nX

i=1

Ev['i(vi) · xi(v)] = Ev

"
nX

i=1

'i(vi) · xi(v)

#
. (5)

The final term in (5) is our second formula for the expected revenue of an auction, and
we should be pleased with its relative simplicity. Note that if we removed the 'i’s from the
expression, we would be left with an old friend: the expected welfare of the auction. For this
reason, we refer to

Pn
i=1

'i(vi) · xi(v) as the virtual welfare of an auction on the valuation
profile v. We have proved that, for every auction,

EXPECTED REVENUE = EXPECTED VIRTUAL WELFARE. (6)

In particular, maximizing expected revenue over the space of DSIC auctions reduces to
maximizing expected virtual welfare.

3 Bayesian Optimal Auctions

It is shocking that a formula as simple as (6) holds. It says that even though we only
care about payments, we can focus on an optimization problem that concerns only the
mechanism’s allocation rule. This second form is far more operational, and we proceed to
determine the auctions that maximize it.

6

3.1 Maximizing Expected Virtual Welfare

As a warm up, let’s make two extra assumptions. First, consider a single-item auction.
Second, assume that the bidders are i.i.d. That is, all Fi’s are a common F , and thus all
virtual valuation functions 'i are the same.

How should we choose the allocation rule x to maximize the expected virtual welfare

Ev⇠F

"
nX

i=1

'i(vi)xi(v)

#
? (7)

We have the freedom of choosing x(v) for each input v, and have no control over the input
distribution F or the virtual values 'i(vi). Thus, the obvious approach is to maximize
pointwise: separately for each input v, we choose x(v) to maximize the virtual welfarePn

i=1

'i(vi)xi(v) obtained on the input v (subject to feasibility of (x
1

, . . . , xn) 2 X). We
call this the virtual welfare-maximizing allocation rule.

In a single-item auction, where the feasibility constraint is
Pn

i=1

xi(v)  1 for each v, the
virtual welfare-maximizing rule just awards the item to the bidder with the highest virtual
valuation. Well not quite: recall that virtual valuations can be negative (e.g., 'i(vi) = 2vi�1
when vi is uniform between 0 and 1), and if every bidder has a negative virtual valuation
then the virtual welfare is maximized by not awarding the item to anyone. (We already saw
in the single-bidder example that maximizing revenue entails not selling the item in some
cases.)

Choosing x(v) separately for each v to maximize
Pn

i=1

'i(vi)xi(v) defines an allocation
rule that maximizes the expected virtual welfare (7) over all allocation rules (monotone or
not). The key question is: is this virtual welfare-maximizing rule monotone? If so, then
it can be extended to a DSIC auction, and by (6) this auction has the maximum-possible
expected revenue.

The answer to this key question depends on the valuation distribution F . If the cor-
responding virtual valuation function ' is increasing, then the virtual welfare-maximizing
allocation rule is monotone.

Definition 3.1 A distribution F is regular if the corresponding virtual valuation function
v � 1�F (v)

f(v)

is strictly increasing.

For most applications, Definition 3.1 can be relaxed to allow nondecreasing virtual valuation
functions.

We saw that the uniform distribution on [0, 1] has virtual valuation function 2v � 1
and hence is regular. So are other uniform distributions, exponential distributions, and
lognormal distributions. Irregular distributions include many multi-modal distributions and
distributions with su�ciently heavy tails. See the exercises for concrete examples.

Let’s return to a single-item auction with i.i.d. bidders, under the additional assumption
that the valuation distribution is regular. The virtual-welfare maximizing allocation rule,
which allocates to the bidder with highest nonnegative virtual valuation (if any), is monotone
and yields the optimal auction. Moreover, since all bidders share the same increasing virtual

7

valuation function, the bidder with the highest virtual valuation is also the bidder with
the highest valuation. This allocation rule is thus equivalent to the Vickrey auction with a
reserve price of '

�1(0). Thus, for i.i.d. bidders and a regular valuation distribution, eBay
(with a suitable opening bid) is the optimal auction format! Given the richness of the DSIC
auction design space, it is amazing that such a simple and practical auction pops out as the
optimal one.

More generally, consider an arbitrary single-parameter environment and valuation dis-
tributions F

1

, . . . , Fn. The virtual welfare-maximizing allocation rule is now defined as that
which, for each input v, chooses the feasible allocation that maximizes the virtual welfarePn

i=1

'i(vi)xi(v). If every distribution Fi is regular, then this allocation rule is monotone
(see the exercises). Coupling it with the unique payment rule to meet the DSIC constraint,
we obtain the optimal auction. In this sense, we have solved the Bayesian optimal auction
problem for every single-parameter environment with regular valuation distributions.

3.2 Extensions

The theory developed in this lecture, which is due to Myerson [2], is even more general.
First, it can be extended to accommodate valuation distributions that are not regular.6

Since the virtual welfare-maximization allocation rule is not monotone in this case, one has
to work harder and solve for the monotone allocation rule with the maximum expected
virtual welfare. This can be done by “ironing” virtual valuation functions to make them
monotone, while at the same time preserving the virtual welfare of the auctions that matter.
See Hartline [1, Chapter 3] for a textbook treatment.

Second, while today’s lecture restricted attention to DSIC auctions for simplicity, the
(DSIC) optimal auctions we identified are optimal even amongst the much larger set of
“Bayesian incentive compatible” mechanisms. For example, first-price auction formats can-
not achieve more revenue (at equilibrium) than the best DSIC auction. Thus, for revenue-
maximization in single-parameter problems, the DSIC constraint comes for free. This exten-
sion does not require significant new ideas beyond what we covered today, and we’ll discuss
it in CS364B.

References

[1] J. D. Hartline. Mechanism design and approximation. Book draft. October, 2013.

[2] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981.

6Independence of the distributions, however, is crucial and cannot be relaxed without significantly chang-
ing the results.

8

CS364A: Algorithmic Game Theory
Lecture #6: Simple Near-Optimal Auctions⇤

Tim Roughgarden†

October 9, 2013

1 Optimal Auctions Can Be Complex

Last lecture we proved some of the most fundamental results in auction theory. To reiterate,
for every DSIC auction (x,p) for a single-parameter environment with valuation distributions
F1, . . . , Fn, the expected revenue equals the expected virtual welfare:

Ev

"
nX

i=1

pi(v)

#
= Ev

"
nX

i=1

'i(vi) · xi(v)

#
. (1)

Define the virtual welfare-maximizing allocation rule as the one that sets

x(v) := argmax
X

nX

i=1

'i(vi)xi(v)

for each input v. If every Fi is regular, meaning that the corresponding virtual valuation
function

'i(vi) = vi � 1�Fi(vi)
fi(vi)

is strictly increasing, then the virtual welfare-maximizing allocation rule is monotone and,
after we define suitable payments, maximizes expected revenue over all DSIC auctions. This
characterization of optimal auctions can be extended to irregular distributions, but this
extension requires more work (see [3, Chapter 3]).

As a corollary of this general characterization, we noted that the optimal single-item
auction with i.i.d. bidders and a regular distribution F is shockingly simple: it is simply the
Vickrey auction, augmented with the reserve price '�1(0). This is a true “killer application”
of auction theory — it gives crisp, conceptually clean, and practically useful guidance to
auction design.

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

The plot thickens if we make the problem a bit more complex. Consider again a single-
item auction, but relax the assumption that bidders’ valuation distributions are identical;
they are still independent and regular. The optimal auction can get weird, and it does not
generally resemble any auctions used in practice (see the exercises). For example, someone
other than the highest bidder might win. The payment made by the winner seems impossible
to explain to someone who hasn’t studied virtual valuations — compare this to the i.i.d. case,
where the optimal auction is simply eBay with a smartly chosen opening bid. This weirdness
is inevitable if you are 100% confident in your model (i.e., the Fi’s) and you want every last
cent of the maximum-possible expected revenue — there is no choice in which allocation or
payment rule you can use.

Today we’ll seek out auctions that are simpler, more practical, and more robust than
the theoretically optimal auction. Since optimality requires complexity, we can only hope
that our auctions are approximately optimal. This is the second time we’ve turned to ap-
proximation to escape a quandary posed by full optimality. In algorithm mechanism design
(Lecture 4), we used approximation to recover computational tractability when the underly-
ing welfare-maximization problem was NP-hard. Similarly, here we are rejecting the optimal
auction because of its “complexity” and using approximation to recover relative simplic-
ity. Unlike algorithmic mechanism design, where “low complexity” was precisely defined
(as polynomial running time), here we leave terms like “simple”, “practical”, and “robust”
largely undefined. Formulating definitions that capture these vague ideas and give useful
guidance to the design of simple near-optimal auctions is an extremely important research
question in the field.

The theory of Bayesian optimal auctions developed last lecture is part of the microeco-
nomic canon, dating to 1981 [5]. By contrast, the research agendas outlined this lecture have
been developed primarily over the past 5 years, mostly in the computer science literature.
The classical theory from last lecture is the foundation on which this more recent work rests.

2 The Prophet Inequality

This section covers a fun result from optimal stopping theory. The next section uses it
to design a relatively simple and provably near-optimal single-item auction for non-i.i.d.
bidders.

Consider the following game, with has n stages. In stage i, you are o↵ered a nonnegative
prize ⇡i, drawn from a distribution Gi. You are told the distributions G1, . . . , Gn in advance,
and these distributions are independent. You are told the realization ⇡i only at stage i.
After seeing ⇡i, you can either accept the prize and end the game, or discard the prize and
proceed to the next stage. The decision’s di�culty stems from the trade-o↵ between the risk
of accepting a reasonable prize early and then missing out later on a great one, and the risk
of having to settle for a lousy prize in one of the final stages.

The Prophet Inequality, due to Samuel-Cahn [7], o↵ers a simple strategy that does almost
as well as a fully clairvoyant prophet.

2

Theorem 2.1 (Prophet Inequality) For every sequence G1, . . . , Gn of independent dis-
tributions, there is strategy that guarantees expected reward 1

2E⇡[maxi ⇡i]. In fact, there is
such a threshold strategy t, which accepts prize i if and only if ⇡i � t.

Proof: Let z+ denote max{z, 0}. Consider a threshold strategy with threshold t. It is
di�cult to compare directly the expected payo↵ of this strategy with the expected payo↵
of a prophet. So, the plan is to derive lower and upper bounds, respectively, on these two
quantities that are easily to compare.

Let q(t) denote the probability that the threshold strategy accepts no prize at all.1 As t
increases, the risk q(t) increases but the average value of an accepted prize goes up.

What payo↵ does the t-threshold strategy obtain? With probability q(t), zero, and with
probability 1� q(t), at least t. Let’s improve our lower bound in the second case. If exactly
one prize i satisfies ⇡i � t, then we should get “extra credit” of ⇡i� t above and beyond our
baseline payo↵ of t. If at least two prizes exceed the threshold, say i and j, then things are
more complicated: our “extra credit” is either vi � t or vj � t, depending on which of i, j
belongs to the earlier stage. Let’s be lazy and punt on this complication: when two or more
prizes exceed the threshold, we’ll only credit the baseline t to the strategy’s payo↵.

Formally, we have the following lower bound:

E[payo↵ of t-threshold strategy]

� (1� q(t)) · t +
nX

i=1

E[⇡i � t |⇡i � t, ⇡j < t8j 6= i]Pr[⇡i � t] · Pr[⇡j < t8j 6= i] (2)

= (1� q(t)) · t +
nX

i=1

E[⇡i � t |⇡i � t]Pr[⇡i � t]| {z }
=E[(⇡i�t)+]

·Pr[⇡j < t8j 6= i]| {z }
�q(t)

(3)

� (1� q(t)) · t + q(t)
nX

i=1

E
⇥
(⇡i � t)+

⇤
, (4)

where we use the independence of the Gi’s in (3) to factor the two probability terms and
in (3) to drop the conditioning on the event that ⇡j < t for every j 6= i. In (4), we use that
q(t) = Pr[⇡j < t8j]  Pr[⇡j < t8j 6= i].

Now we produce an upper bound on the prophet’s expected payo↵ E[maxi ⇡i] that is easy
to compare to (4). The initial expression doesn’t reference the strategy’s threshold t, so we
add and subtract it to derive

E
h
max

i
⇡i

i
= E

h
t + max

i
(⇡i � t)

i

 t + E
h
max

i
(⇡i � t)+

i

 t +
nX

i=1

E
⇥
(⇡i � t)+

⇤
. (5)

1
Note that discarding the final stage’s prize is clearly suboptimal!

3

Comparing (4) and (5), we can set t so that q(t) = 1
2 — i.e., there is a 50/50 chance of

accepting a prize — to complete the proof.2 ⌅

Our proof of Theorem 2.1 shows a stronger statement that is useful in the next section.
Our lower bound (4) on the revenue of the t-threshold strategy only credits t units of value
when at least two prizes exceed the threshold t; only realizations in which exactly one prize
exceeds the threshold contribute to the second, “extra credit” term in (4). This means that
the guarantee of 1

2E[maxi ⇡i] applies even if, whenever there are multiple prizes above the
threshold, the strategy somehow picks the worst (i.e., smallest) of these.

3 Simple Single-Item Auctions

We now return to our motivating example of a single-item auction with n bidders with
valuations drawn from (not necessarily identical) regular distributions F1, . . . , Fn. We use
the Prophet Inequality to design a relatively simple, near-optimal auction.

The key idea is to regard the virtual valuation 'i(vi)+ of a bidder, if nonnegative, as
the ith prize. (Gi is then the corresponding distribution induced by Fi; since the Fi’s are
independent, so are the Gi’s.) To see an initial connection to the Prophet Inequality, note
that the expected revenue of the optimal auction is Ev[

P
i 'i(vi)xi(v)] = Ev[maxi 'i(vi)+],

precisely the expected value obtained by a prophet with prizes '1(v1)+, . . . ,'n(vn)+.
Now can consider any allocation rule that has the following form:

(1) Choose t such that Pr[maxi 'i(vi)+ � t] = 1
2 .

(2) Give the item to a bidder i with 'i(vi) � t, if any, breaking ties among multiple
candidate winners arbitrarily (subject to monotonicity).

The strong form of the Prophet Inequality immediately implies that every auction with
an allocation rule of the above type satisfies

Ev

"
nX

i=1

'i(vi)
+xi(v)

#
� 1

2
Ev

h
max

i
'i(vi)

+
i
.

For example, here is a specific such allocation rule:

(1) Set a reserve price ri = 'i
�1(t) for each bidder i, with t defined as above.

(2) Give the item to the highest bidder that meets its reserve (if any).

This auction first filters bidders using reserve prices, and then simply awards the item to the
highest bidder remaining. This auction is qualitatively simpler than the optimal auction in
two senses. First, the corresponding payment of the winning bidder is just the maximum of

2
If there is no such t because of point masses in the Gi’s, then a minor extension of the argument yields

the same result (see Problem Set #2).

4

its reserve price and the highest bid by another bidder that meets its reserve price — thus,
virtual valuation functions are only used to set reserve prices, and only the inverse virtual
valuation of 0 matters. Second, the highest bidder wins, as long as it clears its reserve price.

This “simple” auction is more plausible to implement than an optimal auction, but an
issue remains: the reserve prices are di↵erent for di↵erent bidders. Some real-world auctions
use such non-anonymous reserve prices — in sponsored search auctions, “higher-quality”
advertisers generally face lower reserve prices than lower-quality advertisers — but they are
rare. On eBay, for example, you only get to set one opening bid, even if you know (from
bidding histories, say) that the bidders are not i.i.d.

An interesting open research question is to understand how well the Vickrey auction with
an anonymous reserve price (i.e., eBay) can approximate the optimal expected revenue in a
single-item auction when bidders valuations are drawn from non-i.i.d. regular distributions.
Partial results are known: there is such an auction that recovers at least 25% of the optimal
revenue, and no such auction always recovers more than 50% of the optimal revenue [4].

More generally, designing simple auctions that provably approximate the optimal revenue
has been a hot research topic for the past 5 years or so; see [3, Chapter 4] for a survey.

4 Prior-Independent Auctions and the Bulow-Klemperer

Theorem

This section explores a di↵erent critique of the optimal auction approach developed last
lecture: the valuation distributions F1, . . . , Fn were assumed to be known to the seller in
advance. In some applications, where there is lots of data and bidders’ preferences are not
changing too rapidly, this is a reasonable assumption. But what if the seller does not know,
or is not confident about, the valuation distributions? This is a relevant issue in “thin
markets” where there is not much data, including keyword auctions for rarely used (but
potentially valuable) search queries.

Removing advance knowledge of the distributions might seem to banish us to our single-
bidder single-item quandary (Lecture 5) that motivated the Bayesian approach. The di↵er-
ence is that we will continue to assume that bidders’ valuations are drawn from distributions;
it’s just that these distribution are unknown a priori. That is, we now use distributions in
the analysis of auctions, but not in their design. The goal is to design an auction, whose
description is independent of the underlying distributions, that performs almost as well as
if the distributions were known in advance. This research agenda of designing good prior-
independent auctions was articulated by Dhangwatnotai et al. [2] and has been an active topic
over the past three years; see Hartline [3, Chapter 5] for a survey of the latest developments.

Today, we’ll cover a beautiful result from classical auction theory which is also an im-
portant precursor to the design of prior-independent auctions. The expected revenue of a
Vickrey auction can obviously only be less than that of an optimal auction; yet the following
result, due to Bulow and Klemperer [1], shows that this inequality reverses when the Vickrey
auction’s environment is made slightly more competitive.

5

Theorem 4.1 (Bulow-Klemperer Theorem [1]) Let F be a regular distribution and n
a positive integer. Then:

Ev1,...,vn+1⇠F [Rev(VA) (n + 1 bidders)] � Ev1,...,vn⇠F [Rev(OPTF) (n bidders)] , (6)

where VA and OPTF denote the Vickrey auction and the optimal auction for F , respectively.3

Notice that the auction in the left-hand side of (6) — the Vickrey auction with no re-
serve — is “prior-independent,” meaning its description is independent of the underlying
distribution F . The auction in the right-hand side of (6) depends on the underlying dis-
tribution F through its reserve price. In this sense, a single auction (the Vickrey auction)
is simultaneously competitive with an infinite number of di↵erent optimal auctions, across
all possible single-item environments with i.i.d. regular bidder valuations. The guarantee in
Theorem 4.1 also implies that, in every such environment with n � 2 bidders, the expected
revenue of the Vickrey auction is at least n�1

n times that of an optimal auction (for the same
number of bidders); see the Exercises.

The usual interpretation of the Bulow-Klemperer theorem, which also has anecdotal
support in practice, is that extra competition is more important than getting the auction
format just right. That is, invest your resources into getting more serious participants, rather
than sharpening your knowledge of their preferences (of course, do both if you can!). See
the Problems for more extensions and variations of the Bulow-Klemperer theorem.

Proof of Theorem 4.1: The two sides of (6) are tricky to compare directly, so for the analysis
we define a fictitious auction A to facilitate the comparison. This auction operates in the
environment with n + 1 bidders, as follows:

(1) Simulate the optimal auction OPTF on the first n bidders 1, 2, . . . , n.

(2) If the item was not awarded in step 1, then give the item to bidder n + 1 for free.

We defined A to possess two properties useful for the analysis. First, its expected revenue
(with n + 1 bidders) is exactly that of OPTF (with n bidders). Second, A always allocates
the item.

We can finish the proof by arguing that, for i.i.d. regular bidder valuations, the Vickrey
auction maximizes expected revenue over all auctions that are guaranteed to allocate the
item. By the equivalence of expected revenue and expected virtual welfare, the optimal
auction that always allocates the item awards the item to the bidder with the highest virtual
valuation (even if this is negative). The Vickrey auction awards the item to the bidder with
the highest valuation. Since bidders’ valuations are i.i.d. draws from a regular distribution,
all bidders share the same increasing virtual valuation function '. Thus the bidder with the
highest virtual valuation is always the bidder with the highest valuation. We conclude that
the Vickrey auction (with n + 1 bidders) has expected revenue at least that of every auction
that always allocates the item, including A, and therefore its expected revenue is at least
that of OPTF (with n bidders). ⌅

3
That is, OPTF is the Vickrey auction with the monopoly reserve price '�1

(0), where ' is the virtual

valuation function of F .

6

5 Case Study: Reserve Prices in Yahoo! Keyword

Auctions

So how does all this optimal auction theory get used, anyway? We next discuss a 2008
field experiment by Ostovsky and Schwarz [6], which explored whether or not the lessons of
auction theory could be used to increase revenue for Yahoo! in its keyword search auctions.

Recall from Lecture #2 the standard model of keyword auctions. Which such auction
maximizes the expected revenue, at least in theory? Assuming that bidders’ valuations-per-
click are drawn i.i.d. from a regular distribution F , it is simply to rank bidders by bid (from
the best slot to the worst) after applying the monopoly reserve price '�1(0) to all bidders,
where ' is the virtual valuation function of F . See the exercises for details.

What had Yahoo! been doing, up to 2008? First, they were using relatively low reserve
prices — initially $.01, later $.05, and $.10 in 2008. Perhaps more naively, they were using the
same reserve price of $.10 across all keywords, even though some keywords surely warranted
higher reserve prices than others (e.g., compare the searches “divorce lawyer” with “pizza”).
How would Yahoo!’s revenue change if reserve prices were changed, independently for each
keyword, to be theoretically optimal?

The field experiment described in [6] had two parts. First, a lognormal valuation distri-
bution was posited for each of a half million keywords based on past bidding data.4 This
step is somewhat ad hoc but there is no evidence that the final conclusions depend on its
details (such as the particular family of distributions used).

Next, theoretically optimal reserve prices were computed for each keyword, assuming
valuations are drawn from the fitted distributions. As expected, the optimal reserve price
varies a lot across keywords, but there are plenty of keywords with a theoretically optimal
reserve price of $.30 or $.40. Thus, Yahoo!’s uniform reserve price was much too low, relative
to the theoretical advice, on many keywords.

The obvious experiment is to try out the theoretically optimal (and generally higher)
reserve prices to see how they do. Yahoo!’s top brass wanted to be a little more conservative,
though, and set the new reserve prices to be the average of the old ones ($.10) and the
theoretically optimal ones.5 And the change worked: auction revenues went up several per
cent (of a very large number). The new reserve prices were especially e↵ective in markets
that are valuable but “thin,” meaning not very competitive (less than 6 bidders). Better
reserve prices were credited by Yahoo!’s president as the biggest reason for higher search
revenue in Yahoo!’s third-quarter report in 2008.

4
Since Yahoo!, like other search engines, uses a non-DSIC auction based on the GSP auction (see Problem

3), one cannot expect the bids to be truthful. In [6], valuations are reversed engineered from the bids under

the assumption that bidders are playing the equilibrium that is outcome-equivalent to the dominant-strategy

outcome of the DSIC auction (as in Problem 3).

5
It turns out that, both in theory and empirically, this initial change accounts for most of the revenue

increase. Increasing the reserve price further does not have much e↵ect on revenue.

7

References

[1] J. Bulow and P. Klemperer. Auctions versus negotiations. American Economic Review,
86(1):180–194, 1996.

[2] P. Dhangwatnotai, T. Roughgarden, and Q. Yan. Revenue maximization with a single
sample. In Proceedings of the 11th ACM Conference on Electronic Commerce (EC), pages
129–138, 2010.

[3] J. D. Hartline. Mechanism design and approximation. Book draft. October, 2013.

[4] J. D. Hartline and T. Roughgarden. Simple versus optimal mechanisms. In Proceedings
of the 10th ACM Conference on Electronic Commerce (EC), pages 225–234, 2009.

[5] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981.

[6] M. Ostrovsky and M. Schwarz. Reserve prices in internet advertising auctions: A field
experiment. Working paper, December 2009.

[7] E. Samuel-Cahn. Comparison of threshold stop rules and maximum for independent
nonnegative random variables. Annals of Probability, 12(4):1213–1216, 1984.

8

CS364A: Algorithmic Game Theory

Lecture #7: Multi-Parameter Mechanism Design and

the VCG Mechanism

⇤

Tim Roughgarden†

October 14, 2013

1 General Mechanism Design Problems

Previous lectures only considered single-parameter mechanism design problems, where each
participant has just one piece of private information, its valuation per unit of stu↵. In many
problems, a participant has di↵erent private valuations for di↵erent items. Once we are
unsure about whether a participant prefers item A to item B, for example, we are in the
realm of multi-parameter mechanism design.

Here are the ingredients of a general, multi-parameter mechanism design problem:

• n strategic participants, or “agents;”

• a finite set ⌦ of outcomes;

• each agent i has a private valuation vi(!) for each outcome ! 2 ⌦.

The outcome set ⌦ is abstract and could be very large. In a single-item auction, ⌦ has only
n + 1 elements, corresponding to the winner of the item (if any). In the standard single-
parameter model of a single-item auction, we assume that the valuation of an agent is 0
in all of the n outcomes in which it doesn’t win, leaving only one unknown parameter per
agent. In the more general multi-parameter framework above, an agent can have a di↵erent
valuation for each possible winner of the auction. This example is not without plausible
application: in a bidding war over a hot startup, for example, agent i’s highest valuation
might be for acquiring the startup, but if it loses it prefers that the startup be bought by a
company in a di↵erent market, rather than by a direct competitor.

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

2 The VCG Mechanism

Our next result is a cornerstone of mechanism design theory.

Theorem 2.1 (The Vickrey-Clarke-Groves (VCG) Mechanism [6, 1, 3]) In every gen-

eral mechanism design environment, there is a DSIC welfare-maximizing mechanism.

Recall the three properties of “awesome” auctions from Lecture 2. Theorem 2.1 asserts
the first two properties but not the third (polynomial running time). We already know
that, even in single-parameter environments, we can’t always have the second and third
properties (unless P = NP). As we’ll see, the VCG mechanism is highly non-awesome in
many important applications.

As always, designing a (direct-revelation) DSIC mechanism is tricky because the alloca-
tion and payment rules need to be coupled carefully.1 We apply the same two-step approach
that served us so well in single-parameter environments.

The first step is to assume, without justification, that agents truthfully reveal their private
information, and then figure out which outcome to pick. Since Theorem 2.1 demands welfare-
maximization, the only solution is to pick the welfare-maximizing outcome, using bids as
proxies for the true (and unknown) valuations. That is, given bids b

1

, . . . ,bn, where each bi

is indexed by ⌦, we define the allocation rule x by

x(b) = argmax
!2⌦

nX

i=1

bi(!). (1)

The second step is to define a payment rule that, when coupled with the above allocation
rule, yields a DSIC mechanism. Last time we arrived at this point, for single-parameter en-
vironments, we formulated and proved Myerson’s Lemma, which is a general solution to this
second step for all such environments. Recall that Myerson’s Lemma asserts that allocation
rule monotonicity is necessary and su�cient for implementability and, for monotone rules,
it gives an explicit formula for the unique payment rule that meets the DSIC condition.
Myerson’s Lemma does not hold beyond single-parameter environments — with an agent
submitting bids in more than one dimension, it’s not even clear how to define “monotonicity”
of an allocation rule.2 Similarly, the “critical bid” characterization of DSIC payments (for
0-1 problems) does not have an obvious analog in multi-parameter problems.

The key idea is to make use of an alternative characterization of DSIC payments for the
welfare-maximizing allocation rule (proved in the exercises), as the “externality” caused by
an agent i — the welfare loss inflicted on the other n�1 agents by i’s presence. For example,

1
The proof of the Revelation Principle in Lecture 4 holds without change in multi-parameter environments,

so restricting to direct-revelation mechanisms is without loss of generality.

2
There is an analogous characterization of implementable multi-parameter allocation rules in terms of

“cycle monotonicity.” This is an elegant result, analogous to the fact that a network admits well-defined

shortest paths if and only if it possesses no negative cycle. Cycle monotonicity is far more unwieldy than

single-parameter monotonicity, however. Because it is so brutal to verify, cycle monotonicity is rarely used

to argue implementability or to derive DSIC payment rules in concrete settings.

2

in a single-item auction, the winning bidder inflicts a welfare loss of the second-highest bid to
the others (assuming truthful bids), and this is precisely the Vickrey auction’s payment rule.
This idea of “charging an agent its externality” makes perfect sense in general mechanism
design environments, and it corresponds to the payment rule

pi(b) = max
!2⌦

X

j 6=i

bj(!)

| {z }
without i

�
X

j 6=i

bj(!
⇤)

| {z }
with i

, (2)

where !⇤ = x(b) is the outcome chosen in (1). Note that pi(b) is always nonnegative
(exercise).

We claim that this mechanism (x,p), the VCG mechanism, is DSIC. (By definition, it
maximizes welfare assuming truthful bids.) For the first time since the Vickrey auction, we’ll
prove the DSIC property from scratch (i.e., without use of Myerson’s Lemma). Recall this
means that for every agent i and every set b�i of bids by the other agents, agent i maximizes
its quasilinear utility vi(x(b))� pi(b) by setting bi = vi.

Fix i and b�i. When the chosen outcome x(b) is !⇤, i’s utility is

vi(!
⇤)� pi(b) =

"
vi(!

⇤) +
X

j 6=i

bj(!
⇤)

#

| {z }
(A)

�
"
max
!2⌦

X

j 6=i

bj(!)

#

| {z }
(B)

. (3)

Observe that the term (B) is a constant, independent of what bi is. Thus, the problem of
maximizing agent i’s payo↵ reduces to the problem of maximizing the first term (A). As a
thought experiment, let’s suppose agent i has the power to choose the outcome !⇤ directly,
rather than merely influencing the chosen outcome indirectly via its choice of bid bi. Agent i
would, of course, use this extra power to choose an outcome that maximizes the term (A). If
agent i sets bi = vi, then term (1) that the mechanism maximizes becomes identical to the
term (A) that the agent wants maximized. Thus, bidding truthfully results in the mechanism
choosing an outcome that maximizes agent i’s utility; no other bid could be better. This
completes the proof of Theorem 2.1.

Here is an alternative interpretation of the payments in the VCG mechanism. Rewrite
the expression in (2) as

pi(b) = bi(!
⇤)| {z }

bid

�
"

nX

j=1

bj(!
⇤)�max

!2⌦

X

j 6=i

bj(!)

#

| {z }
rebate

. (4)

We can thus think of agent i’s payment as its bid minus a “rebate,” equal to the increase in
welfare attributable to i’s presence. For example, in the Vickrey auction, the highest bidder
pays its bid b

1

minus a rebate of b
1

� b
2

(where b
2

is the second-highest bid), the increase in
welfare that the bidder brings to the table.

3

We leave it as an exercise to observe that the discount in (4) is always nonnegative,
implying that pi(!⇤)  bi(!⇤) and hence truthtelling agents are guaranteed nonnegative
utility.

The upshot of the VCG mechanism is that, in general multi-parameter environments,
DSIC welfare-maximization is always possible in principle. While it can be infeasible to
implement in practice, the VCG mechanism nevertheless serves as a useful benchmark for
other, more practical approaches.

3 Combinatorial Auctions

Combinatorial auctions are important in practice. Already in the domain of government
spectrum auctions, dozens of such auctions have raised hundreds of billions of dollars of
revenue. They have also been used for other applications such as allocating take-o↵ and
landing slots at airports. Combinatorial auctions are also notoriously di�cult, in both theory
and practice. Theoretical work has identified many impossibility results for what can be done
with reasonable communication and computation. Practice has provided examples of badly
designed combinatorial auctions with serious consequences, such as the 1990 New Zealand
spectrum auction that raised merely $36 million, a far cry from consultants’ estimates of
$250 million (see [5, Chapter 1] for details).

3.1 The Model

A combinatorial auction has n bidders — for example, Verizon, AT & T, and several regional
providers. There is a set M of m items, which are not identical — for example, a license
awarding the right to broadcast on a certain frequency in a given geographic area. The
outcome set ⌦ corresponds to n-vectors (S

1

, . . . , Sn), with Si denoting the set of items
allocated to bidder i (its “bundle”), and with no item allocated twice. There are (n + 1)m

di↵erent outcomes. Each bidder i has a private valuation vi(S) for each bundle S ✓ M of
items it might get. Thus, each bidder has 2m private parameters. One generally assumes
that vi(;) = 0 and that vi(S)  vi(T) whenever S ✓ T (i.e., “free disposal”). We’ll discuss
additional assumptions on valuations later.

The welfare of an outcome (S
1

, . . . , Sn) is
Pn

i=1

vi(Si). In principle, the VCG mechanism
provides a DSIC solution for maximizing the welfare. This can be useful when bidders’
valuations are su�ciently structured, as with “unit-demand” bidders (see the exercises). In
general, however, there are several major impediments to implementing the VCG mechanism.

3.2 Challenges

The first major challenge of combinatorial auctions is that of preference elicitation. Each
bidder has 2m� 1 private parameters, roughly a thousand when m = 10 and a million when
m = 20. No bidder in their right mind would want to write down (or even figure out) that
many bids. No seller would want to listen to that many bids. This exponential number of

4

private parameters makes the VCG mechanism, and every other direct-revelation mechanism,
a nonstarter for combinatorial auctions in practice. Note that this challenge never arises in
single-parameter mechanism design, where each bidder only has to communicate one number.

The utter absurdity of direct-revelation combinatorial auctions motivates indirect mech-
anisms, which learn information about bidders’ preferences only on a “need-to-know” basis.
We have not yet discussed any such mechanisms. The canonical indirect auction is the as-
cending English auction. You’re familiar with this auction format from the movies — an
auctioneer keeps track of the current price and tentative winner, and the auction stops when
only one interested bidder remains.3 Each bidder has a dominant strategy, which is to stay
in the auction as long as the current price is below its valuation (the player might win for
positive utility) and to drop out once the current price reaches its valuation (after which
winning can only lead to negative utility). Assuming all bidders play these strategies, the
outcome of the English ascending auction is the same as that of the Vickrey (sealed-bid)
auction. The Vickrey auction is what you get when you apply the Revelation Principle
(Lecture 4) to the English auction.

Indirect auctions are unavoidable for all but the smallest combinatorial auctions. We’ll
discuss the auction formats used in practice for wireless spectrum auctions next lecture.4

An important question is: can indirect mechanisms achieve, at least in principle, non-trivial
welfare guarantees while eliciting only a small amount of information (say, polynomial in n
and m) from the bidders? There is nice theoretical work on this question, and the answer,
roughly, is “no” for complex valuations and “yes” for su�ciently simple valuations. We’ll
discuss thsi more in the next lecture, and at length in CS364B. In practice, one hopes that
bidders’ valuations are su�ciently simple and/or that auction performance will be much
better than the worst-case bounds.

The second challenge in designing practice combinatorial auctions is familiar from our
discussion of algorithmic mechanism design (Lecture 4). Even when the first challenge is not
an issue — for example, when bidders are single-parameter and direct revelation is practical
— welfare-maximization can be an intractable problem. We encountered this issue with
Knapsack auctions and in a couple of the Problems. This challenge is fundamental, and
cannot be avoided by choosing a clever auction format. In practice, one hopes that combi-
natorial auctions compute allocations that are reasonably close to welfare-maximizing. This
is impossible to check directly, since bidders’ valuations are unknown and the combinatorial

3
There are a few variants. The movies, and auction houses like Christie’s and Soethby’s, use an “open

outcry” auction in which bidders can drop out and return, and can make “jump bids” to aggressively raise

the current price. When doing mathematical analysis, the “Japanese” variant is usually more convenient:

the auction begins at some opening price, which is publicly displayed and increases at a steady rate. Each

bidder either chooses “in” or “out,” and once a bidder drops out it cannot return. The winner is the last

bidder in, and the sale price is the price at which the second-to-last bidder dropped out.

4
Indirect auctions can also be useful in single-parameter settings like single-item auctions. Empirical

studies show that bidders are more likely to play their dominant strategy in an English auction than in a

sealed-bid second-price auction, where some bidders inexplicably overbid [4]. Second, ascending auctions

leak less valuation information to the auctioneer. In a Vickrey auction, the auctioneer learns the highest

bid; in an English auction, the auctioneer only learns a lower bound on the highest bid (the second-highest

bid).

5

auctions used in practice are not DSIC and o↵er some opportunities for strategizing. Never-
theless, there are various simple “sanity checks” that can be applied to an auction outcome
to suggest good welfare maximization. For example, did bidders successfully acquire sensible
packages (e.g., spectrum licenses that are adjacent geographically or in the spectrum)? Did
similar items sell for similar prices?

The third challenge applies to the VCG mechanism — which turns out to be essentially
the unique DSIC welfare-maximizing mechanism — even when the first two challenges are
not relevant (e.g., a single-parameter problem small enough that welfare maximization can
be done in a reasonable amount of time). Namely, the VCG mechanism can have bad revenue
and incentive properties, despite being DSIC.

For instance, suppose there are two bidders and two items, A and B. The first bidder
only wants both items, so v

1

(AB) = 1 and is 0 otherwise. The second bidder only wants
item A, so v

2

(AB) = v
2

(A) = 1 and is 0 otherwise. The revenue of the VCG mechanism is 1
in this example (exercise). But now suppose we add a third bidder who only wants item B,
so v

3

(AB) = v
3

(B) = 1. The maximum welfare has jumped to 2, but the VCG revenue has
dropped to 0 (exercise)! The fact that the VCG mechanism has zero revenue in seemingly
competitive environments is a dealbreaker in practice. The revenue non-monotonicity in
this example also implies numerous incentive problems, including vulnerability to collusion
and false-name bids (see the exercises). None of these issues plague the single-item Vickrey
auction.

The first challenge begets a fourth. Almost all combinatorial auctions used in practice are
iterative, comprising a sequence of rounds; we’ll discuss details next lecture. Iterative auc-
tions o↵er new opportunities for strategic behavior. For example, Cramton and Schwatz [2]
found that, in an early and relatively uncompetitive spectrum auction, bidders used the
low-order digits of their bids to e↵ectively send messages to other bidders. Let’s consider
license #378 in that auction, for spectrum use rights in Rochester, MN. USWest and McLeod
were battling it out for this license, with each repeatedly outbidding the other. Apparently,
USWest tired of this bidding war and switched to a retaliatory strategy — bidding on a
number of licenses in other geographical areas on which McLeod was the standing high bid-
der, and on which USWest had shown no interest in previous rounds. McLeod ultimately
won back all of these licenses, but had to pay a higher price due to USWest’s bids. To
make sure its message came through loud and clear, all of USWest’s retaliatory bids were a
multiple of 1000 plus 378 — presumably warning McLeod to get the hell out of the market
for Rochester, or else. This particular type of signalling can be largely eliminated by forcing
all bids to be multiples of a suitably large number, but other opportunities for undesirable
strategic behavior remain.

References

[1] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

6

[2] P. Cramton and J. Schwartz. Collusive bidding: Lessons from the fcc spectrum auctions.
Journal of Regulatory Economics, 17(3):229–252, 2000.

[3] T. Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

[4] R. M. Harstad. Dominant strategy adoption and bidders’ experience with pricing rules.
Experimental Economics, 3:261–280, 2000.

[5] P.. Milgrom. Putting Auction Theory to Work. Cambridge, 2004.

[6] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of

Finance, 16(1):8–37, 1961.

7

CS364A: Algorithmic Game Theory

Lecture #8: Combinatorial and Wireless Spectrum

Auctions

⇤

Tim Roughgarden†

October 16, 2013

1 Selling Items Separately

Recall that a combinatorial auction has n bidders and m non-identical items, with bidder i
having a private valuation vi(S) for every bundle S ✓ M of items. Asking each bidder
to report 2m bids is absurd unless m is very small. Thus, for the first time in the course,
we have no choice but to design and analyze indirect mechanisms, and especially iterative
mechanisms that query bidders for relevant valuation information on a “need-to-know” basis.
This entails relaxing both the DSIC guarantee and full welfare maximization — we will miss
these properties, but have no alternative.

What other mechanisms can we try? Given that we need to sell multiple items, and don’t
want to elicit valuations for every bundle, the simplest mechanisms to try are those that sell
the items separately, using some type of single-item auction for each. We could certainly
implement such an auction if desired — all we need is one bid per bidder per item, which is
arguably the minimum imaginable.

We’ll pin down the precise auction format shortly, but first we should ask a more basic
question: could selling items separately conceivably work, even in principle? There is lots
of beautiful and clarifying theory on this question, some of which we’ll cover later. For now
we summarize the main take-aways from this theory.

There is a fundamental dichotomy between combinatorial auctions in which items are
substitutes, and those in which items are complements — with the former being far easier, in
theory and in practice, than the latter. Roughly speaking, items are substitutes if you get
diminishing returns from them — having one item only makes others less valuable. For two
items A and B, for example, the substitutes condition means that v(AB)  v(A) + v(B).
In a spectrum auction context, two licenses for the same area with equal-sized frequency

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

ranges are usually substitute items. Theory indicates that selling items separately has a
chance to work well when items are (mostly) substitutes. For starters, welfare maximization
is a computationally tractable problem when items are substitutes and the true valuations
are known. In addition, the undesirable properties of the VCG mechanism pointed out last
lecture and in the exercises evaporate when items are substitutes, generalizing the single-
item case. But even though substitute items are the “easy” case, we’ll see that it’s easy to
screw up when trying to sell them separately.

Item are complements if there are synergies between them, so that possessing one makes
others more valuable. With two items A and B, this translates to the property v(AB) >
v(A) + v(B). Complements arise naturally in wireless spectrum auctions, as some bidders
want a collection of licenses that are adjacent, either in their geographic areas or in their
frequency ranges. With complements, welfare maximization (without incentive constraints)
is already a very di�cult problem; see also Problem 5. We cannot expect a simple auction
format like separate single-item auctions to perform well in such environments.

The items in spectrum auctions, and most real-world combinatorial auctions, are a mix-
ture of substitutes and complements. If the problem is “mostly substitutes,” then separate
single-item auctions might already perform well, if properly implemented. If not, then addi-
tional ideas are needed; see Section 3.

2 Simultaneous Ascending Auctions

There are numerous ways to organize separate single-item auction. Next we discuss two of
the design decisions that seem to matter a lot in practice; see Cramton [2] and Milgrom [4,
Chapter 1] for more details.

Rookie mistake #1: Hold the single-item auctions sequentially, one at a time.

To see why holding auctions sequentially is probably a bad idea, consider the especially
easy case of identical items, where each bidder wants at most one. This problem can be
solved easily via a single auction that allocates all of the items (e.g., by extending the
Vickrey auction to ths setting). Suppose instead we hold a sequence of single-item auctions.
Concretely, consider two identical items, sold via back-to-back Vickrey auctions, and suppose
you are a bidder with a very high valuation — you expect to win any auction that you
participate in. What should you do? First, suppose everyone else bids straightforwardly,
meaning that, if they haven’t won an item yet, then they participate in the next auction and
bid their true valuation. If you participate in the first auction, you would win and pay the
second-highest valuation. If you skip it, the bidder with the second-highest valuation would
win the first auction and disappear, leaving you to win the second auction at a price equal to
the third-highest original valuation. Of course, now that we realize that it is not a dominant
strategy for bidders to bid straightforwardly in a sequence of Vickrey auctions, we have to
reason about how they might be strategizing. Summarizing, it’s hard to bid intelligently in
a sequence of Vickrey auctions because you have to guess the expected selling price of future
auctions, and this in turn makes the auctions’ outcomes unpredictable, with the possibility

2

of low welfare and revenue.
In March 2000, Switzerland auctioned o↵ 3 blocks of spectrum via a sequence of Vickrey

auctions. The first two auctions were for identical items, 28 MHz blocks, and sold for 121
million and 134 million Swiss francs, respectively. This is already more price variation than
one would like for identical items. But the kicker was that in the third auction, where a
larger 56 MHz block was being sold, the selling price was only 55 million! The bids were
surely far from equilibrium, and both the welfare and revenue achieved by this auction are
suspect.1

The discussion and history lessons above suggest holding single-item auctions for multiple
items simultaneously, rather than sequentially. But there is still the question of the auction
format for each single-item auction.

Rookie mistake #2: Use sealed-bid single-item auctions.

In 1990, the New Zealand government auctioned o↵ essentially identical licenses for tele-
vision broadcasting using simultaneous (sealed-bid) Vickrey auctions. It is again di�cult for
bidders to figure out how to bid in such an auction. Imagine, for example, that there are
10 licenses and you want one of them (but not more). How should you bid? One legitimate
strategy is to pick one of the licenses (at random, say) and go for it. Another strategy is to
bid less aggressively on multiple licenses, hoping that you get one at a bargain price, and
that you don’t win too many extra licenses that you don’t want. The di�culty is trading o↵
the risk of winning too many licenses with the risk of winning too few.

The di�culty of bidding and coordinating in a simultaneous sealed-bid auction makes
the auction format vulnerable to outcomes with low welfare and revenue. For example,
suppose there are three bidders and two identical items, and each bidder wants only one.
The obvious extension of the Vickrey auction sells the two licenses to the bidders with the
highest valuations, each at a price equal to the smallest valuation. In a simultaneous sealed-
bid auction, if each bidder targets only one license, then one of the licenses is likely to have
only one bidder and will thus be given away for free (or more generally, sold at the reserve
price).

The revenue in the 1990 New Zealand auction was only $36 million, a paltry fraction of
the projected $250 million. In contrast, most spectrum auctions over the past 20 years have
met or exceedes projected revenues. On one license, the high bid was $100,000 while the
second-highest bid (and selling price) was $6! On another, the high bid was $7 million and
the second-highest was $5,000. To add insult to injury, the high bid were made available to
the public, who could then see just how much money was left on the table! A later New
Zealand auction kept the simultaneous sealed-bid format but switched to first-price auctions
— this switch probably failed to prevent the miscoordination and consequent welfare and
revenue losses that plagued the previous auction, but it did make these losses less evident to
the public.

Simultaneous ascending auctions (SAAs) form the basis of most spectrum auctions run
over the last 20 years. We discuss the basic format first, and then some of the bells and

1In addition to the questionable auction format, it didn’t help matters that there were some strategic
mergers of potential bidders before the auction, leading to less competition than expected.

3

whistles that have been added on over the years. Conceptually, SAAs are like a bunch of
single-item English auctions being run in parallel in the same room, with one auctioneer per
item. More precisely, each round, each bidder can place a new bid on any subset of items
that it wants, subject to an activity rule. The activity rule forces all bidders to participate in
the auction from the beginning and contribute to the price discovery discussed below. The
details of an activity rule can be complex, but the gist is to require that the number of items
that a bidder bids on only decreases over time as prices rise. Generally, the high bids and
bidders are visible to all — even though this can encourage signaling and retaliatory bids
(recall USWest vs. McLeod last lecture). The first round with no new bids ends the auction.

The main reason that SAAs work better than sequential or sealed-bid auctions is price

discovery. As a bidder acquires better information about the likely selling prices of licenses, it
can implement mid-course corrections — abandoning licenses for which competition is more
fierce than anticipated, snapping up unexpected bargains, and rethinking which packages of
licenses to assemble. The format typically resolves the miscoordination problems that plague
simultaneous sealed-bid auctions. For instance, suppose there are two identical items and
three bidders. Every round, some bidder will be losing both auctions. When it jumps back
in, it makes sense to bid for the currently cheaper item, and this will keep the prices of the
two items roughly the same.

Another bonus of the SAA format is that bidders only need to determine valuations on
a need-to-know basis. We’ve been assuming that valuations are known to bidders at the
beginning of the auction, but in practice determining the valuation for a bundle of items can
be costly, involving research, expert advice, and so on. In sharp contrast to direct-revelation
auctions, a bidder can often navigate an SAA with only coarse estimates for most valuations
and precise estimates for the bundles that matter.

Generally, SAAs are believed to perform well, meaning they achieve good welfare and
revenue. This assertion is not easy to test after an auction, since valuations remain unknown
and bids are incomplete and potentially non-truthful. However, there are a number of “sanity
checks” that suggest good auction performance. First, there should be little or no resale of
items after the auction, and any reselling should take place at a price comparable to the
auction’s selling price. This indicates that speculators did not play a significant role in
the auction. Second, similar items should sell for similar prices (cf., the Swiss and New
Zealand auctions). Third, revenue should meet or exceed projections. Fourth, there should
be evidence of price discovery — for example, prices and provisional winners at the mid-
point of the auction should be highly correlated with final selling prices and winners. Finally,
the packages assembled by bidders should be sensible, such as groups of licenses that are
adjacent geographically or in frequency range.

SAAs have two big vulnerabilities. The first problem is demand reduction, and this is
relevant even when items are substitutes. Demand reduction occurs when a bidder asks for
fewer items than it really wants, to lower competition and therefore the prices paid for the
items that it gets.

To illustrate, suppose there are two identical items and two bidders. The first bidder has
valuation 10 for one of the items and valuation 20 for both. The second bidder has valuation

4

8 for one of the items and does not want both (i.e., its valuation remains 8 for both). Giving
both items to the first bidder maximizes the welfare, at 20. The VCG mechanism would earn
revenue 8 on this example. Now consider how things play out in an SAA. Bidder 2 would
be happy to have either item at any price less than 8. Thus, bidder 2 drops out only when
both items have price at least 8. If bidder 1 stubbornly insists on winning both items, its
utility will be 20� 16 = 4. If, on the other hand, bidder 1 targets just one item, then each
of the bidders will get one of the items at a near-zero price. Bidder 1’s utility is then close
to 10. In this example, demand reduction leads to a loss or welfare and revenue, relative
to the VCG mechanism’s outcome. There is ample evidence of demand reduction in many
spectrum auctions.

The second big problem with SAAs, which is relevant when items are complements (in-
cluding in many spectrum auctions), is the exposure problem. As an example, consider two
bidders and two non-identical items. Bidder 1 only wants both items — they are comple-
mentary items for the bidder — and its valuation is 100 for them (and 0 otherwise). Bidder
2 is willing to pay 75 for either item. The VCG mechanism would give both items to bidder
1, for a welfare of 100, and would generate revenue 75. In a SAA, though, bidder 2 will not
drop out until the price of each item reaches 75. Bidder 1 is in a no-win situation: to get
both items it would have to pay 150, more than its value. The scenario of winning only one
item for a non-trivial price could be even worse. On the other hand, if bidder 2’s value for
each item was only 40, then bidder 1 should just go for it. But how can bidder 1 know which
scenario is closer to the truth? The exposure problem makes bidding in an SAA di�cult
for a bidder for whom items are complements, and it often leads to risk-averse, tentative
bidding by such bidders.

3 Bells and Whistles

A di�cult and controversial question is whether or not to augment the basic SAA format
by package bidding — bidding on sets of items in addition to individual items – and, if so,
how. The primary reason to allow package bidding is to alleviate the exposure problem when
items are complements, to free up bidders who desire bundles of items to bid aggressively
for them. There are also scenarios where package bids can remove the incentive for demand
reduction.

The conservative viewpoint, which dominated practice until relatively recently, is that
package bids add complexity to a quite functional auction format and might do more harm
than good. Limited forms of package bidding have been incorporated into spectrum auction
designs only over the past 5–10 years.

One design approach is to tack on one extra “proxy” round after the SAA where bidders
can submit package bids on any subsets of items that they want, subject to an activity
rule; see Ausubel and Milgrom [1] for details. These package bids compete with each other
as well as the winning bids on individual items from the SAA phase of the auction. The
final allocation is determined by a welfare-maximization computation, treating bids as true
values. The biggest issue with this approach is that computing the final prices is tricky.

5

TV

38 51

(a) Before

TV

38 5146

freed

(b) After

Figure 1: After some of the TV broadcasters are bought out, the remaining ones will be
repacked via channel reassignment to free up a contiguous portion of the spectum.

The VCG payment rule is not used because of its poor revenue and incentive properties (see
Lecture 7 and the exercises). A more aggressive payment rule, which is not DSIC but does
have other good incentive properties, is used instead. Typical behavior of bidders with this
relatively complex pricing rule does not seem to be well understood.

A second approach is to predefine a limited set of allowable package bids, rather than
allowing bidders to propose their own. Ideally, the predefined package bids should be well-
aligned with what bidders actually want, yet structured enough to permit reasonably simple
allocation and payment rules. Hierarchical packages — for example, allowing bids on indi-
vidual licenses, on regional bundles of licenses, and on nationwide bundles — have emerged
as a sweet spot for this design approach [3]. The biggest issue with predefined package bids
is that they can do more harm than good when they are poorly matched with bidders’ goals.
For example, imagine that you’re a bidder who wants the items ABCD, but the available
packages are ABEF and CDHI — what’s your bidding strategy?

4 The Cutting Edge

We’ve reached the state-of-the-art of wireless spectrum auctions, so let’s conclude with a
peek into the future: an upcoming FCC double auction, to take place possibly in 2014.2

Wireless spectrum doesn’t grow on trees. At this point, giving someone a new allocation
of spectrum generally requires taking it away from someone else. Soon, the FCC plans to
do precisely this, using a reverse auction (cf., Exercise 7) to free up spectrum by buying out
TV broadcasters and then a forward auction to resell the spectrum to companies that can
put it to more valuable use. The forward auction will likely be implemented as an SAA with
bells and whistles, as usual; the reverse auction is completely new.

In addition, the FCC will repack the remaining broadcasters so that the freed up fre-
quency is contiguous. For example, they might buy out a number of TV broadcasters across
the nation who were using a UHF channel somewhere between 38 and 51, and reassign all
of the remaining broadcasters to have a channel between 38 and 45, leaving the part of the
spectrum corresponding to channels 46–51 free for new users (see Figure 1).

In a very cool development, the current frontrunner for the reverse auction format is a
greedy approximate welfare-maximizing allocation rule, not unlike those we discussed for

2The auction format is still under discussion, and this section is only the author’s best guess as to what
will be adopted.

6

Knapsack auctions in Lecture 4. In the proposed model, each bidder i (a TV broadcaster)
has a private valuation vi for its broadcasting license. That is, vi is the “minimum acceptable
o↵er” for buying out i.3 Letting N denote the set of bidders, a set S ✓ N of winning bidders
— where “winning” means being bought out — is feasible if the remaining bidders N \ S
can be repacked in the target range (e.g., channels 38–45).4 For instance, if S = N then
all bidders are bought out and the entire spectrum is freed up, so S is certainly feasible.
When S = ;, no spectrum is freed up, an infeasible outcome. Checking whether or not a
given set S is feasible is a medium-size NP-hard problem — essentially the graph coloring
problem, since two TV stations with overlapping geographic areas cannot be assigned the
same or adjacent channels — so solving it requires state-of-the-art algorithmic technology.
As of this writing, SAT solvers and integer programming solvers are battling it out, striving
to solve these “feasibility-checking” problems as fast as possible (ideally, in seconds).

We give a direct-revelation description of the proposed class of allocation rules, although
they can (and likely will be) implemented via an iterative auction with descending, bidder-
specific prices. Descending implementations are preferred to sealed-bid implementations
because, empirically, bidders find them easier to play. The allocation rule starts with the
trivial feasible set (all bidders), and then iteratively removes bidders from the current feasible
set until a minimal feasible set is reached. A greedy scoring rule is used to choose which
bidder to remove in each iteration. One might call this a “reverse greedy algorithm,” since
it deletes bidders starting from the entire set, rather than forward greedy algorithms which
iteratively add bidders starting from the empty set (cf., Knapsack auctions in Lecture 4).
Milgrom and Segal [5] call these deferred allocation rules.

• Set S = N . [Initially feasible.]

• While there is an i 2 S such that S \ {i} remains feasible:

(*) Delete some such i from S. [I.e., i will not be bought out.]

• Return S.

Step (*) is obviously underdetermined, and it’s easy to think of various heuristics to try, like
deleting the bidder with the highest bid (i.e., least willing to be bought out), the bidder with
the highest per-capita bid, etc. The exact choice of the greedy rule will likely be guided by
the welfare achieved by di↵erent rules on synthetic data.

3This single-parameter model assumes that each TV station is owned by a di↵erent strategic agent. This
assumption is not entirely true in practice, but it makes the model much easier to reason about.

4One interesting question is how to set this target. The bigger the target, the bigger the expenses per unit
of spectrum in the reverse auction and the smaller the revenues per unit of spectrum in the forward auction,
since increasing supply should decrease the price. An ideal target would equalize the price per spectrum in
the forward and reverse auctions — or perhaps with a somewhat higher price in the forward auction, so that
auction expenses are recovered by the auction’s net revenue. One approach that is being discussed seriously
is to use the proposed reverse auction to estimate the entire supply curve — the cost of acquiring spectrum
for each possible target — and then match supply and demand accordingly during the forward auction.

7

If we implement (*) using a scoring function, deleting the bidder i with the largest score
(subject to S \ {i} being feasible), and if this scoring function is increasing in a bidder’s bid
and independent of the bids of the other active players, then the deferred allocation rule is
monotone (bidding lower can only cause you to win). See Exercise Set #4. By Myerson’s
Lemma, paying critical bids — the largest bid that a winning bidder could have made and
still gotten bought out — yields a DSIC auction.

Remarkably, deferred allocation rules have a number of good incentive properties above
and beyond DSIC, which are not shared by their forward-greedy cousins [5]; see also Problem
Set #3.

References

[1] L. Ausubel and P. Milgrom. Ascending proxy auctions. In P. Cramton, Y. Shoham, and
R. Steinberg, editors, Combinatorial Auctions, chapter 3. MIT Press, 2006.

[2] P. Cramton. Simultaneous ascending auctions. In P. Cramton, Y. Shoham, and R. Stein-
berg, editors, Combinatorial Auctions, chapter 4. MIT Press, 2006.

[3] J. K. Goeree and C. A. Holt. Hierarchical package bidding: A paper & pencil combina-
torial auction. Games and Economic Behavior, 70(1):146–169, 2010.

[4] P.. Milgrom. Putting Auction Theory to Work. Cambridge, 2004.

[5] P. Milgrom and I. Segal. Deferred-acceptance heuristic auctions. Working paper, August
2013.

8

CS364A: Algorithmic Game Theory

Lecture #9: Beyond Quasi-Linearity

⇤

Tim Roughgarden†

October 21, 2013

1 Budget Constraints

Our discussion so far has assumed that each agent has quasi-linear utility, meaning that it
acts to maximize its valuation vi(!) for the chosen outcome ! minus the payment pi that
it has to make. Thus, a bidder’s utility is a linear function of the payment made. We
have placed no restrictions on payments, other than the minimal conditions that they are
nonnegative and no more than the bid bi(!) agent i made for the chosen outcome.

In some important applications, payments are constrained. We first focus on budget

constraints, which limit the amount of money that an agent can pay. Sometimes, there is
little need to incorporate budget constraints. In a single-item auction, where we interpret
the valuation of an agent as its maximum willingness-to-pay, its valuation is presumably
bounded above by its budget. In other applications, especially where an agent might wind
up buying a large number of items, budgets are crucial.

For example, every keyword auction used in practice asks a bidder for its bid-per-click
(e.g., $.25) and its daily budget (e.g., $100). Per-item values and overall budgets model well
how many people made decisions in auctions with lots of items, especially when the items
are identical.

The simplest way to incorporate budgets into our existing utility model is to redefine the
utility of player i with budget Bi for outcome ! and payment pi as

vi(!)� pi if pi  Bi

�1 if pi > Bi.

One can of course study smoothed version of this utility function, where there is a cost that
is an increasing function of the budget violation.

⇤
c

�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

Payment constraints such as budget constraints join the two other types of constraints
we’ve been operating under along: incentive constraints, often in the form of monotonicity;
and allocation constraints, such as allocating each good to at most one agent. Surplus
maximization, where payments appear neither in the objective function nor in the constraints
(other than being between 0 and bidders’ bids), is special. The VCG mechanism, and its
precursors in Lectures 2–4, maximizes surplus “ex post,” meaning as well as if all of the
private data is known a priori. Maximizing revenue, where payments participate in the
objective function, requires new auction formats and new measures of success (Lectures 5
and 6). The same is true of mechanism design with payment constraints, the subject of this
and the next lecture.

We certainly can’t maximize the surplus
Pn

i=1 vi(!) ex post when there are budget con-
straints. Consider the simple case of a single-item auction, where every bidder has a known
budget of 1 and a private valuation.1 The Vickrey auction charges the winner the second-
highest bid, which might well be more its budget. Since the Vickrey auction is the unique
DSIC surplus-maximizing auction (Exercise 9), surplus-maximization is impossible without
violating budgets. As shown in the exercises, no DSIC auction that respects budgets can
approximate the surplus well. We need new auction formats to accommodate budget con-
straints.

2 The Clinching Auction

The original clinching auction, by Ausubel [1], is an ascending implementation of the VCG
mechanism when there are multiple identical items, analogous to the English auction for
a single item. In [1], a bidder might want more than one item but is assumed to have
nonincreasing marginal values for items. We discussed last lecture why ascending auctions
can be more desirable than direct-revelation mechanisms. Unlike the SAA format discussed
last lecture, the clinching auction in [1] is immune to demand reduction. See also Problem
Set #3.

We discuss the variation of the clinching auction, due to Dobzinski et al. [3], that ac-
commodates budget constraints. There are m identical goods, and each bidder might want
many of them (like clicks in a keyword auction). Each bidder i has a private valuation vi for
each good that it gets — so if it gets k goods, its valuation for them is k · vi. Each bidder
has a budget Bi that we assume is public, meaning it is known to the seller in advance.2

The clinching auction described in this section is not DSIC when budgets are private (see
the exercises).

1
We argued that budgets are often superfluous in a single-item auction, but the point we’re making here

is general.

2
We’d love to assume that budgets are private and thus also subject to misreport, but private budgets

make the problem tougher, even impossible in some senses [3]. The version of the problem with public

budgets is hard enough already — as shown above, surplus maximization ex post is impossible — and it

guides us to some elegant and potentially useful auction formats, which of course is the whole point of the

exercise.

2

2.1 First Cut: Using the Market-Clearing Price

We first describe an auction that is more naive than the clinching auction. One can view
the clinching auction as a revised, more sophisticated version of this naive auction. We give
a direct-revelation description; it will be clear that there is an ascending implementation of
it.

The first auction is based on selling goods at the “market-clearing price”, where supply
equals demand. It’s clear what the supply is (m, the number of goods). The demand of a
bidder depends on the current price, with higher prices meaning less demand. Formally we
define the demand of bidder i at price p as:

Di(p) =

(

min
n

{b

Bi
p c, m

o

if p < vi

0 if p > vi.

To explain, recall that bidder i has value vi for every good that it gets. If the price is above
vi it doesn’t want any (i.e., Di(p) = 0), while if the price is below vi it wants as many as
it can a↵ord (i.e., Di(p) = b

Bi
p c). When vi = p the bidder does not care how many goods

it gets, as long as its budget is respected, and in the auction and its analysis we can take
Di(vi) to be a convenient integer in {0, 1, 2, . . . , bBi

p c} of our choosing.
As the price p rises, demand Di(p) goes down, from Di(0) = m to Di(1) = 0. A demand

drop can have two di↵erent forms: from an arbitrary positive integer to 0 (when p hits vi),
or by a single unit (when bBi/pc becomes one smaller).

Let p

⇤ be the smallest price with
P

i Di(p⇤) = m. Or, more generally, the smallest value
such that limp"p⇤

P

i Di(p) � m � limp#p⇤
P

i Di(p). Then, the auction gives Di(p⇤) goods to
each bidder i, each at the price p

⇤ (defining Di(p⇤)’s for bidders i with vi = p

⇤ so that all m

goods are allocated).
The good news is that, by the definition of the demand Di(p), this auction respects

bidders’ budgets. The bad news is that it is not DSIC; it is vulnerable to demand reduction,
similar to the simultaneous ascending auction format discussed last lecture.

Example 2.1 (Market-Clearing Price Is Not DSIC) Suppose there are two goods and
two bidders, with B1 = +1, v1 = 6, and B2 = v2 = 5. First suppose that both bidders bid
truthfully. The total demand

P

i Di(p) is at least 3 until the price hits 5, at which point
D1(5) = 2 and D2(5) = 0. The auction thus allocates both goods to bidder 1 at a price of 5
each, for a utility of 2. If bidder 1 falsely bids 3, however, it does better. The reason is that
bidder 2’s demand drops to 1 at the price 5

2 (it can no longer a↵ord both), and the auction
will terminate at the price 3, at which point D1(3) will be defined as 1. Bidder 1 only gets
one good, but the price is only 3, so its utility is 3, more than with truthful bidding.

We haven’t studied any non-DSIC auctions since Myerson’s Lemma (Lecture 3), which
in some sense gives a complete solution to DSIC auction design in single-parameter settings
like the present one. The allocation rule in the market-clearing price auction is monotone,
as you are invited to check, so Example 2.1 shows that we got the payment rule wrong. We
could apply Myerson’s Lemma to this allocation rule to derive the appropriate payments to
recover DSIC, but we’ll want a slightly more sophisticated allocation rule, as well.

3

2.2 The Clinching Auction for Bidders with Budgets

We’ll again give a direct-revelation description, but keep in mind that the auction admits
a natural ascending implementation, and that this was the original point of the clinching
auction.

Rather than sell all the goods in one shot, we will sell them piecemeal, at di↵erent prices.
In addition to the current price p, the auction keeps track of the current supply s (initially
m) and the residual budget B̂i (initially Bi) of each bidder i. The demand D̂i(p) of bidder i

at price p is defined with respect to the residual budget and supply, as min{b B̂i
p c, s} if p < vi

and as 0 if p > vi.

Clinching Auction for Budgeted Bidders

• Initialize p = 0, s = m.

• While s > 0:

– Increase p until there is a bidder i such that s�

X

j 6=i

D̂j(p)

| {z }

:=k

> 0.

– Give k goods to bidder i at price p (theses good are “clinched”).

– Decrease s by k.

– Decrease B̂i by p · k.

Observe that di↵erent goods are sold at di↵erent prices, with selling prices increasing over the
course of the auction. Observe also that budgets are respected — equivalently, the number
of goods k clinched by a bidder i is at most its current demand D̂i(p).3

Example 2.2 Let’s return to the setting of Example 2.1 — two goods and two bidders, with
B1 = +1, v1 = 6, and B2 = v2 = 5. Suppose both bidders bid truthfully. In Example 2.1,
bidder 1 was awarded both goods at a price of 5. Here, because the demand D2(p) of the
second bidder drops to 1 once p = 5

2 , bidder 1 clinches one good at a price of 5
2 . The second

good is sold to bidder 2 at price 5, as before. Thus bidder 1 has utility 7
2 when it bids

truthfully in the clinching auction. As we’ll see, no false bid could be better.

Theorem 2.3 The clinching auction for bidders with public budgets is DSIC.

Proof: We could proceed by verifying that the allocation rule is monotone and the payments
conform to Myerson’s payment formula, but it’s easier to just verify the DSIC condition
directly. So, fix a bidder i and bids b�i by the others. Since bidder i’s budget is public, it
cannot a↵ect the term bB̂i/pc of its demand function D̂i(p). It can only a↵ect the time at
which it is kicked out of the auction (meaning D̂i(p) = 0 forevermore), which is precisely

3
If not, then

P

j
ˆDj(p) < s. But the auction maintains the invariant that the sum of the current demands

is at least the current supply.

4

when the price p reaches its bid bi. Note that every good clinched by bidder i when p <

vi contributes positively to the bidder’s utility, while every good clinched when p > vi

contributes negatively.
First compare the utility earned by bid bi < vi to that earned by a truthful bid. Imagine

running the clinching auction twice in parallel, once when i bids bi and once when i bids
vi. By induction on the number of iterations, the execution of the clinching auction will
be identical in the two scenarios as the price ascends from 0 to bi. Thus, by bidding bi,
the bidder can only lose out on goods that it otherwise would have cliched (for nonnegative
utility) in the price interval [bi, vi].

Similarly, if i bids bi > vi, all that changes is that the bidder might acquire some additional
goods for nonpositive utility in the price interval [vi, bi]. Thus, no false bid nets i more utility
than a truthful one. ⌅

If budgets are private and the clinching auction is run with reported budgets instead,
then it is no longer DSIC (see the exercises).

Taken alone, Theorem 2.3 is not compelling. There are other simple budget-respecting
DSIC auctions, such as giving away all the goods to random bidders for free. We would
like to additionally say that the clinching auction computes a “good” allocation, such as one
with surplus close to the maximum possible (subject to budget constraints). The original
clinching auction [1], without budgets, implements the VCG outcome and hence is surplus-
maximizing. As we’ve seen, no budget-respecting mechanism can have surplus close to that
of the VCG mechanism (which need not respect budgets).

Researchers have explored at least three approaches to justifying the clinching auction
with budgets on surplus grounds. None are fully satisfying. While there is strong belief that
the clinching auction is “the right solution,” researchers are struggling to formulate a model
to make this intuition precise.

The key challenge is to identify a good benchmark to compare to the performance of
the clinching auction. Dobzinski et al. [3] study Pareto optimality rather than an objective
function. An allocation is Pareto optimal if and only if there’s no way to reassign goods and
payments to make some agent (a bidder or the seller) better o↵ without making another
worse o↵, where the seller’s utility is its revenue. The good news is that Pareto optimality
strongly advocates for the clinching auction — it is the unique deterministic DSIC auction
that always computes a Pareto optimal allocation. The bad news is that Pareto optimality
is not always necessary or su�cient for an auction to be desirable. For example, Bayesian-
optimal mechanisms, discussed below, need not be Pareto optimal.

The second approach is to posit a distribution over bidders’ valuations and solve for the
DSIC mechanism that maximizes expected surplus subject to the given budget constraints
(cf., Lecture 5). With this average-case approach, there is an unambiguous notion of “op-
timal” auctions — those with the highest expected surplus. It is also interesting to prove
“simple near-optimal” and “prior-independent” approximations in this setting, along the
lines of the results in Lecture 6. Progress in these directions have been slow but steady [6].
Common budgets are currently better understood than general budgets, and in this special
case the clinching auction is provably near-optimal [2].

5

1 2 3 4 5

Figure 1: An iteration of the Top Trading Cycle Algorithm (TTCA) with two directed cycles.

A third approach is to modify the surplus objective function to take budgets into account.
The most common proposal is to replace

P

i vixi by
P

i min{Bi, vixi}. The good news is
that the clinching auction is provably near-optimal with respect to this objective function [4].
The bad news is that this modified objective does not make much sense in some settings;
see the exercises and [5, §3.10].

3 Mechanism Design without Money

There are a number of important applications where there are significant incentive issues
but where money is infeasible or illegal. This is equivalent to all agents having a budget of
zero. Mechanism design without money is relevant for designing and understanding methods
for voting, organ donation, school choice, and labor markets. The designer’s hands are tied
without money — even tighter than with budget constraints. There is certainly no Vickrey
auction, for example. Despite this, and strong impossibility results in general settings, some
of mechanism design’s greatest hits are motivated by applications without money.

Shapley and Scarf [7] defined the following house allocation problem. There are n agents,
and each initially owns one house. Each agent has a total ordering over the n houses, and
need not prefer their own over the others. The question is: how to sensibly reallocate the
houses to make the agents better o↵? Consider the following Top Trading Cycle Algorithm

(TTCA), credited to Gale in [7].

• While agents remain:

– Each remaining agent points to its favorite remaining house. This induces a
directed graph G on the remaining agents in which every vertex has out-degree 1
(Figure 1).

– The graph G has at least one directed cycle.4 Self-loops count as directed cycles.

– Reallocate as suggested by the directed cycles, with each agent on a directed cycle
C giving its house to the agent that points to it, that is, to its predecessor on C.

– Delete the agents and the houses that were reallocated in the previous step.

Observe that the TTCA terminates with each agent possessing exactly one house. As a
sanity check for its reasonableness, observe that every agent is only made better o↵ by the
algorithm. To see why, note that the algorithm maintains the invariant that the remaining
agents still own their original houses. Thus, every iteration, an agent points either to its

4
Keep following outgoing arcs; eventually, a vertex will be repeated, exposing a directed cycle.

6

own house or to a house that it likes better. Finally, when an agent is deleted, it receives
the house that it had been pointing to.

When agents’ preferences are privately known, we can apply the TTCA to agents’ re-
ported preferences in a direct-revelation mechanism. There is no incentive for agents to
misreport their preferences.

Theorem 3.1 The TTCA induces a DSIC mechanism.

Proof: Let Nj denote the agents allocated in the jth iteration of the TTCA when all agents
report truthfully. Each agent of N1 gets its first choice and hence has no incentive to
misreport. An agent i of N2 is not pointed to by any agent of N1 in the first iteration
— otherwise, i would belong to N1 rather than N2. Thus, no misreport by i nets a house
originally owned by an agent in N1. Since i gets its first choice outside of the houses owned
by N1, it has no incentive to misreport. In general, an agent i of Nj is never pointed to in
the first j � 1 iterations of the TTCA by any agents in N1 [· · · [Nj�1. Thus, whatever it
reports, i will not receive a house owned by an agent in N1 [· · · [Nj�1. Since the TTCA
gives i its favorite house outside this set, it has no incentive to misreport. ⌅

As with the clinching auction, Theorem 3.1 by itself is not impressive — the mechanism
in which every agent keeps its initial house is also DSIC. To argue that the TTCA is in some
sense optimal, we introduce the notion of a core allocation — an allocation such that no
coalition of agents can make all of its members better o↵ via internal reallocations.

Theorem 3.2 For every house allocation problem, the allocation computed by the TTCA is

the unique core allocation.

Proof: To prove the computed allocation is a core allocation, consider an arbitrary subset
S of agents. Define Nj as in the proof of Theorem 3.1. Let ` be the first iteration in which
N` \ S 6= ;, with agent i 2 S receiving its house in the `th iteration of TTCA. TTCA
gives agent i its favorite house outside of those owned by N1, . . . , N`�1. Since no agents of
S belong to N1, . . . , N`�1, no reallocation of houses among agents of S can make i strictly
better o↵.

We now prove uniqueness. In the TTCA allocation, all agents of N1 receive their first
choice. This must equally be true in any core allocation — in an allocation without this
property, the agents of N1 that didn’t get their first choice form a coalition for which internal
reallocation can make everyone strictly better o↵. Similarly, in the TTCA allocation, all
agents of N2 receive their first choice outside of N1. Given that every core allocation agrees
with the TTCA allocation for the agents of N1, such allocations must also agree for the
agents of N2 — otherwise, the agents of N2 that fail to get their first choice outside N1 can
all improve via an internal reallocation. Continuing inductively, we find that the TTCA
allocation is the unique core allocation. ⌅

7

References

[1] L. M. Ausubel. An e�cient ascending-bid auction for multiple objects. American Eco-

nomic Review, 94(5):1452–1475, 2004.

[2] N. R. Devanur, B. Q. Ha, and J. D. Hartline. Prior-free auctions for budgeted agents. In
Proceedings of the 14th ACM Conference on Electronic Commerce (EC), pages 287–304,
2013.

[3] S. Dobzinski, R. Lavi, and N. Nisan. Multi-unit auctions with budget limits. Games and

Economic Behavior, 74(2):486–503, 2012.

[4] S. Dobzinski and R. Paes Leme. E�ciency guarantees in auctions with budgets. In Ninth

Ad Auctions Workshop, 2013.

[5] N. Nisan, J. Bayer, D. Chandra, T. Franji, R. Gardner, Y. Matias, N. Rhodes, M. Seltzer,
D. Tom, H. R. Varian, and D. Zigmond. Google’s auction for TV ads. In 36th Inter-

natilonal Colloquium on Automata, Languages and Programming (ICALP), pages 309–
327, 2009.

[6] M. M. Pai and R. Vohra. Optimal auctions with financially constrained buyers. To
appear in Journal of Economic Theory, 2013.

[7] L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical Economics,
1(1):23–37, 1974.

8

CS364A: Algorithmic Game Theory

Lecture #10: Kidney Exchange and Stable Matching

⇤

Tim Roughgarden†

October 23, 2013

1 Case Study: Kidney Exchange

Many people su↵er from kidney failure and need a kidney transplant. Currently, the US
waiting list for kidneys has about 100,000 people on it. An old idea, used also for other
organs, is decreased donors — when someone dies and is a registered organ donor, their
organs can be transplanted into others. One special feature of kidneys is that a healthy
person has two of them and can survive just fine with only one of them. This creates the
possibility of living organ donors, such as a family member of the patient in need.

Unfortunately, having a living kidney donor is not always enough — sometimes a patient-
donor pair is incompatible, meaning that the donor’s kidney is unlikely to function well in the
patient. Blood and tissue types are the primary culprits for incompatibilities. For example,
a patient with O blood type can only receive a kidney from a donor with the same blood
type, and similarly an AB donor can only donate to an AB patient.

Suppose patient P1 is incompatible with its donor D1 because they have blood types A
and B, respectively. Suppose P2 and D2 are in the opposite boat, with blood types B and
A, respectively (Figure 1). Even though (P1,D1) may never have met (P2,D2), exchanging
donors seems like a pretty good idea — P1 can get its kidney from D2 and P2 from D1.
This is called a kidney exchange.

A few kidney exchanges were done, on an ad hoc basis, around the beginning of this
century. These isolated successes make clear the need for a nationwide kidney exchange,
where incompatible patient-donor pairs can register and be matched with others. How
should such an exchange be designed? The goal of such an exchange is to thicken the kidney
exchange market to enable as many matches as possible.

National kidney exchanges sprang up around the middle of last decade. We’ll cover some
of the early design ideas for these exchanges, as well as current challenges. These exchanges

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

P1 P2

D1 D2

blood type A

blood type B blood type A

blood type B

Figure 1: A kidney exchange

P1, D1 P2, D2

Figure 2: A good case for the Top Trading Cycle Algorithm.

and their underlying algorithms have been quite successful, enabling thousands of successful
kidney transplants every year.

Currently, compensation for organ donation is illegal in US (and in every country except
for Iran). Kidney exchange is is legal. Thus kidney exchange is an ideal application for
mechanism design without money, for whatever incentive issues are relevant (and there are
a few). It’s interesting to speculate about whether or not a monetary market for kidneys
will exist in any Western countries in, say, 10 years. (Iran does not have a waiting list for
kidneys.)

1.1 Idea #1: Use the Top Trading Cycle Algorithm

This section and the next cover two relatively early papers by Roth, Sönmez, and Ünver [5, 6]
that are influential brainstorms about what an incentive-compatible national kidney ex-
change might look like. In the first paper [5], which covers research done before the authors
talked extensively to doctors, advocated the Top Trading Cycle Algorithm (TTCA) from last
lecture as a starting point. In its most basic form, the correspondence is between agent-initial
house pairs in the housing problem and patient-donor pairs in the kidney exchange problem
— the initial house of an agent corresponds to its incompatible living donor. The housing
problem assumes that each agent has a total ordering over houses; in kidney exchange, it is
natural to order donors according to the estimated probability that their kidney could be
successfully transplanted into the patient (based on blood type, tissue type, etc.).

The goal of applying the TTCA is to find cycles like that in Figure 2, where with patient-
donor pairs as in Figure 1, each patient points to the other’s donor as its favorite. Real-
locating donors according to this cycle is the favorable kidney exchange identified earlier.
More generally, donors are reallocated to patients so that everyone is collectively as well o↵
as possible (in the senses discussed last lecture).

The actual kidney exchange problem is more complicated in several ways. We first

2

P1, D1 P2, D2 P3, D3 P4, D4 Pn-1, Dn-1 Pn, Dn

Figure 3: A bad case for the Top Trading Cycle Algorithm.

discuss one extension that can be accommodated by the TTCA approach, and then two
challenges that motivate reformulating the problem. The extension of the TTCA in [5]
handles, in addition to incompatible patient-donor pairs, patients without living donors (an
agent without an initial house) and deceased donors (houses without an initial owner). The
new algorithm allocates along cycles as in the TTCA, and also along suitable chains (i.e.,
paths). Provided chains are chosen in the right way, the algorithm remains DSIC — so no
patient (or patient’s doctor) can misreport information to increase the estimated probability
of a successful transplant.1

The next issue with the TTCA algorithm is a dealbreaker in the context of kidney
exchange: the cycles along which reallocations are made can be arbitrarily long. For example,
in the first iteration of TTCA, it is possible that the arcs corresponding to preferred donors
form a Hamiltonian cycle on patient-donor pairs (Figure 3).

Why are long cycles a problem? Consider first a cycle of length two (Figure 2). Note this
already corresponds to four surgeries — two to extract donors’ kidneys, and two to implant
them in the patients. Moreover, these four surgeries must happen simultaneously. Incentives
are the reason: in the example in Figure 1, if the surgeries for P1 and D2 happen first, there
is a risk that D1 will renege on its o↵er to donate its kidney to P2. One problem is that P1
unfairly got a kidney “for free;” the much more serious problem is that P2 is as sick as before
and, since its donor D2 has donated its kidney, P2 can no longer participate in a kidney
exchange. Because of this risk, no one wants to experiment with non-simultaneous surgeries
in kidney exchange.2 The constraint of simultaneous surgeries — with each surgery needing
its own operating room, surgical team, etc. — motivates keeping reallocation cycles as small
as possible.

Our final critique of the TTCA approach is that modeling preferences as a total ordering
over the set of living donors is overkill: empirically, patients don’t really care which kidney
they get as long as it is compatible with them. Binary preferences over donors are therefore
more appropriate.

1This extension was largely worked out earlier in a di↵erent context: allocating dorm rooms to students
when there is a mixture of incumbents (students who already have a room but might want to upgrade), empty
rooms (e.g., from students who graduated), and students without a current room (e.g., new students) [1].

2Sequential surgeries are now being used in slightly di↵erent contexts. For example, there is a handful
of altruistic living donors, who are interested in donating a kidney even though they don’t personally know
anyone who needs one. An altruistic living donor can be the start of a chain of reallocations. Chains as long
as 30 have been implemented [7], and at this scale surgeries have to be sequential. While the first problem
of sequential surgeries (getting a kidney “for free”) persists in this setting, the much more serious second
problem (losing your own living donor) cannot occur in chains initiated by an altruistic living donor.

3

P1, D1 P2, D2

Figure 4: Applying a matching algorithm.

1.2 Idea #2: Use a Matching Algorithm

The second approach [6], motivated by the twin goals of binary preferences and short real-
location cycles, is to use matchings. Recall that a matching of an undirected graph (V, E) is
a subset of edges F ✓ E such that no two edges of F share an endpoint.

The relevant graph for kidney exchange has a vertex set V corresponding to incompatible
patient-donor pairs (one vertex per pair), and an undirected edge between vertices (P1, D1)
and (P2, D2) if and only if P1 and D2 are compatible and P2 and D1 are compatible. Thus,
the example in Figure 1 corresponds to the simple undirected graph in Figure 4. We define
the optimal solutions to be the matchings of this graph that have maximum cardinality —
that is, we want to arrange as many compatible kidney transplants as possible. By restricting
the feasible set to matchings of this graph, we are restricting to pairwise kidney exchanges,
and hence “only” 4 simultaneous surgeries, like in Figure 1.3

Our model for agents is that each vertex i has a true set Ei of incident edges, and can
report any subset Fi ✓ Ei to a mechanism. Proposed kidney exchanges can be refused by a
patient for any reason, so one way to implement a misreport is to refuse exchanges in Ei \Fi.
All that a patient cares about is being matched to a compatible donor. Our mechanism
design goal is to compute an optimal solution (i.e., a maximum-cardinality matching) and
to be DSIC, meaning that for every agent, reporting its full edge set is a dominant strategy.

Given our design goals, the mechanism must have the following form.

(1) Collect a report Fi from each agent i.

(2) Form the edge setE = {(i, j) : (i, j) 2 Fi\Fj}. That is, include edge (i, j) if and only
if both endpoints agree to the exchange.

(3) Return a maximum-cardinality matching of the graph G = (V, E), where V is the
(known) set of patient-donor pairs.

The mechanism is not yet fully specified, since there can be multiple choices for a maxi-
mum matching in step (3). Getting the tie-breaking right is important for achieving DSIC.
There are two senses in which the maximum matching of a graph can fail to be unique. First,
di↵erent sets of edges can be used to match the same set of vertices; see Figure 5. Since a

3These days, 3-way exchanges, corresponding to a directed cycle of 3 patient-donor pairs (with D2 compat-
ible with P1, D3 with P2, and D1 with P3), are increasingly common. The reason is that 3-way exchanges
are still logistically feasible and allowing them significantly increases the number of patients that can be
saved. Empirically, exchanges involving 4 or more pairs don’t really help match more patients, so they are
not typically done.

4

P1, D1 P2, D2

P3, D3 P4, D4

VS

P1, D1 P2, D2

P3, D3 P4, D4

Figure 5: Di↵erent matchings can match the same set of vertices.

P1, D1

P2, D2

P3, D3

P4, D4

Figure 6: Di↵erent maximum matchings can match di↵erent subsets of vertices.

vertex does not care whom it is matched to, as long as it is matched, there is no reason to
distinguish between di↵erent matchings that match the same set of vertices. More signifi-
cantly, di↵erent maximum-cardinality matchings can match di↵erent subsets of vertices. For
example, in the star (Figure 6), vertex 1 is in every maximum matching, but one and only
one of the spokes will be chosen. How should we choose which one to return?

One solution is to prioritize the vertices before the mechanism begins. Without loss of
generality, assume that the vertices 1, 2, . . . , n are ordered from highest to lowest priority.4

Then, we implement step (3) as follows:

(3a) Let M0 denote the set of maximum matchings of G.

(3b) For i = 1, 2, . . . , n:

4One appeal of this approach is that most hospitals already rely on similar priority schemes to manage
their patients. The priority of a patient on a waiting list is determined by numerous factors, such as the
length of time it has been waiting on the list, the di�culty of finding a compatible kidney, etc.

5

(3b.i) Let Zi denote the matchings in Mi�1 that match vertex i.

(3b.ii) If Zi 6= ;, set Mi = Zi.

(3b.iii) Otherwise, set Mi = Mi�1.

(3c) Return an arbitrary matching of Mn.

That is, in each iteration i, we ask if there is a maximum matching that respects previous
commitments and also matches vertex i. If so, then we additionally commit to matching i in
the final matching. If previous commitments preclude matching i in a maximum-cardinality
matching, then we skip i and move on to the next vertex. By induction on i, Mi is a non-
empty subset of the maximum matchings of G. Every matching of Mn matches the same
set of vertices — the vertices i for which Zi was non-empty — so the choice of matching in
step (3c) is irrelevant.

Theorem 1.1 For every collection {Ei}n
i=1 of edge sets and every ordering of the vertices,

the priority matching mechanism above is DSIC: no agent can go from unmatched to matched

by reporting a strict subset Fi of Ei rather than Ei.

We leave the proof to you; see the exercises.5

1.3 Cutting-Edge Challenges

Current research is focused on incentive problems at the hospital level, rather than at the
level of individual patient-donor pairs. This change is well motivated because many patient-
donor pairs are reported to national kidney exchanges by hospitals, rather than by the pairs
themselves. The objectives of a hospital (to match as many of its patients as possible) and
of society (to match as many patients overall as possible) are not perfectly aligned. The key
incentive issues are best explained through examples.

Example 1.2 (The Need for Full Reporting) Suppose there are two hospitals, each with
three patients (Figure 7). Edges represent patient-donor pairs that are mutually compatible,
as with the matching mechanism above. Each hospital has a pair of patient-donor pairs that
it could match internally, without bothering to report them to a national exchange. We def-
initely don’t want the hospitals to “greedily” execute these internal matches in this example
— if H1 matches 1 and 2 internally and only reports 3 the exchange, and H2 matches 5 and
6 internally and only reports 4 to the exchange, then the exchange can’t match 3 and 4 so
no further matches are gained. By contrast, if H1 and H2 both report their full sets of 3
patient-donor pairs to the national exchange, then 1, 2, and 3 can be matched with 4, 5, and
6, respectively, and so all patients get matched. In general, the goal is to incentive hospitals
to report all of their patient-donor pairs, to save as many lives as possible.

5The keen reader is encouraged to read the deeper exploration in [6] of how the maximum matching
selected varies with the chosen priority ordering over vertices. There is a very clean answer that goes
through the Gallai-Edmonds decomposition, a beautiful result from matching theory that characterizes the
structure of maximum-cardinality matchings in undirected graphs.

6

H1

H2

1 2 3

4 5 6

Figure 7: Example 1.2. Full reporting by hospitals leads to more matches than with only
internal matches.

H1

H2

2 3 7

1 4 5 6

Figure 8: Example 1.3. Hospitals can have an incentive to hide patient-donor pairs.

7

A

B

C

D

E

F

D
E
F

D
E
F

D
E
F

A
B
C

B
C
A

C
A
B

U V

Figure 9: An instance of stable matching

Example 1.3 Consider again two hospitals, but now with 7 patients (Figure 8). Observe
that, with an odd number of vertices, every matching leaves at least one patient unmatched.
However, if H1 hides patients 2 and 3 from the exchange (while H2 reports truthfully),
then H1 guarantees that all of its patients are matched. The unique maximum matching
in the report graph matches patient 6 with 7 (and 4 with 5), and H1 can match 2 and 3
internally. On the other hand, if H2 hides patients 5 and 6 while H1 reports truthfully, then
all of H2’s patients are matched. In this case, the unique maximum matching in the graph of
report matches patient 1 with 2 and 4 with 3, while H2 can match patients 5 and 6 internally.

The upshot is that there is irreconcilable tension between social and hospital incentives:
there cannot be a DSIC mechanism that always computes a maximum-cardinality matching
in the full graph.

In light of Example 1.3, the revised goal should be to compute an approximately maximum-
cardinality matching so that, for each participating hospital, the number of its patients that
get matched is approximately as large as in any matching, maximum-cardinality or other-
wise. Understanding the extent to which this is possible, in both theory and practice, is an
active research topic [2, 8].

2 Stable Matching

Stable matching is the canonical example of mechanism design without money. Killer appli-
cations include assigning medical school graduates to hospitals and students to elementary
schools. The following model and algorithm are directly useful for these and other applica-
tions with amazingly few modifications.

We consider two sets U and V — the “men” and “women” — with n vertices each. Each
vertex also has a total ordering over the vertices of the other set. For example, in Figure 9,
the men all agree on the ranking of the women, while the women have very di↵erent opinions
about the men.

8

Definition 2.1 A stable matching is a perfect bipartite matching — i.e., each vertex is
matched to precisely one vertex from the other set — so that there is no “blocking pair,”
meaning:

(*) if u 2 U, v 2 V are not matched, then either u prefers its mate v0 in the matching to v,
or v prefers its mate u0 in the matching to u.

A perfect matching that failed condition (*) would spell trouble, since the blocking pair u
and v would be tempted to run o↵ with each other.6

We next discuss the famous proposal algorithm for computing a stable matching. Gale
and Shapley [3] formalized the stable matching problem and gave this algorithm. Incredibly,
it was later discovered that essentially the same algorithm had been used, since the 1950s,
to assign medical residents to hospitals (as it is today) [4]!

The Proposal Algorithm:

• While there is an unattached man u 2 U :

– u proposes to its favorite woman who has not rejected him yet.

– Each woman entertains only her best o↵er (from her perspective) thus far.

Example 2.2 Consider the instance in Figure 9. Suppose in the first iteration we choose
the man C, who promptly proposes to his first choice, D. Woman D accepts because she
currently has no other o↵ers. If we pick man B in the next iteration, he also proposes to
the woman D. Since woman D prefers B to C, she rejects C in favor of B. If we pick man A
next, the result is similar: D rejects B in favor of A. A possible trajectory for the rest of the
algorithm is: man C now proposes to his second choice, E; man B then also proposed to E,
and E then rejects C in favor of B; and finally, C proposes to his last choice F, who accepts.

Several comments about the algorithm and its properties. First, it is underdetermined,
leaving open how the unattached man is chosen. Second, note that each man systematically
goes through his preference list, from top to bottom. Third, the men to which a woman is
engaged only improve over the course of the algorithm. Fourth, the algorithm maintains the
invariant that each man is matched to at most one woman and each woman is matched to
at most one man.

Stable matchings and the proposal algorithm have an astonishing number of elegant
properties. We begin with the most basic ones.

Theorem 2.3 (Computation of a Stable Matching) The Proposal Algorithm terminates

in at most n2
iterations with a stable matching.

6There is a clear similarity to the idea of a core allocation, introduced last lecture in the context of the
housing allocation problem. If a matching is not stable, then it is not in the core — the pair u, v for which
condition (*) is violated would be better o↵ seceding from the mechanism. It’s not hard to prove that the
core allocations — matchings such that no subset of vertices could secede and do better — are precisely the
stable matchings.

9

A

B

C
D

D
C

B
A

A
B

U V

D

C

Figure 10: Example with multiple stable matchings

Corollary 2.4 (Existence of a Stable Matching) For every collection of preference lists

for the men and women, there exists at least one stable matching.

We emphasize that Corollary 2.4 is not obvious a priori. Indeed, there are some simple
variants of the stable matching problem for which a solution is not guaranteed.

Proof of Theorem 2.3: The bound on the number of iterations is easy to prove. Since each
man works his way down his preference list, never proposing to the same woman twice, he
makes at most n proposals. This makes for at most n2 proposals (and hence iterations)
overall.

Next, we claim that the proposal algorithm always terminates with a perfect matching.
For if not, some man must have been rejected by all n women. A man is only rejected by a
woman in favor of being matched to a better man, and once a woman is matched to a man,
she remains matched to some man for the remainder of the algorithm. Thus, all n women
must be matched at the end of the algorithm. But then all n men are also matched at the
end of the algorithm, a contradiction.

Finally, we claim that the perfect matching computed is stable. To see why, consider a
man u 2 U and a woman v 2 V who are not matched to each other. This can occur for two
di↵erent reasons. In the first case, u never proposed to v. Since u worked its way down its
list starting from the top, this means that u ended up matched to someone he prefers to v.
If u did propose to v at some point in the algorithm, it must be that v rejected u in favor
of a man she preferred (either at the time of u’s proposal, or later). Since the sequence of
men to which v is matched only improves over the course of the algorithm, she ended up
matched to someone she prefers to u. ⌅

We noted earlier that the proposal algorithm does not specify how to choose among the
unattached men in an iteration. Do all possible choices lead to the same stable matching?
In Figure 9 there is only one stable matching, so in that example the answer is yes. In
general, however, there can be more than one stable matching. In Figure 10, the men and
the women both disagree on the ranking of the others. In the matching computed by the
proposal algorithm, both men get their first choice, with A and B matched to C and D,
respectively. Giving the women their first choices yields another stable matching.

We prove a stronger statement to resolve whether or not the output of the proposal
algorithm is unique. For a man u 2 U , let h(u) be the highest-ranked woman (in u’s

10

preference list) that u is matched to in any stable matching. Then:

Theorem 2.5 (Male-Optimal Stable Matching) The stable matching computed by the

proposal algorithm matches every man u 2 U to h(u).

Theorem 2.5 immediately implies that the output of the proposal algorithm is independent
of which unattached man is chosen in each iteration. It also implies that there exists a “male-
optimal” stable matching — a stable matching in which every man simultaneously attains
his “best-case scenario” — no trade-o↵s between di↵erent men are necessary. A priori, there
is no reason to expect the h(u)’s to be distinct and therefore induce a perfect matching.

Proof of Theorem 2.5: Let R = {(u, v)} denote the pairs such that v rejects u at some point
in a fixed execution of the proposal algorithm.

Since each man systematically works his way down his preference list, if u is matched
to v at the conclusion of the algorithm, then (u, v0) 2 R for every v0 that u prefers to v.
Thus, the following claim would imply the theorem: for every (u, v) 2 R, no stable matching
pairs up u and v.

We prove the claim by induction on the number of iterations of the proposal algorithm.
Initially, R = ; and there is nothing to prove. For the inductive step, consider an iteration
of the proposal algorithm in which v rejects u in favor of u0 — thus one of u, u0 proposed
to v in this iteration.

Since u0 systematically worked his way down his preference list, for every v0 that u0 prefers
to u, (u0, v0) is already in the current set R of rejected proposals. By the inductive hypothesis,
no stable matching pairs up u0 with a woman he prefers to v — in every stable matching,
u0 is paired with v or someone less preferred. Since v0 prefers u0 to u, and u0 prefers v to
anyone else he might be matched to in a stable matching, there is no stable matching that
pairs u with v (otherwise u0, v would form a blocking pair). ⌅

It can also be shown that the proposal algorithm outputs the worst-possible stable match-
ing from the perspective of the women — the algorithm matches each v 2 V to the lowest-
ranked man l(v) 2 U that v is matched to in any stable matching.7

Suppose the preference lists of the vertices are private — is the proposal algorithm DSIC?
That is, does a man or woman ever wind up with a better mate under misreported preferences
than under truthfully reported preferences? As the male-optimality property of the computed
stable matching might suggest, the proposal algorithm is DSIC for the men but not for the
women. The former property is not trivial to prove (see Problem Set #3) while the latter
can be verified in simple examples (see Exercise Set #5).

References

[1] A. Abdulkadiroǧlu and T. Sönmez. House allocation with existing tenants. Journal of

Economic Theory, 88:233–260, 1999.

7Of course, one can change the algorithm to let the women make the proposals and the men the rejections
to reverse both of these properties.

11

[2] I. Ashlagi, F. A. Fischer, I. A. Kash, and A. D. Procaccia. Mix and match: A strate-
gyproof mechanism for multi-hospital kidney exchange. In Proceedings of the 11th ACM

Conference on Electronic Commerce (EC), pages 305–314, 2010.

[3] D. Gale and L. S. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15, 1962.

[4] A. E. Roth. The evolution of the labor market for medical interns and residents: A case
study in game theory. Journal of Political Economy, 92:991–1016, 1984.

[5] A. E. Roth, T. Sönmez, and M. U. Ünver. Kidney exchange. Quarterly Journal of

Economics, 119:457–488, 2004.

[6] A. E. Roth, T. Sönmez, and M. U. Ünver. Pairwise kidney exchange. Journal of Economic

Theory, 125:151–188, 2005.

[7] K. Sack. 60 lives, 30 kidneys, all linked. New York Times, February 18 2012.

[8] P. Toulis and D. C. Parkes. A random graph model of kidney exchanges: E�ciency,
individual-rationality and incentives. In Proceedings of the 12th ACM Conference on

Electronic Commerce (EC), pages 323–332, 2011.

12

CS364A: Algorithmic Game Theory

Lecture #11: Selfish Routing and the Price of Anarchy

⇤

Tim Roughgarden†

October 28, 2013

1 Quantifying the Ine�ciency of Equilibria

With this lecture we begin the second part of the course. In many settings, you do not have
the luxury of designing a game from scratch. When do games “in the wild” have near-optimal
equilibria?

Unlike all of our carefully crafted DSIC mechanisms, games in the wild generally have
no dominant strategies. As a consequence, predicting the game’s outcome requires stronger
assumptions about how players behave. There’s also no reason to expect optimal outcomes
in games that we didn’t design. Even for approximation results, we can only hope for success
in fairly specific — though hopefully interesting and relevant — application domains.

In all of our mechanism design applications, strategic players held private information.
In this part of the course, we’ll focus only on full-information games, where the payo↵s of all
players are common knowledge. For example, when we consider network tra�c, we’ll assume
that everyone prefers shorter routes to longer routes. By contrast, in a single-item auction
with private information, one bidder has no idea whether a di↵erent bidder would prefer to
win at some price p or would prefer to lose (at price 0). In later advanced lectures, we’ll
develop techniques for quantifying the ine�ciency of equilibria also in games with incomplete
information, such as auctions. The research agendas of mechanism design and quantifying
ine�ciency in games are not at odds, and have usefully intertwined in the past few years.

The foundations of mechanism design were laid decades ago in the economics literature;
while the computer science community has helped advance the basic theory, its bigger con-
tributions have been through novel questions, mathematical techniques, and applications.
By contrast, all of the research from this part of the course will be from the last 15 (and
mostly 5-10) years, and the origins of the area are in theoretical computer science [3, 6].

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

s t

w

v

(x) = 1

(x) = x

(x) = x

(x) = 1 c

c

c

c

(a) Initial network

s t

w

v

(x) = 1 (x) = x

(x) = 1

(x) = 0

(x) = x c

c c

c

c

(b) Augmented network

Figure 1: Braess’s Paradox. After the addition of the (v, w) edge, the price of anarchy is
4/3.

2 Selfish Routing: Examples

2.1 Braess’s Paradox

Recall Braess’s Paradox from Lecture 1 (Figure 1) [1]. One unit of tra�c (e.g., rush-hour
drivers) leave from s to t at the same time. Each edge is labeled with a cost function, which
describes the travel time of all tra�c on the edge, as a function of the fraction x of tra�c that
uses it. In the network in Figure 1(a), by symmetry, in equilibrium half of the tra�c uses
each route, and the travel time experienced by all tra�c is 3

2 . After installing a teleportation
device allowing drivers to travel instantly from v to w (Figure 1(b)), however, it is a dominant
strategy for every driver to take the new route s ! v ! w ! t. The common travel time
in this new equilibrium is 2. The minimum-possible travel time in the new network is 3

2 —
there is no profitable way to use the teleporter. If we define the price of anarchy (POA) to
be the ratio between the travel time in an equilibrium and the minimum-possible average
travel time, then the price of anarchy in the Braess network (Figure 1(b)) is 4

3 .

2.2 Pigou’s Example

There is an even simpler selfish routing network in which the POA is 4
3 , first discussed in

1920 by Pigou [4]. In Pigou’s example (Figure 2(a)), every driver has a dominant strategy
to take the lower link — even when congested with all of the tra�c, it is no worse than
the alternative. Thus, in equilibrium all drivers use the lower edge and experience travel
time 1. Can we do better? Sure — any other solution is better! An altruistic dictator would
minimize the average travel time by splitting the tra�c equally between the two links. This
results in an average travel time of 3

4 , showing that the POA in Pigou’s example is 4
3 .

2

ts

(x) = 1

(x) = x

c

c
(a) Pigou’s example

ts

(x) = 1

(x) = x c

c

p

(b) A nonlinear variant

Figure 2: Pigou’s example and a nonlinear variant. The cost function c(x) describes the cost
incurred by users of an edge, as a function of the amount of tra�c routed on the edge.

2.3 Nonlinear Pigou’s Example

The POA is 4
3 in both Braess’s Paradox and Pigou’s example — not so bad for completely

unregulated behavior. The story is not so rosy in all networks, however. In the nonlinear
Pigou’s example (Figure 2(b)), we replace the previous cost function c(x) = x of the lower
edge with the function c(x) = x

d, with d large. The lower edge remains a dominant strategy,
and the equilibrium travel time remains 1. What’s changed is that the optimal solution is
now much better. If we again split the tra�c equally between the two links, then the average
travel time tends to 1

2 as d!1 — tra�c on the top edge gets to t nearly instantaneously.
We can do even better by routing (1 � ✏) tra�c on the upper link, where ✏ tends to 0 as d

tends to infinity — almost all of the tra�c gets to t with travel time (1�✏)d, which is close to
0 when d is su�ciently large, and the ✏ fraction of martyrs on the lower edge contribute little
to the average travel time. We conclude that the POA in the nonlinear Pigou’s example is
unbounded as d!1.

3 Main Result: Statement and Interpretation

The POA of selfish routing can be large (Section 2.3) or small (Section 2.1 and 2.2). The goal
of this lecture is to provide a thorough understanding of when the POA of selfish routing
is close to 1. Looking at our three examples thus far, we see that “highly nonlinear” cost
functions can prevent a selfish routing network from having a POA close to 1, while our two
examples with linear cost functions have a small POA. The coolest statement that might
be true is that highly nonlinear cost functions are the only obstacle to a small POA — that
every network with not-too-nonlinear cost functions, no matter how complex, has POA close
to 1. The main result of this lecture formulates and proves this conjecture.

The model we study is the following. There is a directed graph G = (V, E), with a source
vertex s and a sink vertex t. There are r units of tra�c (or flow) destined for t from s.1 We

1To minimize notation, we prove the main result only for single-commodity networks, where there is one
source and one sink. The main result and its proof extend easily to networks with multiple sources and

3

treat G as a flow network, in the sense of the maximum- and minimum-cost flow problems.
Each edge e of the network has a cost function, describing travel time (per unit of tra�c)

as a function of the amount of tra�c on the edge. Edges do not have explicit capacities. For
our selfish routing lectures, we always assume that every cost function is non-negative, con-
tinuous, and nondecreasing. These are very mild assumptions in most relevant applications,
like road or communication network tra�c.

We first state an informal version of this lecture’s main result and explain how to interpret
and use it. We give a formal statement at the end of this section and a proof in Section 5.
Importantly, the theorem is parameterized by a set C of permissible cost functions. This
reflects our intuition that the POA of selfish routing seems to depend on the “degree of
nonlinearity” of the network’s cost functions. The result is already interesting for simple
classes C of cost functions, such as the set {c(x) = ax + b : a, b � 0} of a�ne functions with
nonnegative coe�cients.

Theorem 3.1 (Tight POA Bounds for Selfish Routing (Informal) [5]) Among all net-
works with cost functions in a set C, the largest POA is achieved in a Pigou-like network.

The point of Theorem 3.1 is that worst-case examples are always simple. The principal
culprit for ine�ciency in selfish routing is nonlinear cost functions, not complex network
structure.

For a particular cost function class C of interest, Theorem 3.1 reduces the problem of
computing the worst-case POA to a back-of-the-envelope calculation. Without Theorem 3.1,
one would e↵ectively have to search through all networks with cost functions in C to find the
one with the largest POA. Theorem 3.1 guarantees that the much simpler search through
Pigou-like examples is su�cient.

For example, when C is the set of a�ne cost functions, Theorem 3.1 implies that Pigou’s
example (Section 2.2) maximizes the POA. Thus, the POA is always at most 4

3 in selfish
routing networks with a�ne cost functions. When C is the set of polynomials with non-
negative coe�cients and degree at most d, Theorem 3.1 implies that the worst example is
the nonlinear Pigou’s example (Section 2.3). It is straightforward to compute the POA in
this worst-case example, and the result of this computation is an upper bound on the POA
of every selfish routing network with such cost functions. See Table 1 for some examples,
which makes clear the point that the POA of selfish routing is large only in networks with
“highly nonlinear” cost functions. For example, quartic functions have been proposed as a
reasonable model of road tra�c in some situations [7]. The worst-case POA with respect
to such function is slightly above 2. We discuss cost functions germane to communication
networks in the next lecture.

We next work toward a formal version of Theorem 3.1. This requires formalizing the
“Pigou-like networks” for a class C of cost functions. We then define a lower bound on the
POA based solely on these trivial instances. The formal version of Theorem 3.3 states a
matching upper bound on the POA of every selfish routing network with cost functions in C.

sinks; see the Exercises.

4

Table 1: The worst-case POA in selfish routing networks with cost functions that are poly-
nomials with nonnegative coe�cients and degree at most d.

Description Typical Representative Price of Anarchy
Linear ax + b 4/3

Quadratic ax

2 + bx + c

3
p

3
3
p

3�2
⇡ 1.6

Cubic ax

3 + bx

2 + cx + d

4 3p4
4 3p4�3

⇡ 1.9

Quartic ax

4 + · · · 5 4p5
5 4p5�4

⇡ 2.2

Polynomials of degree  d

P
d

i=0 a

i

x

i

(d+1) dp
d+1

(d+1) dp
d+1�d

⇡ d

ln d

s t

c(r)

c(·)

Figure 3: Pigou-like network.

Definition 3.2 (Pigou-like Network) A Pigou-like network has:

• Two vertices, s and t.

• Two edges from s to t.

• A tra�c rate r > 0.

• A cost function c(·) on the first edge.

• The cost function everywhere equal to c(r) on the second edge.

See also Figure 3. Note that there are two free parameters in the description of a Pigou-
like network, the tra�c rate r and the cost function c(·) of the first edge.

The POA of a Pigou-like network is easy to understand. By construction, the lower edge
is a dominant strategy for all tra�c — it is no less attractive than the alternative (with
constant cost c(r)), even when it is fully congested. Thus, in the equilibrium all tra�c
travels on the lower edge, and the total travel time is r · c(r) — the amount of tra�c times
the per-unit travel time experienced by all of the tra�c. We can write the minimum-possible
total travel time as

inf
0xr

{x · c(x) + (r � x) · c(r)} , (1)

where x is the amount of tra�c routed on the lower edge. It will be convenient later to let
x range over all nonnegative reals. Since cost functions are nondecreasing, this larger range

5

does not change the quantity in (1) — there is always an optimal choice of x in [0, r]. Thus,
the POA in a Pigou-like network with tra�c rate r > 0 and upper edge cost function c(·) is

sup
x�0

⇢
r · c(r)

x · c(x) + (r � x) · c(r)

�
.

Let C be an arbitrary set of nonnegative, continuous, and nondecreasing cost functions.
Define the Pigou bound ↵(C) as the worst POA in a Pigou-like network with cost functions
in C. Formally,

↵(C) := sup
c2C

sup
r�0

sup
x�0

⇢
r · c(r)

x · c(x) + (r � x) · c(r)

�
. (2)

The first two suprema simply search over all choices of the two free parameters c 2 C and
r � 0 in a Pigou-like network; the third computes the best-possible routing in the chosen
Pigou-like network.

The Pigou bound can be evaluated explicitly for many sets C of interest. For example,
if C is the set of a�ne (or even concave) functions, then ↵(C) = 4

3 ; see the Problems. The
expressions in Table 1 are precisely the Pigou bounds for sets of polynomials with nonnegative
coe�cients and bounded degree. The Pigou bound is achieved for these sets of cost functions
by the nonlinear Pigou example (Section 2.3).

By construction, if C contains all of the constant functions, then ↵(C) is a lower bound
on the worst-case POA of selfish routing networks with cost functions in C — even for just
the Pigou-like networks in this family.2 The formal statement of Theorem 3.1 is that the
Pigou bound ↵(C) is an upper bound on the POA of every selfish routing network with cost
functions in C, whether Pigou-like or not.

Theorem 3.3 (Tight POA Bounds for Selfish Routing (Formal) [5, 2]) For every set
C of cost functions and every selfish routing network with cost functions in C, the POA is at
most ↵(C).

4 Technical Preliminaries

Before proving Theorem 3.3, we review some flow network preliminaries. While notions
like flow and equilibria are easy to define in Pigou-like networks, defining them in general
networks requires a little care.

Let G = (V, E) be a selfish routing network, with r units of tra�c traveling from s to t.
Let P denote the set of s-t paths of G, which we assume is non-empty. A flow describes how
tra�c is split over the s-t paths — it is a non-negative vector {f

P

}
P2P with

P
P2P f

P

= r.
For example, in Figure 4, half of the tra�c takes the zig-zag path s ! v ! w ! t, while
the other half is split equally between the two two-hop paths.

2As long as C contains at least one function c with c(0) > 0, the Pigou bound is a lower bound on the
POA of selfish routing networks with cost functions in C. The reason is that Pigou-like networks can be
simulated by slightly more complex networks under this weaker assumption; see the Exercises for details.

6

s t

w

v
25%

25%

50%

Figure 4: Example flow.

For an edge e 2 E and a flow f , we write f

e

=
P

P2P : e2P

f

p

for the amount of flow that
uses a path that includes e. For example, in Figure 4, f(s,v) = f(w,t) = 3

4 , f(s,w) = f(v,t) = 1
4 ,

and f(v,w) = 1
2 .

A flow is an equilibrium if and only if tra�c travels only on shortest s-t paths. Formally,
f b

P

> 0 only if

b
P 2 argmin

P2P

8
>>>><

>>>>:

X

e2P

c

e

(f
e

)

| {z }
:=cP (f)

9
>>>>=

>>>>;

.

Note that “shortest” is defined using the travel times {c
e

(f
e

)} with respect to the flow f .
For example, the flow in Figure 4 is not an equilibrium because the only shortest path is the
zig-zag path, and some of the flow doesn’t use it.

A non-obvious fact is that, in every selfish routing network, there is at least one equilib-
rium flow. We’ll sketch a proof of this later, in Lecture 13.3

Our objective function is the total travel time incurred by tra�c, and this is denoted by
C(f) for a flow f . We sometimes call the total travel time the cost of a flow. This objective
function can be computed in two di↵erent ways, and both ways are useful. First, we can
tally travel time path-by-path:

C(f) =
X

P2P

f

P

· c
P

(f).

Alternatively, we can tally it edge-by-edge:

C(f) =
X

e2E

f

e

· c
e

(f
e

).

3Our assumption that cost functions are continuous is important for this existence result.

7

Recalling that c

P

(f) =
P

e2P

c

e

(f
e

) and f

e

=
P

P2P : e2P

f

P

by definition, a simple reversal
of sums formally shows the equivalence of the two expressions above.

A second non-trivial fact about equilibrium flows is that all such flows have the same
cost; we’ll sketch a proof of this in a later lecture. Thus, it makes sense to define the price of
anarchy (POA) of a selfish routing network as the ratio between the cost of an equilibrium
flow and the cost of an optimal (minimum-cost) flow.

5 Main Result: Proof

We now prove Theorem 3.3. Fix a network G with cost functions in C. Let f and f

⇤ denote
equilibrium and optimal (minimum-cost) flows, respectively. The proof has two parts.

The first part of the proof shows that if we “freeze” all edge costs at their equilibrium
values c

e

(f
e

), then the equilibrium flow f is in fact optimal. This should be intuitive since
an equilibrium flow routes all tra�c on shortest paths with respect to the edge travel times
it induces. This does not contradict the sub-optimality of equilibrium flows, as other flows
generally induce di↵erent edge costs.

Formally, since f is an equilibrium flow, if f b
P

> 0, then c b
P

(f)  c

P

(f) for all P 2 P .

In particular, all paths b
P used by the equilibrium flow have a common cost c b

P

(f), call it L.
Moreover, c

P

(f) � L for every path P 2 P. Thus,

X

P2P

f

P|{z}
sums to r

· c

P

(f)| {z }
= L if f

P

> 0

= r · L (3)

while X

P2P

f

⇤
P|{z}

sums to r

· c
P

(f ⇤)| {z }
� L

� r · L. (4)

Rewriting the left-hand sides of (3) and (4) as sums over edges and subtracting (3) from (4)
yields X

e2E

(f ⇤
e

� f

e

)c
e

(f
e

) � 0. (5)

The “variational inequality” in (5) is stating something very intuitive: since the equilibrium
flow f routes all tra�c on shortest paths, no other flow f

⇤ can be better if we keep all edge
costs fixed at {c

e

(f
e

)}
e2E

.
The second part of the proof quantifies the extent to which the optimal flow f

⇤ can be
better than f . The rough idea is to show that, edge by edge, the gap in costs between f

and f

⇤ is no worse than the Pigou bound. This statement only holds up to an error term
for each edge, but we can control the sum of the error terms using the inequality (5) from
the first part of the proof.

Formally, for each edge e 2 E, instantiate the right-hand side of the Pigou bound (2)
using c

e

for c, f

e

for r, and f

⇤
e

for x. Since ↵(C) is a supremum over all possible choices of

8

c, r, and x, we have

↵(C) � f

e

· c
e

(f
e

)

f

⇤
e

· c
e

(f ⇤
e

) + (f
e

� f

⇤
e

)c
e

(f
e

)
.

Note that the definition of the Pigou bound accommodates both the cases f

⇤
e

 f

e

and
f

⇤
e

� f

e

. Rearranging,

f

⇤
e

· c
e

(f ⇤
e

) � 1

↵(C)
· f

e

· c
e

(f
e

) + (f ⇤
e

� f

e

)c
e

(f
e

).

Summing this inequality over all e 2 E gives

C(f ⇤) � 1

↵(C)
· C(f) +

X

e2E

(f ⇤
e

� f

e

)c
e

(f
e

)

| {z }
� 0 by (5)

� C(f)

↵(C)
.

Thus C(f)/C(f ⇤)  ↵(C), and the proof of Theorem 3.3 is complete.

References

[1] D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung,
12:258–268, 1968.

[2] J. R. Correa, A. S. Schulz, and N. E. Stier Moses. Selfish routing in capacitated networks.
Mathematics of Operations Research, 29(4):961–976, 2004.

[3] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In Proceedings of the
16th Annual Symposium on Theoretical Aspects of Computer Science (STACS), volume
1563 of Lecture Notes in Computer Science, pages 404–413, 1999.

[4] A. C. Pigou. The Economics of Welfare. Macmillan, 1920.

[5] T. Roughgarden. The price of anarchy is independent of the network topology. Journal
of Computer and System Sciences, 67(2):341–364, 2003.

[6] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM,
49(2):236–259, 2002.

[7] Y. She�. Urban Transportation Networks: Equilibrium Analysis with Mathematical Pro-
gramming Methods. Prentice-Hall, 1985.

9

CS364A: Algorithmic Game Theory

Lecture #12: More on Selfish Routing

⇤

Tim Roughgarden†

October 30, 2013

1 Case Study: Network Over-Provisioning

1.1 Motivation

The selfish routing model introduced last lecture can provide insight into many di↵erent
kinds of networks, including transportation, communication, and electrical networks. One
big advantage in communication networks is that it’s often relatively cheap to add additional
capacity to a network. Because of this, a popular strategy to communication network man-
agement is to install more capacity than is needed, meaning that the network will generally
not be close to fully utilized (see e.g. [4]).

There are several reasons why network over-provisioning is common in communication
networks. One reason is to anticipate future growth in demand. Beyond this, it has been
observed empirically that networks tend to perform better — for example, su↵ering fewer
packet drops and delays — when they have extra capacity. Network over-provisioning has
been used as an alternative to directly enforcing “quality-of-service (QoS)” guarantees (e.g.,
delay bounds), for example via an admission control protocol that refuses entry to new tra�c
when too much congestion would result [4].

The goal of this section is develop theory to corroborate the empirical observation that
network over-provisioning leads to good performance. Section 1.2 shows how to apply directly
the theory developed last lecture to over-provisioned networks. Section 1.3 o↵ers a second
approach to proving the same point, that selfish routing with extra capacity is competitive
with optimal routing.

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2

(a) M/M/1 delay function

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) Extra capacity vs. POA curve

Figure 1: Modest overprovisioning guarantees near-optimal routing. The left-hand figure
displays the per-unit cost c(x) = 1/(u � x) as a function of the load x for an edge with
capacity u = 2. The right-hand figure shows the worst-case price of anarchy as a function
of the fraction of unused network capacity.

1.2 POA Bounds for Over-Provisioned Networks

The optimal price of anarchy (POA) bounds for selfish routing developed last lecture are
parameterized by the class of permissible network cost functions. In this section, we consider
a network in which every cost function c

e

(x) has the form

c

e

(x) =

⇢
1

ue�x

if x < u

e

+1 if x � u

e

.
(1)

The parameter u

e

should be thought of as the capacity of edge e. A cost function of the
form (1) is the expected delay in an M/M/1 queue, meaning a queue where jobs arrive ac-
cording to a Poisson process with rate x and have independent and exponentially distributed
services times with mean 1/u

e

. This is generally the first and simplest cost function used to
model delays in communication networks (e.g. [2]). Figure 1(a) displays such a function; it
stays very flat until the tra�c load nears the capacity, at which point the cost rapidly tends
to +1.

For a parameter � 2 (0, 1), call a selfish routing network with M/M/1 delay functions
�-over-provisioned if f

e

 (1� �)u
e

for every edge e, where f is an equilibrium flow. That
is, at equilibrium, the maximum link utilization in the network is at most (1� �) · 100%.

Figure 1(a) suggests the following intuition: when � is not too close to 0, the equilibrium
flow is not too close to the capacity on any edge, and in this range the edges’ cost functions
behave like low-degree polynomials with nonnegative coe�cients. Last lecture we saw that
the POA is small in networks with such cost functions.

More formally, the main theorem from last lecture reduces computing the worst-case
POA in arbitrary �-over-provisioned selfish routing networks to computing the worst-case
POA merely in �-over-provisioned Pigou-like examples. A computation, which the reader

2

ts

(x) = 1

(x) = x c

c

p

Figure 2: Nonlinear variant of Pigou’s example. The POA of selfish routing can be arbitrarily
large.

is encouraged to do in the privacy of their own home, shows that the worst-case POA in
�-over-provisioned networks is at most

1

2

✓
1 +

r
1

�

◆
; (2)

see Figure 1(b). As we’ve come to expect, very simple networks show that the bound in (2)
is tight for all values of � 2 (0, 1).

Unsurprisingly, the bound in (2) tends to 1 as � tends to 1 and to +1 as � tends to 0;
these are the cases where the cost functions e↵ectively act like constant functions and like
very high-degree polynomials, respectively. What’s interesting to investigate is intermediate
values of �. For example, if � = .1 — meaning the maximum edge utilization is at most 90%
— then the POA is guaranteed to be at most 2.1. In this sense, a little over-provisioning is
su�cient for near-optimal selfish routing, corroborating what has been empirically observed
by Internet Service Providers.

1.3 A Resource Augmentation Bound

This section proves a guarantee for selfish routing in arbitrary networks, with no extra
assumptions on the cost function. What could such a guarantee look like? Recall that
the nonlinear variant of Pigou’s example (Figure 2) shows that the POA in selfish routing
networks with arbitrary cost functions is unbounded.

In this section, we compare the performance of selfish routing to a “weaker” optimal
solution that is forced to send extra tra�c.1 For example, in Figure 2, with one unit of
tra�c, the equilibrium flow has cost 1 while the optimal flow has near-zero cost. If the
optimal flow has to route two units of tra�c through the network, then there is nowhere to
hide: the best solution continues to route (1� ✏) units of tra�c on the upper edge, with the
remaining (1 + ✏) units of tra�c routed on the lower edge, for a total cost exceeding that of
the equilibrium flow (with one unit of tra�c).

1Another approach, explored in the systems community [5], is to instead make extra assumptions about
the network structure and the tra�c rate.

3

This “unfair” comparison between two flows at di↵erent tra�c rates has an equivalent and
easier to interpret formulation as a comparison between two flows with the same tra�c rate
but in networks with with di↵erent cost functions. Intuitively, instead of forcing the optimal
flow to route additional tra�c, we allow the equilibrium flow to use a “faster” network, with
each original cost function c

e

(x) replaced by the “faster” function c

e

(x

2

)/2. (See the Exercises
for details.) This transformation is particularly easy to interpret for M/M/1 delay functions,
since if c

e

(x) = 1/(u
e

� x), then the “faster” function is 1/(2u
e

� x) — an edge with double
the capacity. The next theorem, after this reformulation, gives a second justification for
network over-provisioning: a modest technology upgrade improves performance more than
implementing dictatorial control.2

Theorem 1.1 ([6]) For every selfish routing network and tra�c rate r, the cost of an equi-
librium flow with rate r is at most the cost of an optimal flow with rate 2r.

Proof: Fix a network G with nonnegative, nondecreasing, and continuous cost functions, and
a tra�c rate r. Let f and f

⇤ denote equilibrium and optimal (minimum-cost) flows at the
tra�c rates r and 2r, respectively.

The first part of the proof reuses the trick from last lecture of using fictitious cost func-
tions, frozen at the equilibrium costs, to get a grip on the cost of the optimal flow f

⇤. Recall
that since f is an equilibrium flow, all paths P used by f have a common cost c

P

(f), call
it L. Moreover, c

P

(f) � L for every path P 2 P. Thus,
X

P2P

f

P|{z}
sums to r

· c

P

(f)| {z }
= L if fP > 0

= r · L (3)

while X

P2P

f

P|{z}
sums to 2r

· c
P

(f)| {z }
� L

� 2r · L. (4)

That is, with respect to the fictitious costs {c
e

(f
e

)}, we get a great lower bound on the cost
of f

⇤ — at least twice the cost of the equilibrium flow f — much better than what we’re
actually trying to prove.

The second step of the proof shows that using the fictitious costs instead of the accurate
ones overestimates the cost of f

⇤ by at most the cost of f . Specifically, we complete the
proof by showing that

X

e2E

f

⇤
e

· c
e

(f ⇤
e

)

| {z }
cost of f

⇤

�
X

e2E

f

⇤
e

· c
e

(f
e

)

| {z }
�2rL

�
X

e2E

f

e

· c
e

(f
e

)

| {z }
=rL

. (5)

We prove that (5) holds term-by-term, that is, we show that

f

⇤
e

· [c
e

(f
e

)� c

e

(f ⇤
e

)]  f

e

· c
e

(f
e

) (6)

2Like last lecture, we prove the result for networks with a single source and single sink. The same proof
extends, with minor extra notation, to networks with multiple sources and sinks (see the Exercises).

4

ce

fef

⇤
e

RHS

LHS

Figure 3: Proof by picture of part of Theorem 1.1.

for every edge e 2 E. When f

⇤
e

� f

e

, the left-hand side of (6) is nonpositive and there is
nothing to show. When f

⇤
e

< f

e

, we give a proof by picture; see Figure 3. The left-hand
side of (6) is the area of the shaded region, with width f

⇤
e

and height c

e

(f
e

) � c

e

(f ⇤
e

). The
right-hand side of (6) is the area of the solid region, with width f

e

and height c

e

(f
e

). Since
f

⇤
e

< f

e

and c

e

is nondecreasing, the former region is a subset of the latter. This verifies (6)
and completes the proof. ⌅

In the sense of Theorem 1.1 and its reformulation given in the Exercises, speeding up
(i.e., overprovisioning) a selfish routing network by a modest amount is better than routing
tra�c optimally.

2 Atomic Selfish Routing

So far we’ve studied a nonatomic model of selfish routing, meaning that all players were
assumed to have negligible size. This is a good model for cars on a highway or small users of
a communication network, but not if a single strategic player represents, for example, all of
the tra�c controlled by a single Internet Service Provider. This section studies atomic selfish
routing networks, where each player controls a non-negligible amount of tra�c. While most
aspects of the model will be familiar, it presents a couple of new technical complications.
These complications will also be present in other classes of games that we study later.

An atomic selfish routing network has a finite number k of players. Player i has a source
vertex s

i

and a destination vertex t

i

; these can be shared across players, or not. Each
player routes 1 unit of tra�c on a single s

i

-t
i

path, and seeks to minimize its cost.3 Flows,
equilibrium flows, and the cost of a flow are defined analogously to last lecture.

To get a feel for the atomic model, consider the variant of Pigou’s example shown in
Figure 4. Suppose there are two players, and recall that each controls 1 unit of flow. The
optimal solution routes one player on each link, for a total cost of 1 + 2 = 3. This is also
an equilibrium flow, in the sense that neither player can decrease its cost via a unilateral

3Two obvious variants of the model allow players to have di↵erent sizes and/or to split tra�c fractionally
over multiple paths. Both variants have been extensively studied using methods similar to the ones covered
in these lectures.

5

s

t

2

x

Figure 4: A pigou-like network for atomic selfish routing.

deviation. The player on the lower edge does not want to switch, since its cost would jump
from 1 to 2. More interestingly, the player on the upper edge (with cost 2) has no incentive
to switch to the bottom edge, where its sudden appearance would drive the cost up to 2.

There is also a second equilibrium in the network: if both players take the lower edge,
both have a cost of 2 and neither can decrease its cost by switching to the upper edge. This
equilibrium has cost 4. This illustrates an importance di↵erence between the nonatomic and
atomic models: di↵erent equilibria are guaranteed to have the same cost in the nonatomic
model, but not in the atomic model.

Our current working definition of the POA — the ratio between the objective function
value of an equilibrium and that of an optimal outcome — is not well defined when di↵erent
equilibria have di↵erent objective function values. We extend the definition by taking a
worst-case approach: the price of anarchy (POA) of an atomic selfish routing network is

cost of worst equilibrium

cost of optimal outcome
.

For example, in the network in Figure 4, the POA is 4

3

.
A second di↵erence between the two models is that the POA in atomic selfish routing

networks can be larger than in their nonatomic counterparts. To see this, consider the
four-player bidirected triangle network shown in Figure 5. Each player has two strategies,
a one-hop path and a two-hop path. In the optimal flow, all players route on their one-hop
paths, and the cost of this flow is 4 — these one-hop paths are precisely the four edges with
the cost function c(x) = x. This flow is also an equilibrium flow. On the other hand, if all
players route on their two-hop paths, then we obtain a second equilibrium flow. Since the
first two players each incur three units of cost and the last two players each incur two units
of cost, this flow has a cost of 10. As the reader should check, it is also an equilibrium. The
price of anarchy of this instance is therefore 10/4 = 2.5.

There are no worse examples with a�ne cost functions.4

Theorem 2.1 (POA Bound for Atomic Selfish Routing, A�ne Cost Functions [1, 3])
In every atomic selfish routing network with a�ne cost functions, the POA is at most 5

2

.

4There are also very general and tight POA bounds known for arbitrary sets of cost functions. For
example, in atomic selfish routing networks with cost functions that are polynomials with nonnegative
coe�cients, the POA is at most a constant that depends on the maximum polynomial degree d. The
dependence on d is exponential, however, unlike the ⇡ d

ln d dependence in nonatomic selfish routing networks.

6

s1 u v

w

0

x

x

xx
0

s2

1t

t2 3 4

3

4

t s

s
t

Figure 5: In atomic instances with a�ne cost functions, the POA can be as large as 5/2.

Proof: The following proof is a “canonical POA proof,” in a sense that we’ll make precise in
Lecture 14. Let’s just follow our nose. We need to prove a bound for every equilibrium flow;
fix one f arbitrarily. Let f

⇤ denote an optimal (minimum-cost) flow. Write f

e

and f

⇤
e

for
the number of players in f and f

⇤, respectively, that pick a path that includes the edge e.
Write each a�ne cost function as c

e

(x) = a

e

x + b

e

for a

e

, b

e

� 0.
The first step of the proof is to figure out a good way of applying our hypothesis that f

is an equilibrium flow — that no player can decrease its cost through a unilateral deviation.
After all, the bound of 2.5 does not generally apply to non-equilibrium flows. If we consider
any player i, using path P

i

in f , and any unilateral deviation to a di↵erent path P̂

i

, then we
can conclude that i’s equilibrium cost using P

i

is at most what its cost would be if it switched
to P̂

i

. This looks promising: we want an upper bound on the total cost of players in the
equilibrium f , and hypothetical deviations give us upper bounds on the equilibrium costs
of individual players. Which hypothetical deviations should we single out for the proof? A
natural idea is to let the optimal flow f

⇤ suggest deviations.
Formally, suppose player i uses path P

i

in f and path P

⇤
i

in f

⇤. Since f is an equilibrium,
i’s cost only increases if it switches to P

⇤
i

(holding all other players fixed):

X

e2Pi

c

e

(f
e

) 
X

e2P

⇤
i \Pi

c

e

(f
e

) +
X

e2P

⇤
i \Pi

c

e

(f
e

+ 1),

where in the final term we account for the additional unit of load that i contributes to edges
that it newly uses (in P

⇤
i

but not in P

i

). For all we know P

i

and P

⇤
i

are disjoint; since cost
functions are nondecreasing, we have

X

e2Pi

c

e

(f
e

) 
X

e2P

⇤
i

c

e

(f
e

+ 1). (7)

7

This completes the first step, in which we apply the equilibrium hypothesis to generate an
upper bound (7) on the equilibrium cost of each player.

The second step of the proof sums the upper bound (7) on individual equilibrium costs
over all players to get a bound on the total equilibrium cost:

kX

i=1

X

e2Pi

c

e

(f
e

) 
kX

i=1

X

e2P

⇤
i

c

e

(f
e

+ 1)

=
X

e2E

f

⇤
e

· c
e

(f
e

+ 1) (8)

=
X

e2E

[a
e

f

⇤
e

(f
e

+ 1) + b

e

f

⇤
e

] , (9)

where in (8) we use that the term c

e

(f
e

+ 1) is contributed exactly once by each player i

that contemplates switching to a path P

⇤
i

that includes the edge e — f

⇤
e

times in all. This
complete the second step of the proof.

The previous step gave an upper bound on a quantity that we care about — the cost of
the equilibrium flow f — in terms of a quantity that we don’t care about, the “entangled”
version of f and f

⇤ on the right-hand side of (9). The third and most technically challenging
step of the proof is to “disentangle” the right-hand side of (9) and relate it to the only
quantities that we do care about for a POA bound, the costs of f and f

⇤.
We next claim that, for every y, z 2 {0, 1, 2, . . . , },

y(z + 1)  5

3
y

2 +
1

3
z

2

. (10)

This inequality is easy to check once guessed, and we leave the verification of it as an exercise.
One can check all cases where y and z are both small, and then observe that it continues
to hold when either one grows large. Note that the inequality holds with equality when
y = z = 1 and when y = 1 and z = 2. We’ll demystify how inequalities like (10) arise next
week.

We now apply inequality (10) once per edge in the right-hand side of (9), with y = f

⇤
e

and z = f

e

. We then have

C(f) 
X

e2E


a

e

✓
5

3
(f ⇤

e

)2 +
1

3
f

2

e

◆
+ b

e

f

⇤
e

�

 5

3

"
X

e2E

f

⇤
e

(a
e

f

⇤
e

+ b

e

)

#
+

1

3

X

e2E

a

e

f

2

e

 5

3
· C(f ⇤) +

1

3
· C(f).

Subtracting 1

3

C(f) from both sides and multiplying through by 3

2

gives

C(f)  5

3
· 3

2
· C(f ⇤) =

5

2
· C(f ⇤),

completing the proof. ⌅

8

References

[1] B. Awerbuch, Y. Azar, and L. Epstein. The price of routing unsplittable flow. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC),
pages 57–66, 2005.

[2] D. P. Bertsekas and R. G. Gallager. Data Networks. Prentice-Hall, 1987. Second Edition,
1991.

[3] G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC),
pages 67–73, 2005.

[4] N. Olifer and V. Olifer. Computer Networks: Principles, Technologies and Protocols for
Network Design. Wiley, 2005.

[5] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish routing in Internet-like envi-
ronments. IEEE/ACM Transactions on Networking, 14(4):725–738, 2006.

[6] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM,
49(2):236–259, 2002.

9

CS364A: Algorithmic Game Theory
Lecture #13: Potential Games; A Hierarchy of

Equilibria⇤

Tim Roughgarden†

November 4, 2013

Last lecture we proved that every pure Nash equilibrium of an atomic selfish routing
game with a�ne cost functions (of the form ce(x) = aex + be with ae, be � 0) has cost at
most 5

2 times that of an optimal outcome, and that this bound is tight in the worst case.
There can be multiple pure Nash equilibria in such a game, and this bound of 5

2 applies to
all of them. But how do know that there is at least one? After all, there are plenty of games
like Rock-Paper-Scissors that possess no pure Nash equilibrium. How do know that our price
of anarchy (POA) guarantee is not vacuous? This lecture introduces basic definitions of and
questions about several equilibrium concepts. When do they exist? When is computing one
computationally tractable? Why should we prefer one equilibrium concept over another?

1 Potential Games and the Existence of Pure Nash
Equilibria

Atomic selfish routing games are a remarkable class, in that pure Nash equilibria are guar-
anteed to exist.

Theorem 1.1 (Rosenthal’s Theorem [4]) Every atomic selfish routing game, with arbi-

trary real-valued cost functions, has at least one equilibrium flow.

Proof: We show that every atomic selfish routing game is a potential game. Intuitively,
we show that players are inadvertently and collectively striving to optimize a “potential
function.” This is one of the only general tools for guaranteeing the existence of pure Nash
equilibria in a class of games.

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

1

2

3 i

ce(.)

fe · ce(fe)

Figure 1: The function ce and its corresponding (underestimating) potential function.

Formally, define a potential function on the set of flows of an atomic selfish routing game
by

�(f) =
X

e2E

feX

i=1

ce(i), (1)

where fe is the number of player that choose a path in f that includes the edge e. The
inner sum in (1) is the “area under the curve” of the cost function ce; see Figure 1. Contrast
this with the corresponding term fe · ce(fe) in the cost objective function we studied last
week, which corresponds to the shaded bounding box in Figure 1. The similarity between
the potential function and the cost objective function can be useful, as we’ll see later.

The defining condition of a potential function is the following. Consider an arbitrary flow
f , and an arbitrary player i, using the si-ti path Pi in f , and an arbitrary deviation to some
other si-ti path P̂i. Let f̂ denote the flow after i’s deviation from Pi to P̂i. Then,

�(f̂)� �(f) =
X

e2P̂i

ce(f̂e)�
X

e2Pi

ce(fe); (2)

that is, the change in the potential function under a unilateral deviation is exactly the
same as the change in the deviator’s individual cost. In this sense, the single function �
simultaneously tracks the e↵ect of deviations by each of the players.

Once the potential function � is correctly guessed, the property (2) is easy to verify.
Looking at (1), we see that the inner sum of the potential function corresponding to edge e

picks up an extra term ce(fe + 1) whenever e is newly used by player i (i.e., in P̂i but not
Pi), and sheds its final term ce(fe) when e is newly unused by player i. Thus, the left-hand
side of (2) is X

e2P̂i\Pi

ce(fe + 1)�
X

Pi\P̂i

ce(fe),

which is exactly the same as the right-hand side of (2).
Given the potential function �, the proof of Theorem 1.1 is easy. Let f denote the flow

that minimizes � — since there are only finitely many flows, such a flow exists. Then, no

2

unilateral deviation by any player can decrease �. By (2), no player can decrease its cost by
a unilateral deviation and so f is an equilibrium flow. ⌅

2 Extensions

The proof idea in Theorem 1.1 can be used to prove a number of other results. First, the
proof remains valid for arbitrary cost functions, nondecreasing or otherwise. We’ll use this
fact in Lecture 15, when we discuss a class of games with “positive externalities.”

Second, the proof of Theorem 1.1 never uses the network structure of a selfish routing
game. That it, the argument remains valid for congestion games, the generalization of atomic
selfish routing games in which there is an abstract set E of resources (previously, edges),
each with a cost function, and each player i has an arbitrary collection Si ✓ 2E of strategies
(previously, si-ti paths), each a subset of resources. We’ll discuss congestion games at length
in Lecture 19.

Finally, analogous arguments apply to the nonatomic selfish routing networks introduced
in Lecture 11. We sketch the arguments here; details are in [5]. Since players have negligible
size in such games, we replace the inner sum in (1) by an integral:

�(f) =
X

e2E

Z fe

0

ce(x)dx, (3)

where fe is the amount of tra�c routed on edge e by the flow f . Because cost functions
are assumed continuous and nondecreasing, the function � is continuously di↵erentiable and
convex. The first-order optimality conditions of � are precisely the equilibrium conditions of
a flow in a nonatomic selfish routing network (see Exercises). This gives a sense in which the
local minima of � correspond to equilibrium flows. Since � is continuous and the space of all
flows is compact, � has a global minimum, and this flow must be an equilibrium. This proves
existence of equilibrium flows in nonatomic selfish routing networks. Uniqueness of such flows
follows from the convexity of � — its only local minima are its global minima. When �
has multiple global minima, all with the same potential function value, these correspond to
multiple equilibrium flows that all have the same total cost.

3 A Hierarchy of Equilibrium Concepts

How should we discuss the POA of a game with no pure Nash equilibria (PNE)? In addition
to games like Rock-Paper-Scissors, atomic selfish routing games with varying player sizes
need not have PNE, even with only two players and quadratic cost functions [5, Example
18.4]. For a meaningful POA analysis of such games, we need to enlarge the set of equilibria
to recover guaranteed existence. The rest of this lecture introduces three relaxations of PNE,
each more permissive and more computationally tractable than the previous one (Figure 2).
All three of these more permissive equilibrium concepts are guaranteed to exist in every
finite game.

3

PNE

MNE

CE

CCE

even easier to compute

easy to compute

need not exist

guaranteed to exist

but hard to compute

Figure 2: The Venn-diagram of the hierarchy of equilibrium concepts.

3.1 Cost-Minimization Games

A cost-minimization game has the following ingredients:

• a finite number k of players;

• a finite strategy set Si for each player i;

• a cost function Ci(s) for each player i, where s 2 S1⇥ · · ·⇥Sk denotes a strategy profile

or outcome.

For example, atomic routing games are cost-minimization games, with Ci(s) denoting i’s
travel time on its chosen path, given the paths s�i chosen by the other players.

Conventionally, the following equilibrium concepts are defined for payo↵-maximization
games, with all of the inequalities reversed. The two definitions are completely equivalent.

3.2 Pure Nash Equilibria (PNE)

Recall the definition of a PNE: unilateral deviations can only increase a player’s cost.

Definition 3.1 A strategy profile s of a cost-minimization game is a pure Nash equilibrium

(PNE) if for every player i 2 {1, 2, . . . , k} and every unilateral deviation s

0
i 2 Si,

Ci(s)  Ci(si
0
, s�i). (4)

PNE are easy to interpret but, as discussed above, do not exist in all games of interest. We
leave the POA of pure Nash equilibria undefined in games without at least one PNE.

4

3.3 Mixed Nash Equilibria (MNE)

When we discussed the Rock-Paper-Scissors game in Lecture 1, we introduced the idea of
a player randomizing over its strategies via a mixed strategy. In a mixed Nash equilibrium,
players randomize independently and unilateral deviations can only increase a player’s ex-
pected cost.

Definition 3.2 Distributions �1, . . . ,�k over strategy sets S1, . . . , Sk of a cost-minimization
game constitute a mixed Nash equilibrium (MNE) if for every player i 2 {1, 2, . . . , k} and
every unilateral deviation s

0
i 2 Si,

Es⇠�[Ci(s)]  Es⇠�[Ci(si
0
, s�i)] , (5)

where � denotes the product distribution �1 ⇥ · · ·⇥ �k.

Definition 3.2 only considers pure-strategy unilateral deviations; also allowing mixed-strategy
unilateral deviations does not change the definition (Exercise).

By the definitions, every PNE is the special case of MNE in which each player plays
deterministically. The Rock-Paper-Scissors game shows that, in general, a game can have
MNE that are not PNE.

Here are two highly non-obvious facts that we’ll discuss at length in Lecture 20. First,
every cost-minimization game has at least one MNE; this is Nash’s theorem [3]. Second,
computing a MNE appears to be a computationally intractable problem, even when there
are only two players. For now, by “seems intractable” you can think of as being roughly
NP -complete; the real story is more complicated, as we’ll discuss in the last week of the
course.

The guaranteed existence of MNE implies that the POA of MNE is well defined in every
finite game — this is an improvement over PNE. The computational intractability of MNE
raises the concern that POA bounds for them need not be meaningful. If we don’t expect the
players of a game to quickly reach an equilibrium, why should we care about performance
guarantees for equilibria? This objection motivates the search for still more permissive and
computationally tractable equilibrium concepts.

3.4 Correlated Equilibria (CE)

Our next equilibrium notion takes some getting used to. We define it, then explain the
standard semantics, and then o↵er an example.

Definition 3.3 A distribution � on the set S1⇥ · · ·⇥Sk of outcomes of a cost-minimization
game is a correlated equilibrium (CE) if for every player i 2 {1, 2, . . . , k}, strategy si 2 Si,
and every deviation s

0
i 2 Si,

Es⇠�[Ci(s) | si]  Es⇠�[Ci(si
0
, s�i) | si] . (6)

5

Importantly, the distribution � in Definition 3.3 need not be a product distribution; in this
sense, the strategies chosen by the players are correlated. Indeed, the MNE of a game corre-
spond to the CE that are product distributions (see Exercises). Since MNE are guaranteed
to exist, so are CE. Correlated equilibria also have a useful equivalent definition in terms of
“switching functions;” see the Exercises.

The usual interpretation of a correlated equilibrium [1] involves a trusted third party.
The distribution � over outcomes is publicly known. The trusted third party samples an
outcome s according to �. For each player i = 1, 2, . . . , k, the trusted third party privately
suggests the strategy si to i. The player i can follow the suggestion si, or not. At the time of
decision-making, a player i knows the distribution �, one component si of the realization �,
and accordingly has a posterior distribution on others’ suggested strategies s�i. With these
semantics, the correlated equilibrium condition (6) requires that every player minimizes its
expected cost by playing the suggested strategy si. The expectation is conditioned on i’s
information — � and si — and assumes that other players play their recommended strategies
s�i.

Believe it or not, a tra�c light is a perfect example of a CE that is not a MNE. Consider
the following two-player game:

stop go
stop 0,0 0,1
go 1,0 -5,-5

If the other player is stopping at an intersection, then you would rather go and get on with
it. The worst-case scenario, of course, is that both players go at the same time and get
into an accident. There are two PNE, (stop,go) and (go,stop). Define � by randomizing
50/50 between these two PNE. This is not a product distribution, so it cannot correspond
to a MNE of the game. It is, however, a CE. For example, consider the row player. If the
trusted third party (i.e., the stoplight) recommends the strategy “go” (i.e., is green), then
the row player knows that the column player was recommended “stop” (i.e., has a red light).
Assuming the column player plays its recommended strategy (i.e., stops at the red light),
the best response of the row player is to follow its recommendation (i.e., to go). Similarly,
when the row player is told to stop, it assumes that the column player will go, and under
this assumption stopping is a best response.

In Lecture 18 we’ll prove that, unlike MNE, CE are computationally tractable. One proof
goes through linear programming. More interesting, and the focus of our lectures, is the fact
that there are distributed learning algorithms that quickly guide the history of joint play to
the set of CE.

3.5 Coarse Correlated Equilibria (CCE)

We should already be quite pleased with positive results, like good POA bounds, that apply
to the computationally tractable set of CE. But if we can get away with it, we’d be happy
to enlarge the set of equilibria even further, to an “even more tractable” concept.

6

Definition 3.4 ([2]) A distribution � on the set S1 ⇥ · · · ⇥ Sk of outcomes of a cost-
minimization game is a coarse correlated equilibrium (CCE) if for every player i 2 {1, 2, . . . , k}
and every unilateral deviation s

0
i 2 Si,

Es⇠�[Ci(s)]  Es⇠�[Ci(si
0
, s�i)] . (7)

In the equilibrium condition (7), when a player i contemplates a deviation si
0, it knows only

the distribution � and not the component si of the realization. Put di↵erently, a CCE only
protects against unconditional unilateral deviations, as opposed to the conditional unilateral
deviations addressed in Definition 3.3. Every CE is a CCE — see the Exercises — so CCE
are guaranteed to exist in every finite game and are computationally tractable. As we’ll see
in a couple of weeks, the distributed learning algorithms that quickly guide the history of
joint play to the set of CCE are even simpler and more natural than those for the set of CE.

3.6 An Example

We next consider a concrete example, to increase intuition for the four equilibrium concepts
in Figure 2 and to show that all of the inclusions can be strict.

Consider an atomic selfish routing game (Lecture 12) with four players. The network
is simply a common source vertex s, a common sink vertex t, and 6 parallel s-t edges
E = {0, 1, 2, 3, 4, 5}. Each edge has the cost function c(x) = x.

The pure Nash equilibria of this game are the
�
6
4

�
outcomes in which each player chooses

a distinct edge. Every player su↵ers only unit cost in such an equilibrium. One mixed
Nash equilibrium that is obviously not pure has each player independently choosing an
edge uniformly at random. Every player su↵ers expected cost 3/2 in this equilibrium. The
uniform distribution over all outcomes in which there is one edge with two players and two
edges with one player each is a (non-product) correlated equilibrium, since both sides of (6)
read 3

2 for every i, si, and s

0
i (see Exercises). The uniform distribution over the subset of

these outcomes in which the set of chosen edges is either {0, 2, 4} or {1, 3, 5} is a coarse
correlated equilibrium, since both sides of (7) read 3

2 for every i and s

0
i. It is not a correlated

equilibrium, since a player i that is recommended the edge si can reduce its conditional
expected cost to 1 by choosing the deviation s

0
i to the successive edge (modulo 6).

3.7 Looking Ahead: POA Bounds for Tractable Equilibrium Con-
cepts

The benefit of enlarging the set of equilibria is increased tractability and plausibility. The
downside is that, in general, fewer desirable properties will hold.

For example, consider POA bounds, which by definition compare the objective function
value of the worst equilibrium of a game to that of an optimal solution. The larger the set
of equilibria, the worse (i.e., further from 1) the POA. Is there a “sweet spot” equilibrium
concept that is simultaneously big enough to enjoy tractability and small enough to permit
strong worst-case guarantees? In the next lecture, we give an a�rmative answer for many
interesting classes of games.

7

References

[1] R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Math-

ematical Economics, 1(1):67–96, 1974.

[2] H. Moulin and J. P. Vial. Strategically zero-sum games: The class of games whose
completely mixed equilibria cannot be improved upon. International Journal of Game

Theory, 7(3/4):201–221, 1978.

[3] J. F. Nash. Equilibrium points in N -person games. Proceedings of the National Academy

of Science, 36(1):48–49, 1950.

[4] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International

Journal of Game Theory, 2(1):65–67, 1973.

[5] T. Roughgarden. Routing games. In N. Nisan, T. Roughgarden, É. Tardos, and V. Vazi-
rani, editors, Algorithmic Game Theory, chapter 18, pages 461–486. Cambridge Univer-
sity Press, 2007.

8

CS364A: Algorithmic Game Theory

Lecture #14: Robust Price-of-Anarchy Bounds in

Smooth Games

⇤

Tim Roughgarden†

November 6, 2013

1 Canonical POA Proofs

In Lecture 12 we proved that the price of anarchy (POA) in every atomic selfish routing game
with a�ne cost functions is at most 5

2 . To review, the proof had the following high-level
steps.

1. Given an arbitrary pure Nash equilibrium (PNE) s, the PNE hypothesis is invoked
once per player i with the hypothetical deviation si

⇤, where s⇤ is an optimal outcome,
to derive the inequality Ci(s)  Ci(si

⇤, s�i) for each i. Importantly, this is the only
time that the PNE hypothesis is invoked in the entire proof.

2. The k inequalities that bound individuals’ equilibrium costs are summed over the
players. The left-hand side of the resulting inequality is the cost of the PNE s; the
right-hand side is a strange entangled function of s and s⇤ (involving terms of the form
fef ⇤e).

3. The hardest step is to relate the entangled term
Pk

i=1 Ci(si
⇤, s�i) generated by the

previous step to the only two quantities that we care about, the costs of s and s⇤.
Specifically, we proved an upper bound of 5

3cost(s⇤) + 1
3cost(s). Importantly, this step

is just algebra, and is agnostic to our choices of s and s⇤ as a PNE and an optimal
outcome, respectively.

4. Solve for the POA. Subtracting 1
3 · cost(s) from both sides and multiplying through by

3
2 proves that the POA is at most 5

2 .

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

F M

v = 3

v = 3

p1

p2

1

2

2
1

m1

m2

Figure 1: Location game with 3 locations (F), 2 markets (M) and 2 players.

This proof is canonical, in a sense that we formalize in this lecture. Many other POA proofs
are canonical in the same sense. The main point of this lecture is that POA proofs that
follow this general recipe automatically generate “robust POA bounds.” That is, the proved
guarantee applies not only to all PNE of the game, but also to, among other things, all of
its coarse correlated equilibria — the biggest set of equilibria defined in the last lecture.

2 A Location Game

Before proceedings to the general theory, it will be helpful to have another concrete example
under our belt. Consider a location game with the following ingredients:

• A set F of possible locations. These could represent possible locations to build a Web
cache in a network, an artisinal chocolate shop in a gentrifying neighborhood, and so
on.

• A set of k players. Each player i chooses one location from a set Fi ✓ F from which
to provide a service. All players provide the same service; they di↵er only in where
they are located. There is no limit on the number of markets that a player can provide
service to.

• A set M of markets. Each market j 2 M has a value vj that is known to all players.
This is the market’s maximum willingness-to-pay for receiving a service.

• For each location ` 2 F and market j 2 M , there is a known cost c`j of serving j
from `. This could represent physical distance, the degree of incompatibility between
two technologies, and so on.

Given a strategy profile — a location choice by each player — each player tries to capture
as many markets as possible, at the highest prices possible. To define the payo↵s precisely, we
start with an example. Figure 1 shows a location game with F = {1, 2, 3} and M = {1, 2}.
There are two players, with F1 = {1, 2} and F2 = {2, 3}. Both markets have value 3. The
cost between location 2 and either market is 2; locations 1 and 3 have cost 1 to the nearer
location (1 and 2, respectively) and infinite cost to the other location.

Continuing the example, suppose the first player chooses location 1 and the second player
chooses location 3. Then, each player has a monopoly in the market that they entered. The

2

only thing restricting the price charged is the maximum willingness-to-pay of the market.
Thus, each player can charge 3 for its service to its market. Since the cost of service is 1 in
both cases, both players have a payo↵ of 3� 1 = 2.

Alternatively, suppose the first player switches to location 2, while the second player
remains at location 3. Player 1 still has a monopoly in market 1, and thus can still charge 3.
Its service cost has jumped to 2, however, so its payo↵ from that market has dropped to 1.
In market 2, player 2 can no longer charge a price of 3 without consequence — at any price
strictly bigger than 2, the player 1 can profitably undercut the price and take the market.
Thus, player 2 will charge the highest price it can get away with, which is 2. Since its cost
of serving the market is 1, player 2’s payo↵ is 2� 1 = 1.

In general, in a strategy profile s of a location game, the payo↵ of player i is defined as

⇡i(s) =
X

j2M

⇡ij(s),

where, assuming that C is the set of chosen locations and i chooses ` 2 C,

⇡ij(s) =

⇢
0 if c`j � vj or ` is not the closest location of C to j

d(2)
j (s)� c`j otherwise,

(1)

where d(2)
j (s) is the highest price that player i can get away with, namely the minimum of vj

and the second-smallest cost between a location of C and j.1

The payo↵ ⇡ij(s) is thus the “competitive advantage” that i has over the other players
for market j, up to a cap of vj minus the service cost. The definition in (1) assumes that
each market is served by the potential provider with the lowest service cost, at the highest
competitive price. This assumption can also be justified from first principles by setting up
a three-stage game and proving that its “subgame perfect equilibria” have these properties;
see [2] for more details.

The objective function in a location game is to maximize the social surplus. The surplus
V (s) of a strategy profile s — a location choice by each player — is defined as

V (s) =
X

j2M

vj � dj(s), (2)

where dj(s) is the minimum of vj and the smallest cost between a chosen location and j. The
definition (2) assumes that each market j is served by the chosen location with the smallest
cost of serving j, or not at all if this cost is at least vj.

Note that the surplus V (s) depends on the strategy profile s only through the set of
locations chosen by some player in s. Indeed, the definition (2) makes sense more generally
for any subset of chosen locations T , and we sometimes write V (T) for this quantity.

The rest of this section proves that every PNE of every location game has social surplus
at least 50% times that of an optimal outcome.

1In contrast to selfish routing games, these location games are most naturally described as payo↵-
maximization games. POA bounds are equally interesting in both formalisms. The POA of a payo↵-
maximization game is at most 1, the closer to 1 the better.

3

Theorem 2.1 ([3]) The POA of every location game is at least 1
2 .

We next identify three properties possessed by every location game; these are the only
properties that our proof of Theorem 2.1 relies on.2

(P1) For every strategy profile s, the sum
Pk

i=1 ⇡i(s) of players’ payo↵s (i.e., the net revenue)
is at most the social surplus V (s).

This follows from the fact that each j 2 M contributes vj � dj(s) to the surplus and

d(2)
j (s)� dj(s) to the payo↵ of the closest location, and that d(2)

j (s)  vj by definition.

(P2) For every strategy profile s, ⇡i(s) = V (s)�V (s�i). That is, a player’s payo↵ is exactly
the extra surplus created by the presence of its location.3

To see this property, observe that the contribution of a particular market j to the right-
hand side V (s)�V (s�i) is the extent to which the closest chosen location to j is closer in
s than in s�i (with the usual upper bound vj), namely min{vj, dj(s�i)}�min{vj, dj(s)}.
This is zero unless player i’s location is the closest to j in s, in which case it is

min{vj, d
(2)
j (s)}�min{vj, dj(s)}. (3)

Either way, this is precisely market j’s contribution ⇡ij(s) to player i’s payo↵ in s.
Summing over all j 2 M proves the property.

(P3) The function V (·) is monotone and submodular, as a function of the set of chosen
locations. Monotonicity just means that V (T1)  V (T2) whenever T1 ✓ T2; this
property is evident from (2). Submodularity is a set-theoretic version of diminishing
returns, defined formally as

V (T2 [{`})� V (T2)  V (T1 [{`})� V (T1) (4)

for every location ` and subsets T1 ✓ T2 of locations (Figure 2).

Submodularity follows immediately from our expression (3) for the surplus increase
caused by one new location ` — the only interesting case is when ` is closer to a
market j than any location of T2, in which case the bigger the set of locations to which
` is being added, the smaller the value of d(2)

j (s) and hence of (3).

Proof of Theorem 2.1: We follow the same four-step outline we used for atomic selfish routing
games in Lecture 12 (see Section 1). Let s denote an arbitrary PNE and s⇤ a surplus-
maximizing outcome. In the first step, we invoke the PNE hypothesis once per player, with
the outcome s⇤ providing hypothetical deviations. That is, since s is a PNE,

⇡i(s) � ⇡i(s
⇤
i , s�i) (5)

2Games that possess these three properties are sometimes called basic utility games [3].
3Note the similarity to VCG payments (Lecture 7). This equality implies that every location game

is a potential game (see Exercises). In our proof of Theorem 2.1, we only need the inequality ⇡i(s) �
V (s)�V (s�i). Games satisfying this inequality and properties (P1) and (P3) are called valid utility games [3].

4

�

T1

T2

Figure 2: Submodularity: adding ` to T2 yields a lower increase in value than adding ` to
T1 because T1 ✓ T2.

for every player i. This is the only step of the proof that uses the assumption that s is a
PNE.

The second step is to sum (5) over all the players, yielding

V (s) �
kX

i=1

⇡i(s) �
kX

i=1

⇡i(si
⇤, s�i), (6)

where the first inequality is property (P1) of location games.
The third step is to disentangle the final term of (6), and relate it to the only two

quantities we really care about, V (s) and V (s⇤). By property (P2) of location games, we
have

kX

i=1

⇡i(si
⇤, s�i) =

kX

i=1

[V (s⇤i , s�i)� V (s�i)] . (7)

To massage the right-hand side into a telescoping sum, we add extra locations to the terms.
By submodularity of V (·) (property (P3)), we have

V (si
⇤, s�i)� V (s�i) � V (s⇤1, . . . , s

⇤
i , s)� V (s⇤1, . . . , s

⇤
i�1, s).

Thus, the right-hand side of (7) can be bounded below by

kX

i=1

⇥
V (s⇤1, . . . , s

⇤
i , s)� V (s⇤1, . . . , s

⇤
i�1, s)

⇤
= V (s⇤1, . . . , s

⇤
k, s1, . . . , sk)� V (s) � V (s⇤)� V (s),

where the inequality follows from the monotonicity of V (·) (property (P3)). This completes
the third step of the proof.

The fourth and final step of the proof is to solve for the POA. We’ve proved that

V (s) � V (s⇤)� V (s),

so
V (s)

V (s⇤)
� 1

2

and the POA is at least 1
2 . This completes the proof of Theorem 2.1. ⌅

5

3 Smooth Games

There is a general recipe for deriving POA bounds, which includes our analyses of atomic
selfish routing games and location games as special cases. There are also many other exam-
ples of this recipe that we won’t have time to talk about. The goal of formalizing this recipe
is not generalization for its own sake; as we’ll see, POA bounds established via this recipe
are automatically “robust” in several senses.

The following definition is meant to abstract the third “disentanglement” step in the
POA upper bound proofs for atomic selfish routing games and location games.

Definition 3.1 (Smooth Games)

1. A cost-minimization game is (�, µ)-smooth if

kX

i=1

Ci(s
⇤
i , s�i)  � · cost(s⇤) + µ · cost(s) (8)

for all strategy profiles s, s⇤.4 Here cost(·) is an objective function that satisfies
cost(s) 

Pk
i=1 Ci(s) for every strategy profile s.5

2. A payo↵-maximization game is (�, µ)-smooth if

kX

i=1

⇡i(s
⇤
i , s�i) � � · V (s⇤)� µ · V (s) (9)

for all strategy profiles s, s⇤. Here V (·) is an objective function that satisfies V (s) �Pk
i=1 ⇡i(s) for every strategy profile s.6

Justifying a new definition requires examples and consequences. We have already seen
two examples of classes of smooth games; two consequences are described in the next section.
In Lecture 12, we proved that every atomic selfish routing game with a�ne cost functions is a
(5

3 ,
1
3)-smooth cost-minimization game. In Section 2, we proved that every location game is a

(1, 1)-smooth payo↵-maximization game. The conditions (8) and (9) were established in the
third, “disentanglement” steps of these proofs. At the time, we had in mind the case where s
and s⇤ are a PNE and an optimal outcome of the game, respectively, but the corresponding
algebraic manipulations never used those facts and hence apply more generally to all pairs
of strategy profiles.

4As long as (8) holds for some optimal solution s⇤ and all strategy profiles s, all of the consequences in
Section 4 continue to hold.

5In atomic selfish routing games, this inequality holds with equality.
6This is property (P1) of location games.

6

4 Robust POA Bounds in Smooth Games

In a (�, µ)-smooth cost-minimization game with µ < 1, every PNE s has cost at most �
1�µ

times that of an optimal outcome s⇤. To see this, use the assumption that the objective func-
tion satisfies cost(s) 

Pk
i=1 Ci(s), the PNE condition (once per player), and the smoothness

assumption to derive

cost(s) 
kX

i=1

Ci(s) 
kX

i=1

Ci(si
⇤, s�i)  � · cost(s⇤) + µ · cost(s), (10)

and rearrange terms. Similarly, every PNE of a (�, µ)-smooth payo↵-maximization game
has objective function value at least �

1+µ times that of an optimal outcome. These are

generalizations of our POA bounds of 5
2 and 1

2 for atomic selfish routing games with a�ne
cost functions and location games, respectively.

We next describe two senses in which the POA bound of �
1�µ or �

1+µ for a (�, µ)-smooth
game is “robust.” For the first, we recall last lecture’s definition of coarse correlated equilibria
(CCE).

Definition 4.1 A distribution � on the set S1⇥ · · ·⇥Sk of outcomes of a cost-minimization
game is a coarse correlated equilibrium (CCE) if for every player i 2 {1, 2, . . . , k} and every
unilateral deviation s0i 2 Si,

Es⇠�[Ci(s)]  Es⇠�[Ci(si
0, s�i)] . (11)

The equilibrium condition in (11) compares the expected cost of playing according to the
distribution � to that of an unconditional deviation. In Lecture 17, we’ll show that simple
and natural learning algorithms drive the time-averaged history of joint play to the set
of CCE. In this sense, CCE are a quite tractable set of equilibria, and hence a relatively
plausible prediction of realized play. See also Figure 3.

A drawback of enlarging the set of equilibria is that the POA, which is defined via a
worst-case equilibrium, can only get worse. In smooth games, however, CCE are a “sweet
spot” — permissive enough to be highly tractable, and stringent enough to enable good
worst-case bounds.

Theorem 4.2 ([1]) In every (�, µ)-smooth cost-minimization game, the POA of CCE is at
most �

1�µ .

That is, the exact same POA bound that we derived in (10) for PNE holds more generally
for all CCE. Similarly, in (�, µ)-smooth payo↵-maximization games, the POA bound of �

1+µ

applies more generally to all CCE (the details are left as an exercise). Our POA bounds
of 5

2 and 1
2 for atomic selfish routing games and location games, respectively, may have

seemed specific to PNE at the time, but since the proofs established the stronger smoothness
condition (Definition 3.1), these POA bounds hold for all CCE.

Given the definitions, the proof of Theorem 4.2 is not di�cult; let’s just follow our nose.

7

PNE

MNE

CE

CCE

even easier to compute

easy to compute

need not exist

guaranteed to exist
but hard to compute

Figure 3: The Venn-diagram of the hierarchy of equilibrium concepts.

Proof of Theorem 4.2: Consider a (�, µ)-smooth cost-minimization game, a coarse correlated
equilibrium �, and an optimal outcome s⇤. We can write

Es⇠�[cost(s)]  Es⇠�

"
kX

i=1

Ci(s)

#
(12)

=
kX

i=1

Es⇠�[Ci(s)] (13)


kX

i=1

Es⇠�[Ci(s
⇤
i , s�i)] (14)

= Es⇠�

"
kX

i=1

Ci(s
⇤
i , s�i)

#
(15)

 Es⇠�[� · cost(s⇤) + µ · cost(s)] (16)

= � · cost(s⇤) + µ · Es⇠�[cost(s)] , (17)

where inequality (12) follows from the assumption on the objective function, equalities (13), (15),
and (17) follow from linearity of expectation, inequality (14) follows from the definition (11)
of a coarse correlated equilibrium (applied once per player i, with the hypothetical devia-
tion s⇤i), and inequality (16) follows from the assumption that the game is (�, µ)-smooth.
Rearranging terms completes the proof. ⌅

Theorem 4.2 is already quite satisfying — we now have good POA bounds for an equilib-
rium concept that is guaranteed to exist and is easy to compute. It turns out that smooth
games have a number of other nice properties, as well. We conclude this lecture by noting
that the POA bound of �

1�µ or �
1+µ for a smooth game applies automatically to approximate

equilibria, with the bound degrading gracefully as a function of the approximation param-
eter. For instance, define an ✏-pure Nash equilibrium (✏-PNE) of a cost-minimization game

8

as a strategy profile s in which no player can decrease its cost by more than a (1 + ✏) factor
via a unilateral deviation:

Ci(s)  (1 + ✏) · Ci(s
0
i, s�i) (18)

for every i and s0i 2 Si. Then, the following guarantee holds.

Theorem 4.3 For every (�, µ)-smooth cost-minimization game G, every ✏ < 1
µ � 1, every

✏-PNE s of G, and every outcome s⇤ of G,

C(s)  (1 + ✏)�

1� µ(1 + ✏)
· C(s⇤).

The proof of Theorem 4.3 is not di�cult and we leave it as an exercise. Similar results hold
for smooth payo↵-maximization games, and for approximate versions of other equilibrium
concepts.

To illustrate Theorem 4.3, consider atomic selfish routing games with a�ne cost functions,
which are (5

3 ,
1
3)-smooth. Theorem 4.3 implies that every ✏-PNE of such a game with ✏ < 2

has expected cost at most 5�5✏
2�✏ times that of an optimal outcome.

References

[1] T. Roughgarden. Intrinsic robustness of the price of anarchy. In 41st ACM Symposium
on Theory of Computing (STOC), pages 513–522, 2009.

[2] É. Tardos and T. Wexler. Network formation games and the potential function method.
In N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game
Theory, chapter 19, pages 487–516. Cambridge University Press, 2007.

[3] A. Vetta. Nash equilibria in competitive societies, with applications to facility location,
tra�c routing and auctions. In Proceedings of the 43rd Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 416–425, 2002.

9

CS364A: Algorithmic Game Theory

Lecture #15: Best-Case and Strong Nash Equilibria

⇤

Tim Roughgarden†

November 11, 2013

1 Network Cost-Sharing Games

1.1 Lecture Themes

The externality caused by a player in a game is the di↵erence between its own objective
function value and its contribution to the social objective function value. The models we’ve
looked at thus far have negative externalities, meaning that players cause more harm to the
system then they realize (or choose to care about). In a routing game, for example, a player
does not take into account the additional cost its presence causes for the other players using
the edges in its path.

There are also important applications that exhibit positive externalities. You usually
join a campus organization or a social network to derive personal benefit from it, but your
presence (hopefully) also enriches the experience of other people in the same group. As
a player, you’re generally bummed to see new players show up in a game with negative
externalities, and excited for the windfalls of new players in a game with positive externalities.
The first theme of this lecture is the study of positive externalities, in a concrete model of
network formation.

In the model we study, there will generally be multiple pure Nash equilibria. We’re
used to that, from routing and location games, but here di↵erent equilibria can have wildly
di↵erent costs. This motivates confining attention to a subset of “reasonable” Nash equilibria
that hopefully possesses two properties: first, better worst-case ine�ciency bounds should
hold for the subset than for all equilibria; second, there should be a plausible narrative as to
why equilibria in the subset are more worthy of study than the others. No fully satisfactory
approach to this problem is known in the model we study, but we’ll cover two partially
successful approaches.

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

1.2 The Model

A network cost-sharing game takes place in a graph G = (V, E), which can be directed or
undirected, and each edge e 2 E carries a fixed cost �e � 0. There are k players. Player i has
a source vertex si 2 V and a sink vertex ti 2 V , and its strategy set is the si-ti paths of the
graph. Outcomes of the game correspond to path vectors (P1, . . . , Pk), with the semantics
that the subnetwork (V,[k

i=1Pi) gets formed.
We think of �e as the fixed cost of building the edge e — laying down high-speed Internet

fiber to a neighborhood, for example — and this cost is independent of the number of players
that use the edge. Players’ costs are defined edge-by-edge, like in routing games. If fe � 1
players use an edge e in their chosen paths, then they are jointly responsible for the edge’s
fixed cost �e. In this lecture, we assume that this cost is split equally amongst the players.
That is, in the language of cost-minimization games (Lecture 13), the cost Ci(P) of player i
in the outcome P is

Ci(P) =
X

e2Pi

�e

fe
, (1)

where fe = |{j : e 2 Pj}| is the number of players that choose a path that includes e. The
global objective is simply to minimize the total cost of the formed network:

cost(P) =
X

e2E : fe�1

�e. (2)

Note that, analogous to routing games, the objective function (2) can equally well be written
as the sum

Pk
i=1 Ci(P) of the players’ costs.

Remark 1.1 This is a very stylized game-theoretic model of how a network might form.
Many such models have been studied, but it is quite di�cult to capture observed properties
of real-world networks with an analytically tractable model. See Jackson [5] for a textbook
treatment of network formation games.

1.3 Example: VHS or Betamax

Let’s build our intuition for network cost-sharing games through a couple of examples. The
first example demonstrates how tragic miscoordination can occur in games with positive
externalities.

Consider the simple network in Figure 1, with k players with a common source s and
sink t. One can interpret an edge as the adoption of a particular technology. For example,
back in the 1980s, there were two new technologies enabling home movie rentals. Betamax
was lauded by technology geeks as the better one — corresponding to the lower-cost edge
in Figure 1 — and VHS was the other one. VHS grabbed a larger market share early on.
Since coordinating on a single technology proved the primary driver in consumers’ decisions
— have the better technology is little consolation for being unable to rent anything from
your corner store — Betamax was eventually driven to extinction.

2

s t

1 + ✏

k

Betamax

VHS

Figure 1: VHS or Betamax. The price of anarchy in a network cost-sharing game can be as
large as the number k of players.

The optimal solution in Figure 1 is for all players to pick the upper edge, for a total cost
of 1 + ✏. This is also a Nash equilibrium. Unfortunately, there is a second Nash equilibrium,
in which all players pick the lower edge. Since the cost of k is split equally, each player
pays 1. If a player deviated unilaterally to the upper edge, it would pay the full cost 1 + ✏
of that edge and thus su↵er a higher cost. This example shows that the price of anarchy
in network cost-sharing games can be as high as k, the number of players. (For a matching
upper bound, see the Exercises.)

The VHS or Beta example is exasperating. We proposed a reasonable network model
capturing positive externalities, and the price of anarchy — which helped us reason about
several models already — is distracted by a manifestly unreasonable Nash equilibrium and
yields no useful information. Can we salvage our approach by focusing only on the “reason-
able” equilibria? We’ll return to this question after considering another important example.

1.4 Example: Opting Out

Consider the network cost-sharing game shown in Figure 2. The k players have distinct
sources s1, . . . , sk but a common destination t. They have the option of meeting at the
rendezvous point v and continuing together to t, incurring a joint cost of 1 + ✏. Each player
can also “opt out,” meaning take the direct si-t path solo. (Insert your own joke about public
transportation in California here.) Player i incurs a cost of 1/i for its opt-out strategy.

The optimal solution is clear: if all players travel through the rendezvous point, the overall
cost is 1 + ✏. Unfortunately, this is not a Nash equilibrium: player k would pay slightly less
by switching to its opt-out strategy (which is a dominant strategy for this player). Given
that player k does not use the rendezvous in a Nash equilibrium, player k�1 does not either
— it would have to pay at least (1+ ✏)/(k�1) with player k absent, and its opt-out strategy
is cheaper. Iterating this argument, there is no Nash equilibrium in which any player travels
through v. Meanwhile, the outcome in which all players opt out is a Nash equilibrium.1

The cost of this (unique) Nash equilibrium is the kth Harmonic number
Pk

i=1
1
i , which lies

between ln k and ln k + 1.
The price of anarchy in the opt-out example isHk, which is much smaller than in the VHS

1We just performed a procedure called the iterated deletion of dominated strategies. When a unique
outcome survives this procedure, it is the unique Nash equilibrium.

3

1+ε

s1 s2 s3 sksk−1

t

1 1/2 1/3 1/(k−1)

0 0 0 0 0

1/k

. . . .

. . . .

. . . .

v

Figure 2: Opting out. There can be a unique Nash equilibrium with cost Hk times that of
an optimal outcome.

or Betamax example, but it is also a much more compelling example. This ine�ciency is not
the result of multiple or unreasonable equilibria, and it captures the observable phenomenon
that games with positive externalities can su↵er e�ciency loss from underparticipation.

2 The Price of Stability

The two examples in the previous section limit our ambitions: we cannot hope to prove
anything interesting about worst-case Nash equilibria of network cost-sharing games, and
even when there is a unique Nash equilibrium, it can cost Hk times that of an optimal
solution. This section proves the following guarantee on some Nash equilibrium of every
network cost-sharing game.

Theorem 2.1 (Price of Stability of Network Cost-Sharing Games [1]) In every net-
work cost-sharing game with k players, there exists a pure Nash equilibrium with cost at
most Hk times that of an optimal outcome.

The theorem asserts in particular that every network cost-sharing game possesses at least
one pure Nash equilibrium, which is already a non-trivial fact. The opt-out example shows
that the factor of Hk cannot be replaced by anything smaller.

The price of stability is the “optimistic” version of the price of anarchy, defined as the
ratio between the cost of the best Nash equilibrium and that of an optimal outcome. Thus
Theorem 2.1 asserts that the price of stability in every network cost-sharing game is at most
Hk. In terms of Figure 3, we are working with the entire set of pure Nash equilibria, but
arguing only about one of them, rather than about all of them. This is the first occasion
we’ve argued about anything other than the worst of a set of equilibria.

A bound on the price of stability, which only ensures that one equilibrium is approx-
imately optimal, provides a significantly weaker guarantee than a bound on the price of

4

Pure NE

Strong NE

Best Nash
Equilibrium

?

Figure 3: The best Nash equilibrium may be a strong NE, or not.

anarchy. It is well motivated in games where there is a third party that can propose an
initial outcome — “default behavior” for the players. It’s easy to find examples in real life
where an institution or society e↵ectively proposes one equilibrium out of many — even just
in choosing which side of the road everybody drives on. For a computer science example,
consider the problem of designing the default values of user-defined parameters of software
or a network protocol. One sensible approach is to set default parameters so that users are
not incentivized to change them and, subject to this, to optimize performance. The price
of stability quantifies the necessary degradation in solution quality caused by restricting
solutions to be equilibria.

Proof of Theorem 2.1: The proof of Theorem 2.1 goes through Rosenthal’s potential function,
introduced in Lecture 13. Recall the definition that we gave for atomic selfish routing games

�(P) =
X

e2E

feX

i=1

ce(i),

where ce denotes the per-player cost incurred on edge e. Network cost-sharing games have
exactly the same form as atomic selfish routing games — each of k players picks an si-ti
path in a network, and the player cost (1) is a sum of the edge costs, each of which depends
only on the number of players using it — with the per-player cost of an edge e with fe users
being �e/fe. Positive externalities are reflected by decreasing per-player cost functions, in
contrast to the nondecreasing cost functions that were appropriate in routing games. Thus
the potential function specializes to

�(P) =
X

e2E

feX

i=1

�e

i
=

X

e2E

�e

feX

i=1

1

i
(3)

in a network cost-sharing game.
In Lecture 13, we proved that the outcome that minimizes the potential function � is a

Nash equilibrium, and we noted at the time that the proof worked for any cost functions,
nondecreasing or not. That is, the strategic players are inadvertently striving to minimize �.
This argument proves that every network cost-sharing game has a pure Nash equilibrium —
the outcome that minimizes (3). For instance, in the VHS or Betamax example, the low-cost

5

Nash equilibrium minimizes (3) while the high-cost Nash equilibrium does not. While the
minimizer of the potential function need not be the lowest-cost Nash equilibrium (see the
Problems), we can prove that it has cost at most Hk times that of an optimal outcome.

The key observation is that the potential function in (3), whose numerical value we
don’t care about per se, approximates well the objective function (2) that we do care about.
Precisely, since �e  �e

Pfe

i=1
1
i  �e · Hk for every i 2 {1, 2, . . . , k}, we have

cost(P)  �(P)  Hk · cost(P) (4)

for every outcome P. The inequalities (4) state that Nash equilibria are e↵ectively trying to
minimize an approximately correct function �, so it makes sense that one such equilibrium
should approximately minimize the correct objective function.

To be precise, let P minimize � (a Nash equilibrium) and let P⇤ be an outcome of
minimum cost. We have

cost(P)  �(P)

 �(P⇤)

 Hk · �(P⇤),

where the first and last inequalities follow from (4) and the middle inequality follows from
the choice of P as the minimizer of �. This completes the proof of Theorem 2.1. ⌅

Open Question 1 (POS in Undirected Networks) In the VHS or Betamax example,
it doesn’t matter whether the network is directed or undirected. The opt-out example, on
the other hand, makes crucial use of a directed network (see the Exercises). An interesting
open question is whether or not the price of stability of every undirected network cost-sharing
game is bounded above by a constant; see [2] for the latest progress.

3 Strong Nash Equilibria and Their POA

This section gives an alternative approach to eluding the bad Nash equilibrium of the VHS or
Betamax example and proving meaningful bounds on the ine�ciency of equilibria in network
cost-sharing games. The plan is to once again argue about all (i.e., worst-case) equilibria,
but to first identify a strict subset of the pure Nash equilibria that we care about.

In general, when studying the ine�ciency of equilibria in a class of games, one should
zoom out (i.e., enlarge the set of equilibria) as much as possible subject to the existence
of meaningful POA bounds. We zoomed out in games with negative externalities, such as
routing and location games. The POA of pure Nash equilibria is close to 1 in these games,
so we focused on extending worst-case bounds to ever-larger sets of equilibria. This lecture,
where worst-case Nash equilibria can be highly suboptimal, we need to zoom in to recover
interesting ine�ciency bounds. In terms of Figure 3, we aim to bound the cost of all Nash
equilibria that fall into the smaller set.

6

To motivate the subclass of Nash equilibria that we study, let’s return to the VHS or
Betamax example. The high-cost Nash equilibrium is an equilibrium because a player that
deviates unilaterally would pay the full cost 1 + ✏ of the upper edge. What if a coalition of
two players deviated jointly to the upper edge? Each deviating player would be responsible
for a cost of only ⇡ 1

2 , so this would be a profitable deviation. Thus the high-cost Nash
equilibrium does not persist when coalitional deviations are allowed.

Definition 3.1 (Strong Nash Equilibrium) Let s be an outcome of a cost-minimization
game.

(a) Strategies s0A 2
Q

i2A Si are a beneficial deviation for a subset A of players if

Ci(s
0
A, s�A)  Ci(s)

for every player i 2 A, with the inequality holding strictly for at least one player of A.

(b) The outcome s is a strong Nash equilibrium if there is no coalition of players with a
beneficial deviation.

Nash equilibria can be thought of as strong Nash equilibria in which only singleton coalitions
are allowed. Every strong Nash equilibrium is thus a Nash equilibrium — that is, the former
concept is an equilibrium refinement of the latter.

To get a better feel for strong Nash equilibria, let’s return to our two examples. As
noted above, the high-cost Nash equilibrium of the VHS or Betamax example is not strong.
The low-case Nash equilibrium is strong. In fact, since a coalition of the entire player set is
allowed, intuition might suggest that strong Nash equilibria have to be optimal. This is the
case when all players share the same source and destination (see the Exercises), but not in
general. In the opt-out example, the same argument that proves that the outcome in which
everybody “opt outs” is the unique Nash equilibrium also proves that it is a strong Nash
equilibrium. Thus, the opt-out example has a strong Nash equilibrium with cost Hk times
that of the minimum-cost outcome. Our next result states that no worse example is possible.

Theorem 3.2 (POA of Strong Nash Equilibria in Network Cost-Sharing Games [4])
In every network cost-sharing game with k players, every strong Nash equilibrium has cost
at most Hk times that of an optimal outcome.

The guarantee in Theorem 3.2 di↵ers from that in Theorem 2.1 in two ways. On the positive
side, the guarantee holds for every strong Nash equilibrium, as opposed to just one Nash
equilibrium. If it were the case that every network cost-sharing game has at least one
strong Nash equilibrium, then Theorem 3.2 would be a strictly stronger statement than
Theorem 2.1. The second di↵erence, however, is that Theorem 3.2 does not assert existence,
and for good reason (see Figure 4 below). These two di↵erences render Theorems 2.1 and 3.2
incomparable guarantees.

Proof of Theorem 3.2: The proof bears some resemblance to our previous POA analyses,
but has a couple of extra ideas. One nice feature is that — perhaps unsurprisingly given

7

the bound that we’re trying to prove — the proof uses Rosenthal’s potential function in an
interesting way. Our previous POA analyses for classes of potential games (selfish routing,
location games) did not make use of the potential function.

The first step in our previous POA analyses was to invoke the Nash equilibrium hypothesis
once per player to generate upper bounds on players’ equilibrium costs. Here, we’re making
a strong hypothesis — we begin by letting P be an arbitrary strong Nash equilibrium rather
than an arbitrary Nash equilibrium — and aspire to a stronger conclusion. After all, what
we’re trying to prove is false for arbitrary Nash equilibria (as in the VHS or Betamax
example).

The natural place to start is with the most powerful coalition Ak = {1, 2, . . . , k} of all k
players. Why doesn’t this coalition collectively switch to the optimal outcome P⇤? It must
be that for some player i, Ci(P)  Ci(P⇤).2 Rename the players so that this is player k.

We want an upper bound on the equilibrium cost of every player, not just that of player k.
To ensure that we get an upper bound for a new player, we next invoke the strong Nash
equilibrium hypothesis for the coalition Ak�1 = {1, 2, . . . , k � 1} — why don’t these k � 1
players collectively deviate to P⇤

Ak�1
? There must be a player i 2 {1, 2, . . . , k � 1} with

Ci(P)  Ci(P⇤
Ak�1

, Pk). We rename the players of Ak�1 so that this is true for player k � 1
and continue.

Iterating the argument yields a renaming of the players as {1, 2, . . . , k} such that, for
every i,

Ci(P)  Ci(P
⇤
Ai

,P�Ai), (5)

where Ai = {1, 2, . . . , i}. Now that we have an upper bound on the equilibrium cost of every
player, we can sum (5) over the players to obtain

cost(P) =
kX

i=1

Ci(P)


kX

i=1

Ci(P
⇤
Ai

,P�Ai) (6)


kX

i=1

Ci(P
⇤
Ai

). (7)

Inequality (6) is immediate from (5). Inequality (7) follows from the fact that network cost-
sharing games have positive externalities — deleting players only decreases the number fe of
players using a given edge and hence only increases the cost share of each remaining player
on each edge. The motivation for the second inequality is to simplify our upper bound on
the equilibrium cost to the point that it becomes a telescoping sum (cf., the location game
analysis in Lecture 14).

Next we use the fact that network cost-sharing games are potential games. Recalling
the definition (3) of the potential function �, we see that the decrease in potential function

2This inequality is strict if at least one other player is better o↵, but we won’t need this stronger statement.

8

value from deleting a player is exactly the cost incurred by that player. Formally:

Ci(P
⇤
Ai

) =
X

e2P ⇤i

�e

f i
e

= �(P⇤
Ai

)� �(P⇤
Ai�1

), (8)

where f i
e denotes the number of players of Ai that use a path in P⇤ that includes edge e.

This equation is the special case of the Rosenthal potential function condition (see Lecture
14) in which a player deviates to the empty-set strategy.

Combining (7) with (8), we obtain

cost(P) 
kX

i=1

h
�(P⇤

Ai
)� �(P⇤

Ai�1
)
i

= �(P⇤)

 Hk · cost(P⇤),

where the inequality follows from our earlier observation (4) that the potential function �
can only overestimate the cost of an outcome by an Hk factor. This completes the proof of
Theorem 3.2. ⌅

4 Epilogue

Network cost-sharing games can have “unreasonable” bad Nash equilibria, and this motivates
the search for a subset of Nash equilibria with two properties: better worst-case bounds than
for arbitrary Nash equilibria, and a plausible narrative justifying restricting the analysis to
this subset. Both of our two solutions — best-case Nash equilibria and worst-case strong
Nash equilibria — meet the first criterion, admitting an approximation bound of Hk rather
than k. The justification for focusing on best-case Nash equilibria is strongest in settings
where a third party can propose an equilibrium, although there is additional experimental
evidence that potential function optimizers (as in Theorem 2.1) are more likely to be played
than other Nash equilibria [3]. Worst-case bounds for strong Nash equilibria are attractive
when such equilibria exist, as it is plausible that such equilibria are more likely to persist
than regular Nash equilibria. While strong Nash equilibria are guaranteed to exist in classes
of network cost-sharing games with su�ciently simple network structure [4], they do not,
unfortunately, exist in general. Figure 4 gives a concrete example; we leave verifying the
non-existence of strong Nash equilibria as an exercise.

References

[1] E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. SIAM Journal on
Computing, 38(4):1602–1623, 2008.

9

t1#

v#

2#

s1#

s2#

t2#

1#

3#

2#

1#

3#

Figure 4: A network cost-sharing game with no strong Nash equilibrium.

[2] V. Bilò, M. Flammini, and L. Moscardelli. The price of stability for undirected broadcast
network design with fair cost allocation is constant. In Proceedings of the 54rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 638–647, 2013.

[3] R. Chen and Y. Chen. The potential of social identity for equilibrium selection. American
Economic Review, 101(6):2562–2589, 2011.

[4] A. Epstein, M. Feldman, and Y. Mansour. Strong equilibrium in cost sharing connection
games. Games and Economic Behavior, 67(1):51–68, 2009.

[5] M. O. Jackson. Social and Economic Networks. Princeton, 2008.

10

CS364A: Algorithmic Game Theory

Lecture #16: Best-Response Dynamics

⇤

Tim Roughgarden†

November 13, 2013

1 Do Players Learn Equilibria?

In this lecture we segue into the third part of the course, which studies the following questions.

1. Do we expect strategic players do reach an equilibrium of a game, even in principle?

2. If so, will it happen quickly? As we’ll see, theoretical computer science is well suited
to contribute both positive and negative answers to this question.

3. If so, how does it happen? Which learning algorithms quickly converge to an equilib-
rium?

A�rmative answers to these questions are important because they justify equilibrium analy-
sis. Properties of equilibria, such as a near-optimal objective function value, are not obviously
relevant when players fail to find one. More generally, proving that natural learning algo-
rithms converge quickly to an equilibrium lends plausibility to the predictive power of an
equilibrium concept.

To reason about the three questions above, we require a behavioral model — “dynamics”
— for players when not at an equilibrium. Thus far, we’ve just assumed that equilibria
persist and that non-equilibria don’t. This lecture focuses on variations of “best-response
dynamics,” while the next two lectures study dynamics based on regret-minimization.

No concrete model of learning will be fully convincing. We aspire toward simple and
natural learning algorithms that lead to concrete and non-trivial predictions. Ideally, we
would like to reach the same conclusion via multiple di↵erent learning processes. Then,
even though we might not literally believe in any of the specific learning algorithms, we can
have some confidence that the conclusion is robust, and not an artifact of the details of a
particular learning process.

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

2 Best-Response Dynamics

Best-response dynamics is a straightforward procedure by which players search for a pure
Nash equilibrium (PNE) of a game. Specifically:

• While the current outcome s is not a PNE:

– Pick an arbitrary player i and an arbitrary beneficial deviation s0i for player i, and
move to the outcome (s0i, s�i).

There might be many choices for the deviating player i and for the beneficial deviation s0i.
We leave both underspecified for the moment, specializing it later as needed.1

Best-response dynamics can only halt at a PNE — it cycles in any game without one. It
can also cycle in games that have a PNE (see the Exercises).

Best-response dynamics is a perfect fit for potential games, discussed in passing in Lec-
tures 13 and 15. Recall that a potential game admits a real-valued function �, defined on
the outcomes of the game, such that for every outcome s, every player i, and every unilateral
deviation s0i by i,

�(s0i, s�i)� �(s) = Ci(s
0
i, s�i)� Ci(s), (1)

where Ci denotes player i’s cost (or negative payo↵) function. That is, a potential function
tracks deviators’ cost changes under unilateral deviations. Routing games (Lecture 12),
location games (Lecture 14), and network cost-sharing games (Lecture 15) are all potential
games.

We already know that potential games have PNE — the potential function minimizer is
one. Best-response dynamics o↵er a more constructive proof of this fact.

Proposition 2.1 ([3]) In a finite potential game, from an arbitrary initial outcome, best-
response dynamics converges to a PNE.

Proof: In every iteration of best-response dynamics, the deviator’s cost strictly decreases.
By (1), the potential function strictly decreases. Thus, no cycles are possible. Since the
game is finite, best-response dynamics eventually halts, necessarily at a PNE. ⌅

Proposition 2.1 gives an a�rmative answer to the first question of Section 1 for potential
games — there is a natural procedure by which players can reach a PNE. Next we turn to
the second question — how fast does this happen?

We consider three notions of “fast convergence,” from strongest to weakest. The best-case
scenario would be that best-response dynamics converges to a PNE in a polynomial number
of iterations.2 This strong conclusion is true when the potential function � can take on only

1
This procedure is sometimes called “better-response dynamics,” with the term “best-response dynamics”

reserved for the version in which s

0
i

is chosen to maximize i’s payo↵ (given s�i

).

2
Meaning polynomial in the number of players and the total number of players’ strategies. The number

of outcomes is exponential in the number of players — if there are n players each with two strategies, there

are 2

n

outcomes. Thus, the easy fact that the number of iterations of best-response dynamics is at most the

number of outcomes of a potential game is not interesting in games with many players.

2

polynomially many distinct values (e.g., if it is integer-valued and polynomially bounded).
In general, however, the potential function can take on exponentially many di↵erent values
and best-response dynamics can decrease the potential function very slowly, requiring an
exponential number of iterations to converge (see also Lecture 19).

3 Fast Convergence to ✏-PNE in Symmetric Routing

Games

The second notion of “fast convergence” settles for an approximate Nash equilibrium.

Definition 3.1 (✏-Pure Nash Equilibrium) For ✏ 2 [0, 1], an outcome s of a cost-minimization
game is an ✏-pure Nash equilibrium (✏-PNE) if, for every player i and deviation s0i 2 Si,

Ci(s
0
i, s�i) � (1� ✏) · Ci(s). (2)

This is essentially the same definition we used in Lecture 14, reparametrized for convenience.
An ✏-PNE in this lecture corresponds to a 1

1�✏ -PNE in Lecture 14.
We next study ✏-best response dynamics, in which we only permit moves that result in

“significant” improvements. This is the key to converging much faster than under standard
best-response dynamics. Precisely:

• While the current outcome s is not a ✏-PNE:

– Pick an arbitrary player i that has an ✏-move — a deviation s0i with Ci(s0i, s�i) <
(1�✏)Ci(s) — and an arbitrary such move for the player, and move to the outcome
(s0i, s�i).

✏-best response dynamics can only halt at an ✏-PNE, and it eventually converges in every
finite potential game. But how quickly?

Theorem 3.2 (Convergence of ✏-Best Response Dynamics [2]) Consider an atomic
selfish routing game where:

1. All players have a common source vertex and a common sink vertex.

2. Cost functions satisfy the “↵-bounded jump condition,” meaning ce(x + 1) 2 [ce(x), ↵ ·
ce(x + 1)] for every edge e and positive integer x.

3. The MaxGain variant of ✏-best-response dynamics is used: in every iteration, among
players with an ✏-move available, the player who can obtain the biggest absolute cost
decrease moves to its minimum-cost deviation.

Then, an ✏-PNE is reached in (k↵
✏ log �(s0)

�min
) iterations.

3

Non-trivial constructions show that the first two hypotheses are necessary — if either is
dropped, all variants of best-response dynamics take an exponential number of iterations
in the worst case [5]; see also Lecture 19. In the third hypothesis, it is important that
✏-best-response dynamics is used instead of standard best-response dynamics, but the re-
sult continues to hold for all natural variations of ✏-best-response dynamics (see Exercises).
Essentially, the only requirement is that every player is given the opportunity to move suf-
ficiently often [2].

The plan for proving Theorem 3.2 is to strengthen quantitatively the proof of Proposi-
tion 2.1 — to prove that every iteration of ✏-best-response dynamics decreases the potential
function by a lot. We need two lemmas. The first one guarantees the existence of a player
with high cost; if this player is chosen to move in an iteration, then the potential function
decreases significantly. The issue is that some other player might be chosen to move by
✏-best-response dynamics. The second lemma, which is the one that needs the hypotheses
in Theorem 3.2, proves that the player chosen to move has cost within an ↵ factor of that
of any other player. This is good enough for fast convergence.

Lemma 3.3 In every outcome s, there is a player i with Ci(s) � �(s)/k.

Proof: Recall from Lecture 12 that in a selfish routing game, the objective function is

cost(s) =
X

e2E

fe · ce(fe),

where fe is the number of players that choose a strategy including the edge e, while the
potential function is

�(s) =
X

e2E

kX

i=1

ce(i).

Since cost functions are nondecreasing, �(s)  cost(s) for every outcome s.
Since cost(s) =

Pk
i=1 Ci(s) in a selfish routing game, some player has cost at least as

large as the average, and
k

max
i=1

Ci(s) �
cost(s)

k
� �(s)

k
,

as claimed. ⌅

The next lemma e↵ectively relates the cost of the deviating player in ✏-best-response
dynamics to those of the other players.

Lemma 3.4 Suppose player i is chosen in the outcome s by MaxGain ✏-best-response dy-
namics, and takes the ✏-move s0i. Then

Ci(s)� Ci(s
0
i, s�i) �

✏

↵
Cj(s) (3)

for every other player j.

4

Note that the definition of an ✏-move is that Ci(s)�Ci(s0i, s�i) � ✏Ci(s). Thus (3) states
that, up to a factor of ↵, the cost decrease enjoyed by i is at least as large as that of any
other player taking an ✏-move (whether that player has an ✏-move available or not).

Proof of Lemma 3.4: Fix the player j. If j has an ✏-move — which decreases player j’s cost
by at least ✏Cj(s) — then (3) holds, even without the ↵, simply because i was chosen over j
in MaxGain dynamics.

The trickier case is when the player j has no ✏-move available. We use here that all
players have the same strategy set: if s0i is such a great deviation for player i, why isn’t it
for player j as well? That is, how can it be that

Ci(s
0
i, s�i)  (1� ✏)Ci(s) (4)

while
Cj(s

0
i, s�j) � (1� ✏)Cj(s)? (5)

A key observation is that the outcomes (s0i, s�i) and (s0i, s�j) have at least k�1 strategies
in common — s0i, played by i in the former outcome and by j in the latter, and the k � 2
fixed strategies played by players other than i and j. Since the two outcomes di↵er in only
one chosen strategy, the load on every edge di↵ers by at most one in the two outcomes. By
the ↵-bounded jump condition in Theorem 3.2, the cost of every edge di↵ers by at most a
factor of ↵ in the two outcomes. In particular:

Cj(s
0
i, s�j)  ↵ · Ci(s

0
i, s�i). (6)

Note that both sides of inequality (6) reference the player that chooses strategy s0i (j on the
left-hand side, i on the right).

The inequalities (4)–(6) are compatible only if Cj(s)  ↵ ·Ci(s). Combining this with (4)
yields Ci(s)� Ci(s0i) � ✏ · Ci(s) � ✏

↵ · Cj(s), as required. ⌅

Lemma 3.3 guarantees that there is always a player that, if chosen to make an ✏-move,
rapidly decreases the potential function. Lemma 3.4 extends the conclusion to the player
that is actually chosen to move. It is now a simple matter to upper bound the number of
iterations required for convergence.

Proof of Theorem 3.2: In an iteration of ✏-best-response dynamics where player i switches
to the (✏-move) s0i,

�(s)� �(s0i, s�i) = Ci(s)� Ci(s
0
i, s�i) (7)

� ✏

↵
· k
max
j=1

Cj(s) (8)

� ✏

↵k
· �(s), (9)

where equation (7) follows from the definition of a potential function (Lecture 14) and
inequalities (8) and (9) follow from Lemmas 3.4 and 3.3, respectively.

5

The upshot is that every iteration of ✏-best-response dynamics decreases the potential
function by at least a factor of (1 � ✏↵

k). Thus, every k
✏↵ iterations decrease the potential

function by a constant factor.3 Since the potential function begins at the value �(s0) and

cannot drop lower than �min, ✏-best-response dynamics converges in O(k
✏↵ log �(s0)

�min
) iterations.

⌅

Theorem 3.2 is good justification for performing equilibrium analysis in atomic selfish
routing games with a shared source and sink: many variations of the natural ✏-best-response
dynamics converge quickly to an approximate equilibrium. Unfortunately, Theorem 3.2
cannot be extended much further. In atomic routing games with multiple sources and sinks,
for example, ✏-best-response dynamics can require an exponential number of iterations to
converge, no matter how the deviating player and deviation in each iteration are chosen [5].

4 Fast Convergence to Low-Cost Outcomes in Smooth

Potential Games

This section explores our third and final notion of “fast convergence”: quickly reaching
outcomes with objective function value as good as if players had successfully converged to an
(approximate) equilibrium. This is a weaker guarantee — it does not imply convergence to
an approximate equilibrium — but is still quite compelling. In situations where the primary
reason for equilibrium analysis is a performance (i.e., POA) bound, this weaker guarantee is
a costless surrogate for equilibrium convergence.

Weakening our notion of fast convergence enables positive results with significantly wider
reach. The next result applies to all potential games that are smooth (Lecture 14), including
routing games (with arbitrary sources, sinks, and cost functions) and location games.

Theorem 4.1 ([1, 4]) Consider a (�, µ)-smooth cost-minimization game4 with a positive
potential function � that satisfies �(s)  cost(s) for every outcome s. Let s0, . . . , sT be a
sequence generated by MaxGain best-response dynamics, s⇤ a minimum-cost outcome, and
⌘ > 0 a parameter. Then all but

O

✓
k

⌘(1� µ)
log

�(s0)

�min

◆
(10)

outcomes st satisfy

cost(st) 
✓

�

1� µ
+ ⌘

◆
· cost(s⇤),

where �min is the minimum potential function value of an outcome and k is the number of
players.

3
To see this, note that (1� x)

1/x  (e

�x

)

1/x

=

1
e

for x 2 (0, 1).

4
Recall from Lecture 14 that this means that

P
k

i=1 C

i

(s

⇤
i

, s�i

)  � · cost(s⇤) + µ · cost(s) for every pair

s, s⇤ of outcomes.

6

The dynamics in Theorem 4.1 di↵er from those in Theorem 3.2 only in that the restriction
to ✏-moves is dropped. That is, in each iteration, the player i and deviation s0i are chosen to
maximize Ci(s)� Ci(s0i, s�i).

Theorem 4.1 states that for all but a small number of outcomes in the sequence, the cost
is essentially as low as if best-response dynamics had already converged to a PNE. These
“bad outcomes” need not be successive — since an iteration of best-response dynamics can
strictly increase the overall cost, a “good outcome” can be followed by a bad one.

Proof of Theorem 4.1: In the proof of Theorem 3.2, we showed that every iteration of
the dynamics significantly decreased the potential function, thus limiting the number of
iterations. Here, the plan is to show that whenever there is a bad state s — one that fails to
obey the guarantee in (10) — the potential function decreases significantly. This will yield
the desired bound on the number of bad states.

For an outcome st, define �i(st) = Ci(st) � Ci(s⇤i , s
t
�i) as the cost decrease i experiences

by switching to s⇤i , and �(st) =
Pk

i=1 �i(st). The value �(st) is nonpositive when st is a
PNE, but in general it can be positive or negative. Using this notation and the smoothness
assumption, we can derive

cost(st) 
kX

i=1

Ci(s
t) =

kX

i=1

⇥
Ci(s

⇤
i , s

t
�i) + �i(s

t)
⇤
 � · cost(s⇤) + µ · cost(st) +

kX

i=1

�i(s
t),

and hence

cost(st)  �

1� µ
· cost(s⇤) +

1

1� µ

kX

i=1

�i(s
t).

This inequality is stating that the cost of an outcome st is large only when the amountP
i �i(st) players have to gain by unilateral deviations is large. It reduces the theorem to

proving that only O(k
⌘(1�µ) log �(s0)

�min
) states st are bad. Along the lines of Theorem 3.2, we

next prove that bad states lead to a large decrease in the potential function.
In a bad state st, since � underestimates cost,

�(st) � ⌘(1� µ)cost(st) � ⌘(1� µ)�(st).

If a player i chooses a best response in the outcome st, its cost decreases by at least �i(st).
Thus, in a bad state st, the cost of the player chosen by maximum-gain best-response
dynamics decreases by at least ⌘(1�µ)

k �(st). Since � is a potential function, �(st+1) 
(1� ⌘(1�µ)

k)�(st) whenever st is a bad state. This, together with the fact that � can only de-
crease in each iteration, implies that after k

⌘(1�µ) bad states the potential function decreases

by a constant factor. This implies the claimed bound of O(k
⌘(1�µ) log �(s0)

�min
) bad states in all.

⌅

7

References

[1] B. Awerbuch, Y. Azar, A. Epstein, V. S. Mirrkoni, and A. Skopalik. Fast convergence to
nearly optimal solutions in potential games. In Proceedings of the 9th ACM Conference
on Electronic Commerce (EC), pages 264–273, 2008.

[2] S. Chien and A. Sinclair. Convergence to approximate Nash equilibria in congestion
games. Games and Economic Behavior, 71(2):315–327, 2011.

[3] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior,
14(1):124–143, 1996.

[4] T. Roughgarden. Intrinsic robustness of the price of anarchy. In 41st ACM Symposium
on Theory of Computing (STOC), pages 513–522, 2009.

[5] Alexander Skopalik and Berthold Vcking. Inapproximability of pure Nash equilibria.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC),
pages 355–364, 2008.

8

CS364A: Algorithmic Game Theory

Lecture #17: No-Regret Dynamics

⇤

Tim Roughgarden†

November 18, 2013

This lecture continues to study the questions introduced last time. Do strategic players
reach an equilibrium of a game? How quickly? By what learning processes? Positive results
on these questions justify equilibrium analysis, including bounds on the price of anarchy.

Last lecture focused on best-response dynamics. These dynamics are most relevant for
potential games, which cover many but not all interesting applications. This lecture, we
study a second fundamental class of learning dynamics — no-regret dynamics. An attractive
feature of these dynamics is their rapid convergence to an approximate equilibrium — a
coarse correlated equilibrium (Lecture 13), not generally a Nash equilibrium — in arbitrary
games.

1 External Regret

1.1 The Model

Most of the this lecture studies the regret-minimization problem, which concerns a single
decision-maker playing a game against an adversary. Section 3 connects this single-player
theory to multi-player games and their coarse correlated equilibria.

Consider a set A of n � 2 actions. The setup is as follows.

• At time t = 1, 2, . . . , T :

– A decision-maker picks a mixed strategy pt — that is, a probability distribution
— over its actions A.

– An adversary picks a cost vector ct : A! [0, 1].1

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1The important assumption is that costs are bounded. See the Exercises for extensions of today’s results

to negative costs (i.e., payo↵s) and to costs in [0, c
max

] instead of in [0, 1].

1

– An action at is chosen according to the distribution pt, and the decision-maker
incurs cost ct(at). The decision-maker learns the entire cost vector ct, not just the
realized cost ct(at).2

For example, A could represent di↵erent investment strategies, or di↵erent driving routes
between home and work. When we return to multi-player games (Section 3), the action
set will be the strategy set of a single player, and the cost vector will be induced by the
strategies chosen by all of the other players.

1.2 Lower Bounds

We seek a “good” algorithm for online decision-making problems of the above type. But the
setup above seems a bit unfair, no? The adversary is allowed to choose a cost function after
the decision-maker has committed to a mixed strategy. This asymmetry motivates asking
what kind of guarantee we could possibly hope for in such a model. We next consider three
examples that show limitations on what is possible.

Example 1.1 (Impossibility w.r.t. the Best Action Sequence) There is no hope of
comparing the cost of an online decision-making algorithm to the cost of the best action
sequence in hindsight — the latter quantity

PT
t=1 mina2A ct(a) is simply too strong a bench-

mark.
For instance, suppose A = 2 and fix an arbitrary online decision-making algorithm. Each

day t, the adversary chooses the cost vector ct as follows: if the algorithm plays the first
strategy with probability at least 1

2 then ct is (1 0); otherwise the cost vector is (0 1). The
adversary has forced the expected cost of the algorithm to be at least T

2 while ensuring that
the cost of the best action sequence in hindsight is 0.

Example 1.1 motivates the following important definitions. Rather than comparing the
expected cost of an algorithm to that of the best action sequence in hindsight, we compare
it to the cost incurred by the best fixed action in hindsight. That is, our benchmark will be
mina2A

PT
t=1 ct(a) rather than

PT
t=1 mina2A ct(a).

Definition 1.2 The (time-averaged) regret of the action sequence a1,aT with respect to
the action a is

1

T

"
TX

t=1

ct(at)�
TX

i=1

ct(a)

#
. (1)

In this lecture, “regret” will always refer to Definition 1.2. Next lecture we discuss another
notion of regret.

Definition 1.3 (No-Regret Algorithm) Let A be an online decision-making algorithm.

2The bandit model, where the decision-maker only learns the realized cost, has also been studied exten-
sively (e.g. [2]). The guarantees presented in this lecture carry over, with somewhat worse bounds and more
complex algorithms, to the bandit model as well.

2

(a) An adversary for A is a function that takes as input the day t, the mixed strategies
p1, . . . , pt produced by A on the first t days, and the realized actions a1, . . . , at�1 of the
first t� 1 days, and produces as output a cost vector ct : [0, 1]! A.

(b) An online decision-making algorithm has no (external) regret if for every adversary for
it, the expected regret (1) with respect to every action a 2 A is o(1) as T !1.

Remark 1.4 (Combining Expert Advice) The problem of designing a no-regret algo-
rithm is sometimes called “combining expert advice” — if we think of each action an “ex-
pert” that makes recommendations, then a no-regret algorithms performs asymptotically as
well as the best expert.

Remark 1.5 (Adaptive vs. Oblivious Adversaries) The adversary in Definition 1.3 is
sometimes called an adaptive adversary. An oblivious adversary is the special case in which
the cost vector ct depends only on t (and on the algorithm A).

For this lecture, we’ll adopt the no-regret guarantee of Definition 1.3 as the “holy grail”
in the design of online decision-making algorithms. The first reason is that, as we’ll see in
Section 2, this goal can be achieved by simple and natural learning algorithms. The second
reason is that the goal is non-trivial: as the examples below make clear, some ingenuity
is required to achieve it. The third reason is that, when we pass to multi-player games
in Section 3, no-regret guarantees will translate directly to coarse correlated equilibrium
conditions.

Remark 1.6 In regret-minimization, one usually thinks of the number n of actions as fixed
as the time horizon T tends to infinity. In a no-regret algorithm, the (time-averaged) regret
can be a function of n but tends to 0 as the time horizon grows.

The next example rules out deterministic no-regret algorithms.

Example 1.7 (Randomization Is Necessary for No Regret) A simple consequence of
the asymmetry between the decision-maker and the adversary is that there does not exist
a no-regret deterministic algorithm. To see this, suppose there are n � 2 actions and fix a
deterministic algorithm. At each time step t, the algorithm commits to a single action at.
The obvious strategy for the adversary is to set the cost of action at to be 1, and the cost of
every other action to be 0. Then, the cost of the algorithm is T while the cost of the best
action in hindsight is at most T

n
. Thus, even when there are only 2 actions, the algorithm

has constant regret (as T !1) with respect to some action a.

The next example does not rule out (randomized) no-regret algorithms, though it does
limit the rate at which regret can vanish as the time horizon T grows.

Example 1.8 (⌦(
p

(ln n)/T) Regret Lower Bound) The next example shows that, even
with only n = 2 actions, no (randomized) algorithm has expected regret vanishing faster than
the rate ⇥(1/

p
T). A similar argument shows that, with n actions, expected regret cannot

vanish faster than ⇥(
p

(ln n)/T).

3

Consider an adversary that, independently on each day T , chooses uniformly at random
between the cost vectors (1 0) and (0 1). No matter how smart or dumb an online decision-
making algorithm is, its cumulative expected cost is exactly T

2 . In hindsight, however, with

constant probability one of the two fixed actions has cumulative cost only T
2 �⇥(

p
T). The

reason is that if you flip T fair coins, while the expected number of heads is T
2 , the standard

deviation is ⇥(
p

T). This implies that there is a distribution over 2T (oblivious) adversaries
such that every algorithm has expected regret ⌦(1/

p
T), where the expectation is over the

algorithm’s coin flips and the choice of the adversary. It follows that for every algorithm,
there exists an (oblivious) adversary for which the algorithm has expected regret ⌦(1/

p
T).

2 The Multiplicative Weights Algorithm

2.1 No-Regret Algorithms Exist

The most important result in this lecture is that no-regret algorithms exist. Next lecture
we’ll see that this fact alone has some amazing consequences. Even better, there are simple
and natural such algorithms — while not a literal description of human player behavior, the
guiding principles of the following algorithm are recognizable from the way many people learn
and make decisions. Finally, the algorithm we discuss next has optimal regret, matching the
lower bound provided by Example 1.8.

Theorem 2.1 ([3, 4], etc.) There exist simple no-regret algorithms with expected regret
O(

p
(ln n)/T) with respect to every fixed action.

An immediately corollary is that a logarithmic (in n) number of iterations su�ce to drive
the expected regret down to a small constant.

Corollary 2.2 There exists an online decision-making algorithm that, for every ✏ > 0, has
expected regret at most ✏ with respect to every fixed action after O((ln n)/✏2) iterations.

2.2 The Algorithm

We next discuss the multiplicative weights (MW) algorithm, which is also sometimes called
Randomized Weighted Majority or Hedge. This algorithm has numerous applications beyond
online decision-making [1]. Its design follows two guiding principles.

1. Past performance of actions should guide which action is chosen now. Since the action
choice must be randomized (Example 1.7), the probability of choosing an action should
be increasing in its past performance (i.e., decreasing in its cumulative cost).

2. Many instantiations of the above idea yield no-regret algorithms. For optimal regret
bounds, however, it is important to aggressively punish bad actions — when a previ-
ously good action turns sour, the probability with which it is played should decrease
at an exponential rate.

4

Here is a formal description of the MW algorithm. It maintains a weight, intuitively
a “credibility,” for each action. At each time step the algorithm chooses an action with
probability proportional to its current weight. The weight of each action can only decrease,
and the rate of decrease depends on the cost of the action.

1. Initialize w1(a) = 1 for every a 2 A.

2. For t = 1, 2, . . . , T :

(a) Play an action according to the distribution pt := wt/�t, where �t =
P

a2A wt(a)
is the sum of the weights.

(b) Given the cost vector ct, decrease weights using the formula wt+1(a) = wt(a) ·(1�
✏)ct(a) for every action a 2 A.3

For example, if all costs are either 0 or 1, then the weight of each action either stays the
same (if ct(a) = 0) or gets multiplied by (1� ✏) (if ct(a) = 1). We’ll choose an exact value for
✏ later; it will be between 0 and 1

2 . For intuition, note that as ✏ grows small, the distribution
pt tends to the uniform distribution. Thus small values of ✏ encourage exploration. As ✏
tends to 1, the distribution pt tends to the distribution that places all its mass on the action
that has incurred the smallest cumulative cost so far. Thus large values of ✏ encourage
“exploitation,” and ✏ is a knob for interpolating between these two extremes. The MW
algorithm is obviously simple to implement — the only requirement is to maintain a weight
for each action.

2.3 The Analysis

This section proves the bound in Theorem 2.1 for the MW algorithm. We can restrict
attention to oblivious adversaries (as defined in Remark 1.5) that fix a sequence of cost
vectors c1, . . . , cT up front. The intuitive reason is that the behavior of the MW algorithm is
independent of the realized actions a1, . . . , at: the distribution pt chosen by the algorithm is
a deterministic function of c1, . . . , ct�1. Thus, there is no reason for a worst-case adversary
for the MW algorithm to condition its cost vectors on previous realized actions. Similarly,
a worst-case adversary does not need to explicitly condition on the distributions p1, . . . , pt,
since these are uniquely determined by the adversary’s previous cost vectors c1, . . . , ct�1.4

Fix an arbitrary sequence c1, . . . , cT of cost vectors. Recall �t =
P

a2A wt(a) denotes the
sum of the actions’ weights at time t. The weight of every action (and hence �t) can only
decrease with t. The plan for the proof is to relate the two quantities we care about, the
expected cost of the MW algorithm and the cost of the best fixed action, to �T . The bound
will then follow from some simple algebra and approximations.

3Other update steps, like wt+1(a) = wt(a) · (1� ✏ct(a)), also work; see the Exercises.
4A bit more formally, one can solve for the worst adaptive adversary for the MW algorithm using backward

induction, and the result is an oblivious adversary.

5

The first step is to show that if there is a good fixed action, then the weight of this
action single-handedly shows that the final value �T is pretty big. Formally, define OPT :=PT

t=1 ct(a⇤) as the cumulative cost for the best fixed action a⇤. Then,

�T � wT (a⇤)

= w1(a⇤)| {z }
=1

TY

t=1

(1� ✏)ct(a⇤)

= (1� ✏)OPT .

This connects our intermediate quantity �T with one of the two quantities that we care
about, namely OPT .

The second step, and the step which is special to the MW algorithm and its close cousins,
is that the sum of weights �t decreases exponentially fast with the expected cost of the MW
algorithm. This implies that the algorithm can only incur large cost if all fixed actions are
bad.

Precisely, the expected cost of the MW algorithm at time t is

X

a2A

pt(a) · ct(a) =
X

a2A

wt(a)

�t
· ct(a). (2)

Next, to understand �t+1 as a function of �t and the expected cost (2), we write

�t+1 =
X

a2A

wt+1(a)

=
X

a2A

wt(a) · (1� ✏)ct(a)


X

e2A

wt(a) · (1� ✏ct(a)) (3)

= �t(1� ✏⌫t),

where (3) follows from the fact that (1 � ✏)x  1 � ✏x for ✏ 2 [0, 1
2] and x 2 [0, 1] (see

the Exercises), and ⌫t denotes the expected cost (2) of the MW algorithm at time t. As
promised, the expected algorithm cost (and ✏) govern the rate at which the total weight �t

decreases.
Our goal is to upper bound the cumulative expected cost

Pt
i=1 ⌫t of the MW algorithm

in terms of OPT . We’ve related these quantities through �T :

(1� ✏)OPT  �T  �1
|{z}
=n

TY

t=1

(1� ✏⌫t)

and hence

OPT · ln(1� ✏)  ln n +
TX

t=1

ln(1� ✏⌫t).

6

We want to extract the ⌫t’s from the clutches of the logarithm, so it makes sense to recall
the Taylor expansion

ln(1� x) = �x� x2

2 �
x3

3 � · · · .

By throwing away all (negative) terms but the first, we can use this expansion to upper bound
ln(1 � ✏⌫t) by �✏⌫t. While we’re at it, we may as well lower bound ln(1 � ✏) by throwing
out all terms but the first two, and doubling the second term to compensate (assuming here
that ✏  1

2), yielding �✏� ✏2. Summarizing, for ✏ 2 (0, 1
2] we have

OPT ·
⇥
�✏� ✏2

⇤
 ln n +

TX

t=1

(�✏⌫t)

and hence
TX

t=1

⌫t  OPT · (1 + ✏) +
ln n

✏
 OPT + ✏T +

ln n

✏
, (4)

where in the second inequality we use the very weak upper bound that, since costs are at
most 1, OPT is at most T .

We now set the free parameter ✏ in the MW algorithm to equalize the two error terms
in (4) — that is, to

p
ln n/T . Then, the cumulative expected cost of the MW algorithm is

at most 2
p

T ln n more than the cumulative cost of the best fixed action; dividing both sides
by T shows that (per-time-step) regret is at most 2

p
ln n/T . This completes the proof of

Theorem 2.1.

Remark 2.3 (When T Is Unknown) In setting the parameter ✏, we assumed that the
time horizon T is known a priori. When this is not the case, the algorithm can be modified

as follows: at day t, use the value ✏ =
q

ln n/T̂ , where T̂ is the smallest power of 2 larger than

t. The regret guarantee of Theorem 2.1 carries over to this algorithm (see the Exercises).

Recall that Example 1.8 shows that Theorem 2.1 is optimal up the constant in the additive
term. Corollary 2.2 is also worth remembering — only 4 ln n

✏2
iterations of the MW algorithm

are necessary to achieve expected regret at most ✏.

3 No-Regret Dynamics

We now pass from single-player to multi-player settings. We use the language of cost-
minimization games (Lecture 13); there is an obvious analog for payo↵-maximization games.
In each time step t = 1, 2, . . . , T of no-regret dynamics:

1. Each player i simultaneously and independently chooses a mixed strategy pt
i using a

no-regret algorithm.

2. Each player i receives a cost vector ct
i, where ct

i(si) is the expected cost of strat-
egy si when the other players play their chosen mixed strategies. That is, ct

i(si) =
Es�i⇠��i [Ci(si, s�i)], where ��i =

Q
j 6=i �j.

7

No-regret dynamics are well defined because no-regret algorithms exist (Theorem 2.1). Each
player can use whatever no-regret algorithm it wants. Players move simultaneously, un-
like in best-response dynamics, but the following results also extend to players that move
sequentially (see the Exercises).

No-regret dynamics can be implemented very e�ciently. If each player uses the MW
algorithm, for example, then in each iteration each player does a simple update of one
weight per strategy, and only O(ln n

✏2
) iterations of this are required before every player has

expected regret at most ✏ for every strategy. (Here n is the maximum size of a player’s
strategy set.) The next result is simple but important: the time-averaged history of joint
play under no-regret dynamics converges to the set of coarse correlated equilibrium — the
biggest set in our hierarchy of equilibria (Lecture 13). This forges a fundamental connection
between a static equilibrium concept and outcomes generated by natural learning dynamics.

Proposition 3.1 Suppose after T iterations of no-regret dynamics, every player of a cost-
minimization game has regret at most ✏ for each of its strategies. Let �t =

Qk
i=1 pt

i denote

the outcome distribution at time t and � = 1
T

PT
t=1 �t the time-averaged history of these

distributions. Then � is an ✏-approximate coarse correlated equilibrium, in the sense that

Es⇠�[Ci(s)]  Es⇠�[Ci(s
0
i, s�i)] + ✏

for every player i and unilateral deviation s0i.

Proof: By definition, for every player i,

Es⇠�[Ci(s)] =
1

T

TX

t=1

Es⇠�t [Ci(s)] (5)

and

Es⇠�[Ci(s
0
i, s�i)] =

1

T

TX

t=1

Es⇠�t [Ci(s
0
i, s�i)] . (6)

The right-hand sides of (5) and (6) are the time-averaged expected costs of player i when
playing according to its no-regret algorithm and when playing the fixed action s0i every day,
respectively. Since every player has regret at most ✏, the former is at most ✏ more than the
latter. This verifies the approximate coarse correlated equilibrium condition. ⌅

Remark 3.2 For Proposition 3.1, it is important that the decision-making algorithms used
by the players have no regret with respect to adaptive adversaries (Remark 1.5). The mixed
strategy chosen by player i at time t a↵ects the cost vectors ct

j received by the other players
j 6= i at time t, hence it a↵ects their chosen strategies at future time steps, and hence it
a↵ects the cost vectors received by player i at future time steps. That is, when other players
are themselves using adaptive learning algorithms to choose strategies, they correspond to
an adaptive adversary.

8

In Lecture 14 we proved that POA bounds for smooth games — including all of the
examples we’ve studied in this course — automatically extend to coarse correlated equilibria.
With an approximate equilibrium, the POA bounds remain approximately correct.

Corollary 3.3 Suppose after T iterations of no-regret dynamics, player i has expected regret
at most Ri for each of its actions. Then the time-averaged expected objective function value
1
T
Es⇠�i [cost(s)] is at most

�

1� µ
cost(s⇤) +

Pk
i=1 Ri

1� µ
.

In particular, as T ! 1,
Pk

i=1 Ri ! 0 and the guarantee converges to the standard POA
bound �

1�µ
. We leave the proof of Corollary 3.3 as an exercise.

4 Epilogue

The key take-home points of this lecture are:

1. Very simple learning algorithms lead remarkably quickly to (approximate) coarse cor-
related equilibria (CCE).

2. In this sense, CCE are unusually tractable, and hence unusually plausible as a predic-
tion for player behavior.

3. Since POA bounds in smooth games apply to no-regret dynamics, they are particularly
robust to the behavioral model.

References

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[2] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

[3] J. Hannan. Approximation to Bayes risk in repeated play. Ccontributions to the Theory
of Games, 3:97–139, 1957.

[4] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

9

CS364A: Algorithmic Game Theory

Lecture #18: From External Regret to Swap Regret and

the Minimax Theorem

⇤

Tim Roughgarden†

November 20, 2013

1 Swap Regret and Correlated Equilibria

Last lecture we proved that coarse correlated equilibria (CCE) are tractable, in a satisfy-
ing sense: there are simple and computationally e�cient learning procedures that converge
quickly to the set of CCE. Of course, if anything in our equilibrium hierarchy (Figure 1) was
going to be tractable, it was going to be CCE, the biggest set.

The good researcher is never satisfied and always seeks stronger results. What can we say
if we zoom in to the next-biggest set, the correlated equilibria? The first part of this lecture
shows that correlated equilibria are also tractable. We’ll give computationally e�cient — if
not quite as simple — learning procedures that converge fairly quickly to this set.

Remark 1.1 (Learning vs. Linear Programming) The computational tractability of cor-
related and coarse correlated equilibria — and mixed Nash equilibria of two-player zero-sum
games, see Section 3 — can also be demonstrated by formulating linear programs for them.
A bonus of the linear programming approach is that an exact, rather than an approximate,
equilibrium can be computed in polynomial time. Another advantage is that linear optimiza-
tion over the set of equilibria remains computationally tractable, while learning procedures
merely guide behavior to somewhere in the set. On the other hand, exact linear programming
algorithms seem wholly unrelated to any reasonable model of how agents learn in games.

Recall from Lecture 13 and Exercise 59 that a correlated equilibrium of a cost-minimization
game is a distribution � over outcomes such that, for every player i with strategy set Si and
every switching function � : Si ! Si,

E

s⇠�[Ci(s)]  E

s⇠�[Ci(�(si), s�i)] .

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

PNE

MNE

CorEq

CCE

easy to compute and learn

subject of this lecture

Figure 1: The hierarchy of equilibria from Lecture 13.

For example, in the “tra�c intersection game” of Lecture 13, mixing 50/50 between the two
pure Nash equilibria gives a (non-Nash) correlated equilibria.

Recall the online decision-making setting from last time: every day t = 1, 2, . . . , T , a
decision-maker commits to a distribution p

t over its n actions A, then an adversary chooses
a cost function c

t : A ! [0, 1], and finally an action a

t is chosen according to p

t, resulting
in cost c

t(at) to the decision-maker. Last lecture described an algorithm with time-averaged
expected cost as small as that of every fixed action, up to an error term that goes to 0
as the time horizon T grows. When every player of a game uses such a no-external-regret
algorithm to choose a strategy at each time step, the time-averaged history of joint play
is an approximate CCE. Is there a more stringent regret notion that enjoys an analogous
correspondence with correlated equilibria?

Definition 1.2 An online decision-making algorithm has no swap regret if for every adver-
sary for it, the expected swap regret

1

T

"
TX

t=1

c

t(at)�
TX

i=1

c

t(�(at))

#
(1)

with respect to every switching function � : A! A is o(1) as T !1.

Because fixed actions are the special case of constant switching functions, an algorithm with
no swap regret also has no external regret.

In each time step t of no-swap-regret dynamics, every player i independently chooses a
mixed strategy p

t
i according to a no-swap-regret algorithm. Cost vectors are defined as in

no-regret dynamics: c

t
i(si) is the expected cost of strategy si 2 Si, given that every other

player j plays its chosen mixed strategy p

t
j. The connection between correlated equilibria

and no-swap-regret dynamics is the same as that between CCE and no-(external-)regret
dynamics.

2

Proposition 1.3 Suppose after T iterations of no-swap-regret dynamics, every player of a
cost-minimization game has swap regret at most ✏ for each of its switching functions. Let
�

t =
Qk

i=1 p

t
i denote the outcome distribution at time t and � = 1

T

PT
t=1 �

t the time-averaged
history of these distributions. Then � is an ✏-approximate correlated equilibrium, in the sense
that

E

s⇠�[Ci(s)]  E

s⇠�[Ci(�(si), s�i)] + ✏

for every player i and switching function � : Si ! Si.

2 A Black-Box Reduction From Swap Regret to Ex-

ternal Regret

This section gives a “black-box reduction” from the problem of designing a no-swap-regret
algorithm to that of designing a no-external-regret algorithm — a problem that we already
solved in the previous lecture.

Theorem 2.1 ([1]) If there is a no-external-regret algorithm, then there is a no-swap-regret
algorithm.

As we’ll see, the reduction in Theorem 2.1 also preserves computational e�ciency. For ex-
ample, plugging the multiplicative weights algorithm into this reduction yields a polynomial-
time no-swap-regret algorithm. We conclude that correlated equilibria are tractable in the
same strong sense as coarse correlated equilibria.

Proof of Theorem 2.1: The reduction is very natural, one that you’d hope would work. It
requires one clever trick, as we’ll see at the end of the proof.

Let n denote the number of actions. Let M1, . . . ,Mn denote n di↵erent no-(external-)regret
algorithms, for example n instantiations of the multiplicative weights algorithm. Each of
these algorithms is poised to produce probability distributions over actions and receive cost
vectors as feedback. Very roughly, we can think of algorithm Mj as responsible for protecting
against profitable deviations from action j to other actions.

The “master algorithm” M is as follows; see also Figure 2.

1. At time t = 1, 2, . . . , T :

(a) Receive distributions q

t
1, . . . , q

t
n over actions from the algorithms M1, . . . ,Mn.

(b) Compute and output a consensus distribution p

t.

(c) Receive a cost vector c

t from the adversary.

(d) Give algorithm Mj the cost vector p

t(j) · c

t.

We discuss how to compute the consensus distribution p

t from the distributions q

t
1, . . . , q

t
n

at the end of the proof; this is the clever trick in the reduction. The fourth step parcels out

3

M1

M2

Mn

pt

ct

qt
1

pt
(1) · ct

qt
2

qt
n

pt
(n) · ct

pt
(2) · ct

Figure 2: Blackbox reduction from swap regret to external regret.

the true cost vector c

t to the no-external-regret algorithms, scaled according to the current
relevance (i.e., p

t(j)) of the algorithm.
Our hope is that we can piggyback on the no-external-regret guarantee provided by each

algorithm Mj and conclude a no-swap-regret guarantee for the master algorithm M . Let’s
take stock of what we’ve got and what we want, parameterized by our computed consensus
distributions p

1
, . . . , p

T .
The time-averaged expected cost of the master algorithm is

1

T

TX

t=1

nX

i=1

p

t(i) · c

t(i). (2)

The time-averaged expected cost under a switching function � : A! A is

1

T

TX

t=1

nX

i=1

p

t(i) · c

t(�(i)). (3)

Remember that our goal is to prove that (2) is at most (3), plus a term that goes to 0 as
T !1, for every switching function �.

Now adopt the perspective of an algorithm Mj. This algorithm believes that actions are
being chosen according to its recommended distributions q

1
j , . . . , q

T
j and that the true cost

vectors are p

1(j) ·c1
, . . . , p

T (j) ·cT . Thus, the algorithm perceives its time-averaged expected
cost as

1

T

TX

t=1

nX

i=1

q

t
j(i)

�
p

t(j)ct(i)
�
. (4)

4

Since Mj is a no-regret algorithm, its perceived cost (4) is, up to the regret term, at most
that of every fixed action k 2 A:

1

T

TX

t=1

p

t(j)ct(k) + Rj, (5)

where Rj ! 0 as T !1.
Now fix a switching function �. Summing the inequality between (4) and (5) over all

j = 1, 2, . . . , n, with k instantiated as �(j) in (5), yields

1

T

TX

t=1

nX

i=1

nX

j=1

q

t
j(i)p

t(j)ct(i)  1

T

TX

t=1

nX

j=1

p

t(j)ct(�(j)) +
nX

j=1

Rj. (6)

Observe that the right-hand side of (6) is exactly (3), up to a term
Pn

j=1 Rj that goes to 0
as T !1. (Recall that we think of n as fixed as T !1.) Indeed, we chose the splitting of
the cost vector c

t amongst the no-external-regret algorithms M1, . . . ,Mn to guarantee this
property.

If we can choose the consensus distributions p

1
, . . . , p

T so that (2) and the left-hand side
of (6) coincide, then the reduction will be complete. We show how to choose each p

t so that,
for each i 2 A and t = 1, 2, . . . , T ,

p

t(i) =
nX

j=1

q

t
j(i)p

t(j). (7)

The left- and right-hand sides of (7) are the coe�cients of c

t(i) in (2) and in the left-hand
side of (6), respectively.

The equations (7) might be familiar as those defining the stationary distribution of a
Markov chain. This is the key trick in the reduction: given distributions q

t
1, . . . , q

t
n from

algorithms M1, . . . ,Mn at time t, form the following Markov chain (Figure 3): the set of
states is A = {1, 2, . . . , n}, and for every i, j 2 A, the transition probability from j to i

is q

t
j(i). That is, the distribution q

t
j specifies the transition probabilities out of state j. A

probability distribution p

t satisfies (7) if and only if it is the stationary distribution of this
Markov chain. At least one such distribution exists, and one can be computed in polynomial
time via an eigenvector computation (see e.g. [3]). This completes the reduction. ⌅

Our choice of the consensus distribution p

t from the no-external-regret algorithms’ sug-
gestions q

t
1, . . . , q

t
n is uniquely defined by the proof approach, but it also has a natural in-

terpretation as a limit of the following decision-making process. Suppose you first ask an
arbitrary algorithm Mj1 for a recommended strategy. It gives you a recommendation j2

drawn from its distribution q

t
j1 . You then ask algorithm Mj2 for a recommendation, which it

draws from its distribution q

t
j2 , and so on. This random process is e↵ectively trying to con-

verge to a stationary distribution p

t of the Markov chain defined above, and will successfully
do so when the chain is ergodic.

5

1

2

3

n

qt
2(1)

qt
1(2)

qt
2(3)

qt
3(2)

qt
n(1)

qt
1(n)

Figure 3: Markov chain.

3 The Minimax Theorem for Two-Player, Zero-Sum

Games

Having resolved the complexity of correlated equilibria in satisfactory fashion, we now zoom
in further to the set of mixed Nash equilibria (Figure 1). We’ll see next week that, while
the set of mixed Nash equilibria is guaranteed to be non-empty, computing one is a compu-
tationally intractable problem. Today we’ll focus on a special case with a happier answer:
two-player zero-sum games.

In a two-player zero-sum game, the payo↵ of each player is the negative of the other —
one player can win only at the other’s expense. Such a game can be specified by a single
matrix A, with the two strategy sets corresponding to the rows and columns. The entry aij

specifies the payo↵ of the row player in the outcome (i, j) and the negative payo↵ of the
column player in this outcome. Thus, the row and column players prefer bigger and smaller
numbers, respectively. The matrix below describes the payo↵s in the Rock-Paper-Scissors
game (Lecture 1) in our current language.

Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1

Scissors -1 1 0

Pure Nash equilibria generally don’t exist in two-player zero-sum games, so the focus is
squarely on mixed Nash equilibria. We use x and y to denote mixed strategies (probability
distributions) over the rows and columns, respectively.

6

With mixed strategies, we think of each player as randomizing independently. Thus, the
expected payo↵ of the row player when payo↵s are given by A, the row strategy is x, and
the column strategy is y, is

X

i,j

Pr

x

[i] · Pr

y

[j] · aij = x

T
Ay;

the column player’s expected payo↵ is the negative of this. Thus, a mixed Nash equilibrium
is a pair (x̂, ŷ) such that

x̂

T
Aŷ � x

T
Aŷ for all distributions x over rows

and
x̂

T
Aŷ  x̂

T
Ay for all distributions y over columns.

Suppose you’re due to play a zero-sum game with someone else. Would you rather move
— meaning commit to a mixed strategy — first or second? Intuitively, there is only a first-
mover disadvantage, since the second player can adapt to the first player’s strategy. The
Minimax Theorem is the amazing statement that it doesn’t matter.

Theorem 3.1 (Minimax Theorem) For every two-player zero-sum game A,

max
x

✓
min

y

x

T
Ay

◆
= min

y

⇣
max

x

x

T
Ay

⌘
. (8)

On the left-hand side of (8), the row player moves first and the column player second. The
column plays optimally given the strategy chosen by the row player, and the row player plays
optimally in light of the column player’s behavior. On the right-hand side of (8), the roles
of the two players are reversed.

The Minimax Theorem is equivalent to the statement that every two-player zero-sum
game has at least one mixed Nash equilibrium (see the Exercises). Borel, who you might
know from his work developing measure-theoretic probability, was interested in the latter
problem. He was discouraged after he noticed the equivalence with the Minimax Theorem,
which seemed intuitively false [2, Chapter 15]. In the 1920’s, von Neumann proved the
Minimax Theorem using Brouwer’s fixed-point theorem. Many equilibrium existence results
require fixed-point theorems — more on this soon — but the Minimax Theorem can also be
proved with less heavy machinery. In the 1940’s, von Neumann proved the Minimax Theorem
again, using arguments equivalent to strong linear programming duality.1 This is why, when
a very nervous George Dantzig first explained his new simplex algorithm to von Neumann,
the latter was able to respond with an impromptu lecture outlining the corresponding duality
theory [4]. These days, we don’t even need linear programming per se to prove the Minimax

1
This implies that minimax pairs and, equivalently, Nash equilibria, can be computed in polynomial time

in two-player zero-sum games. See the Problems for details.

7

Theorem — all we need is the existence of a no-(external-)regret algorithm, such as the
multiplicative weights algorithm!2

Proof of Theorem 3.1: Since it’s only worse to go first, the left-hand side of (8) is at most
the right-hand side: if x̂ is optimal for the row player when it plays first, it always has the
option of playing x̂ when it plays second. We turn our attention to the reverse inequality.

Given a two-player zero-sum game A, suppose both players play the game using their
favorite no regret algorithms, for a long enough time T so that both have expected regret
at most ✏ with respect to every fixed strategy. For example, if both players use the MW
algorithm from last lecture, then T = ⇥((ln n)/✏2) is long enough.3

Formally, let p

1
, . . . ,p

T and q

1
, . . . ,q

T be the mixed strategies played by the row and
column players, respectively, as advised by their no-regret algorithms. The inputs to the
no-regret algorithms at time t are Aq

t for the row player and (pt)T
A for the column player

— the expected payo↵ of each strategy on day t, given the mixed strategy played by the
other player on day t. Set

x̂ =
1

T

TX

t=1

p

t

to be the time-averaged mixed-strategy of the row player,

ŷ =
1

T

TX

t=1

q

t

to be the time-averaged mixed-strategy of the column player, and

v =
1

T

TX

t=1

(pt)T
Aq

t

the time-averaged expected payo↵ of the row player.
Adopt the row player’s perspective. Since its expected regret is at most ✏ with respect

to every row i and corresponding pure strategy ei, we have

(ei)
T
Aŷ =

1

T

TX

t=1

(ei)
T
Aq

t  1

T

TX

t=1

(pt)T
Aq

t + ✏ = v + ✏. (9)

Since an arbitrary row mixed strategy x is just a distribution over the ei’s, by linearity (9)
implies that

x

T
Aŷ  v + ✏ (10)

2
It is not hard to prove that the Minimax Theorem and strong linear programming duality are equivalent,

so this argument establishes the latter as well!

3
Last lecture we defined online decision-making problems and regret in terms of cost vectors. It is straight-

forward to adjust the definitions for payo↵ vectors. It is also straightforward to adapt the MW algorithm

to payo↵-maximization while preserving its optimal regret bound of O(

p
(lnn)/T); see the Exercises for

details.

8

for every mixed row strategy x.
A symmetric argument from the column player’s perspective, using that its expected

regret is also at most ✏ for every fixed strategy, shows that

x̂

T
Ay � v � ✏ (11)

for every mixed column strategy y. Thus

max
x

✓
min

y

x

T
Ay

◆
� min

y

x̂

T
Ay

� v � ✏ (12)

� max
x

x

T
Aŷ � 2✏ (13)

� min
y

⇣
max

x

x

T
Ay

⌘
� 2✏,

where (12) and (13) follow from (11) and (10), respectively. Taking the limit as ✏ # 0 (and
T !1) completes the proof. ⌅

There are a number of easy but useful corollaries of the Minimax Theorem and its proof.
First, in the limit, the mixed strategies x̂ and ŷ are a Nash equilibrium of the game A.
This establishes the existence of Nash equilibria in all two-player zero-sum games. This
is remarkable because most equilibrium existence results require the use of a fixed-point
theorem. Second, the equivalence between Nash equilibria and minimax pairs — row and
column mixed strategies x̂, ŷ that optimize the left- and right-hand sides of (8), respectively
— implies a “mix and match” property: if (x1

,y

1) and (x2
,y

2) are Nash equilibria of the
same two-player zero-sum game, then so are (x1

,y

2) and (x2
,y

1).

References

[1] A. Blum and Y. Mansour. From external to internal regret. Journal of Machine Learning
Research, 8:1307–1324, 2007.

[2] V. Chvátal. Linear Programming. Freeman, 1983.

[3] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,
2012. Fourth edition.

[4] J. K. Lenstra, A. H. G. Rinnooy Kan, and A. Schrijver, editors. History of Mathematical
Programming: A Collection of Personal Reminiscences. CWI, 1991.

9

CS364A: Algorithmic Game Theory

Lecture #19: Pure Nash Equilibria and

PLS-Completeness

⇤

Tim Roughgarden†

December 2, 2013

1 The Big Picture

We now have an impressive list of tractability results — polynomial-time algorithms and
quickly converging learning dynamics — for several equilibrium concepts in several classes of
games. Such tractability results, especially via reasonably natural learning processes, lend
credibility to the predictive power of these equilibrium concepts. See also Figure 1.

[Lecture 17] In general games, no-(external)-regret dynamics converges quickly to an
approximate coarse correlated equilibrium (CCE).

[Lecture 18] In general games, no-swap-regret dynamics converges quickly to an ap-
proximate correlated equilibrium (CE).

⇤ c�2013, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

PNE

MNE

CE

CCE

tractable in symmetric
routing/congestion games

tractable in 2-player
0-sum games

tractable
in general

Figure 1: The hierarchy of solution concepts.

1

[Lecture 18] In two-player zero-sum games, no-(external)-regret dynamics converges
quickly to an approximate mixed Nash equilibrium (MNE).

[Lecture 16] In atomic routing games that are symmetric — that is, all players share the
same source and sink — ✏-best-response dynamics converges quickly to an approximate
pure Nash equilibrium (PNE).

Also, Problem 32 shows how to use linear programming to compute an exact CCE or CE of
a general game, or an exact MNE of a two-player zero-sum game. Problem 22 shows how
to use minimum-cost flow to compute an exact PNE of a symmetric atomic selfish routing
game.

While the list above is not exhaustive, it does cover a significant chunk of the general
results known for e�ciently learning and computing equilibria. We’d like more, of course,
such as tractability results for MNE in (non-zero-sum) two-player games and PNE for (non-
symmetric) atomic routing games. No such results are known, despite non-trivial e↵ort
by many smart people. Do we merely need a new and clever idea, or are these problems
intrinsically di�cult? How might we prove limitations on what can be computed or learned
e�ciently?

These questions are in the wheelhouse of computational complexity theory. Why is it so
easy to come up with computationally e�cient algorithms for the minimum-spanning tree
problem and so di�cult to come up with one for the Travelling Salesman problem? Could
it be that no e�cient algorithm for the latter problem exists? If so, how can we prove it? If
we can’t prove it, how can we nevertheless amass evidence of intractability? These questions
are, of course, addressed by the theory of NP-completeness. This lecture and the next
describe analogs of NP-completeness for equilibrium computation problems. We address the
technically simpler case of PNE in routing and congestion games first, and discuss MNE of
bimatrix games next lecture.

2 Local Search Problems

When Johnson, Papadimitriou, and Yannakakis [2] initiated the complexity-theoretic study
of local search problems, they did not have equilibrium computation in mind. However, the
theory they developed is perfectly suited for reasoning about PNE computation in routing
and congestion games, as we’ll see in Section 3. To foreshadow the connection, computing a
PNE of a congestion game is equivalent to computing a local minima of the Rosenthal poten-
tial function (Lecture 13). Hence, complexity theory for local search problems is immediately
relevant to these equilibrium computation problems.

2.1 Canonical Example: The Maximum Cut Problem

A canonical problem through which to study local search is the maximum cut problem. The
input is an undirected graph G = (V, E) with a nonnegative weight we � 0 for each edge.

2

1

2

3

4

5 6

Figure 2: Max-cut instance and a local optimum that is not a global optimum.

Feasible solutions correspond to cuts (S, S̄), where (S, S̄) is a partition of V into two non-
empty sets. The objective function that we wish to maximize is the total weight of the cut
edges — the edges with one endpoint in each of S, S̄. Unlike the minimum cut problem, the
maximum cut problem is NP-hard.

Local search is a natural heuristic that is useful for many NP-hard problems, including
the maximum cut problem. The algorithm is very simple:

1. Start with an arbitrary cut (S, S̄).

2. While there is an improving local move, make one.

By a local move, we mean moving a vertex v from one side of the cut to the other (keeping
both sides non-empty). For example, when moving a vertex v from S to S̄, the increase in
objective function value is X

u2S

wuv

| {z }
newly cut

�
X

u2S̄

wuv

| {z }
newly uncut

;

if this di↵erence is positive, then this is an improving local move. Local search terminates at
a solution with no improving move, a local optimum. A local optimum need not be a global
optimum; see Figure 2.

Since there are more local optima than global optima, they are generally easier to find.
For example, consider the special case of maximum cut instances in which every edge has unit
weight. Computing a global maximum remains an NP-hard problem, but computing a local
maximum is easy. Because the objective function in this case can only take on the values
{0, 1, 2, . . . , |E|}, local search terminates (at a local maximum) in at most |E| iterations.

There is no known polynomial-time algorithm (local search or otherwise) for computing
local optima of maximum cut instances with general nonnegative weights. How might we
amass evidence that no such algorithm exists?

3

The strongest type of negative result would be an unconditional one: a proof that there
is no polynomial-time algorithm for the problem. No one knows how to prove unconditional
results like this; in particular, such a result would separate P from NP . Instead, a natural
response is to try to prove that finding local maxima of maximum cut instances is an NP-
complete problem. In the next lecture we’ll see why this is also too strong a negative result
to shoot for. Instead, we’ll develop an analog of NP-completeness tailored for local search
problems.

2.2 PLS: Abstract Local Search Problems

This section and the next make precise the idea that the problem of computing a local
optimum of a maximum cut instance is as hard as any other local search problem. This
statement is in the spirit of an NP-completeness result, which establishes a problem to be
as hard as any problem with e�ciently verifiable solutions. For such “hardest” local search
problems, we don’t expect there to be any clever, problem-dependent algorithm that improves
significantly over local search. This parallels the idea that for NP-complete problems, we
don’t expect there to be an algorithm that improves significantly over brute-force search. A
byproduct of the theory developed in this and the next section is exponential lower bounds
on the number of iterations required by local search to reach a local optimum.

What could we mean by “any other local search problem?” One interpretation of the
definition of NP problems is that an e�cient verifier of purported solutions is in some sense
the minimal ingredient necessary to execute brute-force search through the set of candidate
solutions. So what are the minimal ingredients necessary to run local search?

An abstract local search problem is specified by three polynomial-time algorithms.

1. The first algorithm takes as input an instance and outputs an arbitrary feasible solu-
tion. [In MaxCut, it outputs an arbitrary cut.]

2. The second algorithm takes as input an instance and a feasible solution, and returns
the objective function value of the solution. [In MaxCut, it outputs the total weight
of the edges crossing the provided cut.]

3. The third algorithm takes as input an instance and a feasible solution and either
reports “locally optimal” or produces a better solution. [In MaxCut, it checks all |V |
local moves. If none are improving it outputs “locally optimal;” otherwise, it executes
an improving local move and outputs the resulting cut.]1

Every problem in PLS admits a local search algorithm: given an instance, use the first
algorithm to obtain a start state, and iteratively apply the third algorithm until a locally

1There are some details we’re glossing over. For example, all algorithms should check if the given instance
is legitimate. There is also some canonical interpretation when an algorithm misbehaves, by running too
long or outputting something invalid. For example, we can interpret the output of the third algorithm as
“locally optimal” unless is outputs a feasible solution better than the previous one (as verified by the second
algorithm) within a specified polynomial number of steps.

4

optimal solution is reached. Since the objective function values of the candidate solutions
strictly decrease until a locally optimal solution is found, and since there are only finitely
many distinct candidate solutions, this procedure eventually terminates.2 Because there can
be an exponential number of feasible solutions (e.g., in a maximum cut instance), this local
search procedure need not run in polynomial time.

The goal in an abstract local search problem is to compute a local optimum. This can
be done by running the local search algorithm, but any correct algorithm for computing a
local optimum is also allowed. The complexity class PLS is, by definition, the set of all such
abstract local search problems [2]. Most if not all of the local search problems you’ve ever
seen can be cast as PLS problems.

2.3 PLS-Completeness

Our goal is to prove that the problem of computing a local optimum of a maximum cut
instance is as hard as any other local search problem. Having formalized “any other search
problem,” we now formalize the phrase “as hard as.” This done using reductions, which are
familiar from the theory of NP-completeness.

Formally, a reduction from a problem L1 2 PLS to a problem L2 2 PLS is two
polynomial-time algorithms:

1. Algorithm A maps every instance x 2 L1 to an instance A(x) 2 L2.

2. Algorithm B maps every local optimum of A(x) to a local optimum of x.

The definition of a reduction ensures that if we can solve the problem L2 in polynomial time
then, by combining it with algorithms A and B in the reduction in the natural way, we can
also solve the problem L1 in polynomial time.

Definition 2.1 ([2]) A problem L 2 PLS is PLS-complete if every problem of PLS reduces
to it.

By definition, there is no polynomial-time algorithm for computing a local optimum of a
PLS-complete problem, unless PLS ✓ P . Most researchers believe that PLS 6✓ P , though
confidence is not as strong as for the P 6= NP conjecture.

A PLS-complete problem is a single local search problem that simultaneously encodes ev-
ery local search problem. If we didn’t already have the remarkable theory of NP-completeness
to guide us, we might not believe that a PLS-complete problem could exist. As with NP-
complete problems, though, PLS-complete problems do exist. Even more remarkably, many
concrete problems that we care about are PLS-complete [2, 3]. In particular:

Fact 2.2 ([3]) Computing a local maximum of a maximum cut instance with general non-
negative weights is a PLS-complete problem.

2Since each of the three algorithms runs in time polynomial in the input size, we are implicitly forcing
feasible solutions to have polynomial description length. Hence, there are at most exponentially many feasible
solutions.

5

The first step in developing a theory of PLS-completeness is to prove an analog of Cook’s
theorem, meaning an initial complete problem. Cook’s Theorem states that 3SAT is an
NP-complete problem; Johnson et al. [2] proved that a problem concerning Boolean circuits
called “CircuitFlip” is PLS-complete. Once a first complete problem is identified, more can
be obtained via reductions. Some such reductions were given in [2] and many more, including
to the maximum cut problem, were given in [3].

We already mentioned the conditional result that if PLS 6✓ P , then there is no polynomial-
time algorithm (local search or otherwise) for any PLS-complete problem. Even in the
unlikely event that PLS ✓ P , the specific algorithm of local search requires exponential
worst-case time for all known PLS-complete problems. The reason is that Johnson et al. [2]
gave an unconditional exponential lower bound for local search for the CircuitFlip algorithm,
and all of the reductions that have been used to establish the PLS-completeness of other
problems preserve this lower bound. In particular, local search can require an exponential
number of iterations to converge to general maximum cut instances.

3 Congestion Games

We mentioned congestion games in passing in Lecture 13 as a natural generalization of atomic
selfish routing games in which strategies are abstract subsets of a ground set, rather than
paths in a graph. That is, a congestion game is described by a set E of resources (previously
edges), an explicitly described strategy set Si ✓ 2E for each player i =, 1, 2, . . . , k (previously
si-ti paths), and a cost ce(i) for each resource e 2 E and possible load i 2 {1, 2, . . . , k}. All
the results we proved for atomic selfish routing games — the price of anarchy bound of 5

2 for
a�ne cost functions, the existence of PNE with arbitrary cost functions, and the convergence
of ✏-best-response dynamics to an approximate PNE in symmetric games with ↵-bounded
jump cost functions — hold more generally, with exactly the same proofs, in congestion
games.

We claim that the problem of computing a PNE of a congestion game — any PNE, if
there are many — is a PLS problem. Essentially, the claim follows from the correspondence
between best-response dynamics in a congestion game and local search with respect to the
Rosenthal potential function (Lecture 13). Proving the claim formally involves describing the
three algorithms that define a PLS problem. The first algorithm takes as input a congestion
game, as described above, and returns an arbitrary strategy profile — for example, where
each player takes its first strategy. The second algorithm takes a congestion game and a
strategy profile s, and returns the value of the Rosenthal potential function

�(s) =
X

e2E

ne(s)X

i=1

ce(i), (1)

where ne(s) is the number of players in the given profile s that use a strategy that includes
resource e, and ce is the given cost function of e. The third algorithm checks whether or not
the given strategy profile is a PNE; if so, it reports “locally optimal;” if not, it executes an

6

iteration of best-response dynamics and returns the resulting outcome (which has smaller
potential function value). This can be done in time polynomial in the description of the
given congestion game.

More interesting is that computing a PNE of a congestion game is as hard as every other
local search problem.

Theorem 3.1 ([1]) The problem of computing a PNE of a congestion game is PLS-complete.

Of course, problems that require computing a PNE with additional properties, like the best
or worst PNE, can only be harder.

Proof: We give a reduction from the maximum cut problem, which is PLS-complete [2]. We
are given a graph G = (V, E) with nonnegative edge weights {we}e2E. The first algorithm
A of the reduction constructs a congestion game as follows:

1. Players correspond to the vertices V .

2. There are two resources for each edge e 2 E, re and r̄e.

3. Player v has two strategies, each comprising |�(v)| resources, where �(v) is the set of
edges incident to v in G: {re}e2�(v) and {r̄e}e2�(v).

4. The cost of a resource re or r̄e is 0 if one player uses it, and we if two players use it.

The two strategies of a player can be regarded as choosing which side of a cut, S or S̄, the
player is on. Note that for an edge e = (u, v) of G, there are only two players that have a
strategy containing re or r̄e: the players u and v. In every strategy profile, the combined
load on the twin resources re and r̄e is exactly two: either both players u, v use the same
resource (corresponding to choosing the same side of a cut) or exactly one player u, v uses
each of re, r̄e (corresponding to choosing di↵erent sides of a cut). This is why we specify cost
functions only for one or two players.

There is a bijection between strategy profiles of this congestion game and cuts of the
given graph G (allowing also cuts that are empty on one side), with cut (S, S̄) corresponding
to the profile in which every player corresponding to v 2 S (respectively, v 2 S̄) chooses its
strategy that contains resources of the form re (respectively, r̄e).

This bijection maps cuts of G with weight w(S, S̄) to strategy profiles with Rosenthal
potential value (1) equal to

P
e2E we � w(S, S̄). To see this, fix a cut (S, S̄). For an edge

e cut by (S, S̄), the load on the corresponding resources re and r̄e is 0, so these resources
contribute nothing to the Rosenthal potential of the strategy profile. For an edge e not cut
by (S, S̄), the load on one of the resources re, r̄e will be 2, and the other’s load will be 0. This
pair of resources contributes we to the potential function (1). Thus, the potential function
value of the corresponding strategy profile is the total weight of edges uncut by (S, S̄), orP

e2E we � w(S, S̄).
Cuts of G with larger weight thus correspond to strategy profiles with smaller Rosenthal

potential. Local maxima of G correspond to local minima of the potential function — that

7

is, to PNE of the congestion game. Mapping PNE of the congestion game back to local
optima of G is thus trivial to do, and the reduction is complete. ⌅

The proof of Theorem 3.1 also provides a good example of how reductions between
PLS problems tend to preserve unconditional lower bounds on the running time of local
search. Specifically, it establishes a bijection between local search in maximum cut instances
and best-response dynamics in congestion games. Since the former process can require an
exponential number of iterations to converge, so can the latter.

Remark 3.2 The theory of PLS-completeness is useful even if you care only about concrete
lower bounds on specific dynamics like best-response dynamics, and not about computational
complexity per se. It can be very di�cult to prove such lower bounds from scratch, and
is potentially much easier to simply reduce a PLS-complete problem to the equilibrium
computation problem of interest.

We can build on the proof of Theorem 3.1 to extend PLS-completeness to the special
case of symmetric congestion games.

Theorem 3.3 ([1]) The problem of computing a PNE of a symmetric congestion game is
PLS-complete.

At first blush, Theorem 3.3 might seem to contradict positive results that we’ve already
proved. First, recall the polynomial-time convergence result from Lecture 16 for ✏-best-
response dynamics. We proved that convergence result only for atomic selfish routing games
with a common source and sink, but the same result and proof extend without change
to symmetric congestion games. Thus, Theorem 3.3 implies that there is a big di↵erence
between exact and approximate PNE, and between exact and approximate best-response
dynamics in symmetric congestion games.3 Approximate PNE are tractable and approximate
best-response dynamics converge quickly, while exact PNE are intractable and exact best-
response dynamics can require an exponential number of iterations to converge.

Second, recall from Problem 22 that a PNE of a symmetric atomic selfish routing game
can be computed in polynomial time using minimum-cost flow. Theorem 3.3 implies that
this positive result cannot be extended to abstract symmetric congestion games (unless
PLS ✓ P).4

Proof of Theorem 3.3: We reduce the problem of computing a PNE of an asymmetric conges-
tion game — PLS-complete by Theorem 3.1 — to that of computing a PNE of a symmetric
congestion game. Given an asymmetric congestion game with k players and arbitrary strat-
egy sets S1, . . . ,Sk, construct a “symmetrized version” as follows. The player set remains

3Our proof of Theorem 3.3 will also violate the ↵-bounded jump assumption we made in Lecture 16, but
the reduction can modified to respect this condition.

4In the asymmetric case, the complexity of computing a PNE is PLS-complete in both atomic selfish
routing games and more general abstract congestion games [1]. Also, in the asymmetric case, computing even
an approximate PNE is PLS-complete, and ✏-best-response dynamics can require an exponential number of
iterations to converge [4].

8

the same. The old resource set is augmented by k additional resources r1, . . . , rk. The cost
function of each of these is defined to be zero if used by only one player, and extremely
large if used by two or more. Each strategy of Si is supplemented by the resource ri, and
any player can adopt any one of these augmented strategies. The key insight is that at a
pure Nash equilibrium of the constructed symmetric game, each player adopts the identity of
exactly one player from the original (asymmetric) game. This follows from the large penalty
incurred by two players that choose strategies that share one of the new resources. Such a
pure Nash equilibrium is then easily mapped to one of the original asymmetric game. ⌅

As an exercise, why doesn’t the reduction in Theorem 3.3 work for atomic routing games?
The obvious way to symmetrize an asymmetric routing game with sources s1, . . . , sk and sinks
t1, . . . , tk is to add new source and sink vertices s and t, and new arcs (s, s1), . . . , (s, sk) and
(t1, t), . . . , (tk, t), each with a cost function that is zero with one player and extremely large
with two or more players.

References

[1] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure Nash equi-
libria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), pages 604–612, 2004.

[2] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37(1):79–100, 1988.

[3] A. A. Schä↵er and M. Yannakakis. Simple local search problems that are hard to solve.
SIAM Journal on Computing, 20(1):56–87, 1991.

[4] Alexander Skopalik and Berthold Vcking. Inapproximability of pure nash equilibria.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC),
pages 355–364, 2008.

9

CS364A: Algorithmic Game Theory

Lecture #20: Mixed Nash Equilibria and

PPAD-Completeness

⇤

Tim Roughgarden†

December 4, 2013

Today we continue our study of the limitations of learning dynamics and polynomial-time
algorithms for converging to and computing equilibria. Recall that we have sweeping positive
results for coarse correlated and correlated equilibria, which are tractable in arbitrary games.
We have only partial positive results for pure Nash equilibria of routing and congestion games,
and last lecture we developed the theory of PLS-completeness to explain our limited success.
In this lecture we focus on mixed Nash equilibria (MNE). Our positive results so far have
been limited to the special case of two-player, zero-sum games (Lecture 18). This lecture
develops theory that suggests that there cannot be significantly more general positive results.

1 The Problem: Computing a MNE of a Bimatrix

Game

Formally, we study the problem of computing a MNE of a bimatrix game.1 The input is two
m ⇥ n payo↵ matrices A and B — one for the row player, one for the column player. In
zero-sum games, B = �A. The goal is to compute mixed strategies x̂, ŷ such that

x̂T

Aŷ � xT

Aŷ (1)

for all row mixed strategies x and

x̂T

Bŷ � x̂T

By (2)

for all column mixed strategies y.

⇤ c
�2013, Tim Roughgarden.

†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,
CA 94305. Email: tim@cs.stanford.edu.

1An alternative generalization of two-player zero-sum games is three-player zero-sum games. Such games
include two-player non-zero-sum games as a special case — do you see why?

1

There is no known polynomial-time algorithm for computing a MNE of a bimatrix game,
and many smart people of tried to come up with one. This lecture develops the relevant
complexity theory for arguing that the problem may be inherently intractable. The goal is
to prove that the problem is complete for a suitable complexity class. But which class? This
is a tricky question, and it took years for the leading thinkers in the field to figure out the
answer. Before we explain the solution, let’s understand why plain old NP -completeness
is not the right intractability notion for equilibrium computation. The discussion in the
next section also applies to the PLS problems discussed last lecture, thereby justifying our
development of PLS-completeness as a weaker analog of NP -completeness.

2 NP Search Problems (FNP)

NP problems are decision problems, where the correct answer to an instance is either “yes”
or “no”. Equilibrium computation problems are not decision problems; the output should
be a bona fide equilibrium. To address this typechecking error, we work with the closely
related class FNP , for “functional NP .” FNP problems are just like NP problems except
that, for “yes” instances, we demand that a solution be produced. These are also call search
problems.

More formally, an algorithm for an FNP problem takes as input an instance of an NP

problem, like a SAT formula or an undirected graph. The responsibility of the algorithm is to
output a solution, or “witness,” like a satisfying assignment or a Hamiltonian cycle, provided
one exists. If there is no solution, the algorithm should output “no.” Reductions between
search problems are defined as in the last lecture via two polynomial-time algorithms, the
first algorithm A mapping instances x of one problem to instances A(x) of another, the
second algorithm B mapping solutions of A(x) to solutions to x (and “no” to “no”).

Your intuition for NP works fine for FNP . For example, the functional version of SAT
is an FNP -complete problem. The proof of Cook’s theorem — which e↵ectively constructs
the algorithm A above from an arbitrary NP problem to SAT — establishes a bijective
correspondence between the witnesses of the given NP verifier for the given instance and the
satisfying assignments of the constructed SAT formula. The algorithm B is a straightforward
implementation of this correspondence.

The class PLS of local search problems, defined last lecture, is a subset of FNP . The
witnesses of a PLS problem are its local optima, and the third algorithm in the PLS problem
description acts as an e�cient verifier of witnesses. In fact, the third algorithm of a PLS

problem does considerably more than is asked of an NP verifier — in addition to certifying
local optima, when a solution is not locally optimal, the PLS algorithm does not merely say
“no,” it o↵ers an alternative solution with superior objective function value.

The problem of computing a MNE of a bimatrix game also belongs to FNP . This
assertion amounts to proving that, given mixed strategies x̂ and ŷ in a bimatrix game
(A, B), it can be checked e�ciently whether or not (x̂, ŷ) constitute an MNE of the game.
This is not entirely obvious, since the equilibrium conditions (1) and (2) reference an infinite
number of mixed strategies. Fortunately, it is enough to check only pure-strategy deviations.

2

Equivalently, a mixed strategy x̂ by the row player is a best response to a column strategy
ŷ if and only if x̂ randomizes only over rows with maximum expected payo↵ (w.r.t. ŷ); see
also the Exercises.2

3 NP Search Problems with Guaranteed Witnesses (TFNP)

Could computing a MNE of bimatrix game be FNP -complete? Being as hard as every
problem in FNP would constitute strong evidence of intractability. Intriguingly, FNP -
completeness would have astonishing consequences.

Theorem 3.1 ([8]) If the problem of computing a MNE of bimatrix game is FNP -complete,
then NP = coNP .

While NP = coNP doesn’t directly imply P = NP , it is thought to be an equally
unlikely state of a↵airs. For example, if NP = coNP , then there are short, e�ciently
verifiable proofs for the coNP -complete UNSAT problem. Convincing someone that a SAT
formula is satisfiable is easy enough — just exhibit a satisfying assignment — but how would
you quickly convince someone that none of the exponentially many truth assignments are
satisfying? Most researchers believe that there is no way to do it — that NP 6= coNP . If
this is indeed the case, then Theorem 3.1 implies that the problem of computing a MNE of
a bimatrix game is not FNP -complete.

Proof of Theorem 3.1: The proof is a bit of a mind-binder, but it is not long. Assume there
is a reduction, in the same sense of the PLS reductions described last lecture, from the
functional SAT problem to the problem of computing a MNE of a bimatrix game. By the
definition of a reduction, there exist the following two algorithms:

1. A polynomial-time algorithm A that maps every SAT formula ' to a bimatrix game
A(').

2. A polynomial-time algorithm B that maps every MNE (x̂, ŷ) of a game A(') to:

(a) a satisfying assignment B(x̂, ŷ) of A('), if one exists;

(b) the string “no,” otherwise.

We claim that the existence of these algorithms A and B imply that NP = coNP .
Indeed, consider an arbitrary “no” instance ' of SAT, and an arbitrary MNE (x̂, ŷ) of the
game A(').3 We claim that (x̂, ŷ) is a short, e�ciently verifiable proof of the unsatisfiability

2To be completely rigorous, we also need to argue that there are MNE whose description (in bits) has
length polynomial in the input size. This follows from the observation that, given the supports of a MNE —
the strategies played with nonzero probability — suitable mixing probabilities can be recovered by solving
a linear system of equations. See the Problems for more details.

3Crucially, Nash’s Theorem ensures that A(') has at least one MNE. Also, as noted above, every bimatrix
game has an MNE whose description length is polynomial in that of the game. We discuss the proof of Nash’s
Theorem in Section 7.

3

PLS

TFNP

FNP

MNE

Figure 1: MNE are in the TFNP complexity class.

of '; this implies NP = coNP . Indeed, given an alleged unsatisfiability certificate (x̂, ŷ) for
', one performs two checks: (i) compute the game A(') using algorithm A and verify that
(x̂, ŷ) is a MNE of A('); (ii) use the algorithm B to verify that B(x̂, ŷ) is the string “no.”
If (x̂, ŷ) passes both of these tests, then correctness of the algorithms A and B implies that
' is indeed unsatisfiable. ⌅

What’s really going on in the proof of Theorem 3.1 is a mismatch between an FNP -
complete problem like FSAT , where an instance may or may not have a witness, and a
problem like computing an MNE, where Nash’s theorem guarantees at least one (polynomial-
length) witness in every instance. While the correct answer to an instance of FSAT might well
be “no;” a correct answer to an instance of computing a MNE of a game is always a witness
(a MNE). The subset of FNP problems for which every instance has at least one witness is
called TFNP , for “total functional NP .” The proof of Theorem 3.1 shows more generally
that if any TFNP problem is FNP -complete, then NP = coNP . In particular, since every
instance of a PLS problem has at least one witness — local search has to stop somewhere,
necessarily at a local optimum — PLS is a subset of TFNP . Hence no PLS problem,
such as computing a PNE of a routing or congestion game, can be FNP -complete unless
NP = coNP . See Figure 1. This justifies last lecture’s development of PLS-completeness,
a weaker analog of FNP -completeness tailored for local search problems.

4 Complete Problems: Syntactic vs. Semantic Com-

plexity Classes

Membership in TFNP precludes proving that computing a MNE of a bimatrix game is FNP -
complete. The sensible refined goal, then, is to prove that the problem is TFNP -complete
— as hard as any other problem in TFNP . Unfortunately, TFNP -completeness is also
too ambitious a goal. The reason is that TFNP does not seem to have complete problems.
To explain, think about the complexity classes you know about that do have complete
problems — NP of course, and also P and PSPACE. What do these complexity classes
have in common? They are “syntactic,” meaning that membership can be characterized via

4

acceptance by some concrete computational model — polynomial-time or polynomial-space
Turing machines, for example. In this sense, there is a “generic reason for membership” in
these complexity classes.

TFNP has no obvious generic reason for membership, and as such is called a “semantic
class.”4 For example, the problem of computing a MNE of a bimatrix game belongs to
TFNP because of Nash’s theorem guaranteeing the existence of a MNE — essentially, for
topological reasons (see Section 7). Another problem in TFNP is factoring — given a
positive integer, output its factorization. Here, membership in TFNP has an algebraic or
number-theoretic explanation. Can the existence of a MNE and of an integer factorization
be regarded as separate instantiations of some “generic” TFNP argument? No one knows
the answer.

5 PPAD: A Syntactic Subclass of TFNP

Papadimitriou [11] proposed a path to progress: identify subclasses of TFNP such that:

1. The class contains interesting computational problems not known to be in P (like
computing a MNE).

2. The class has complete problems; roughly equivalently, the class has a “syntactic”
definition in the form of a generic reason for membership.

We have already seen an example of such a subclass: the complexity class PLS from last
lecture. For example, computing a local optimum of a maximum cut instance is a PLS-
complete problem that is not known to be polynomial-time solvable. Our definition of PLS

is syntactic in that PLS problems are precisely those defined by a particular computational
model, as induced by the three polynomial-time algorithms that define such a problem. The
generic reason for membership in PLS (and hence TFNP) is that local search, as defined
by these three given algorithms, is guaranteed to eventually terminate at a local optimum.

The right complexity class to study the computation of MNE in bimatrix games is called
PPAD.5 We describe PPAD primarily via analogy with the class PLS, which is similar in
spirit but di↵erent in details.

We can think of a local search problem as the problem of computing a sink vertex of a
directed acyclic graph (Figure 2), where nodes represent feasible solutions and arcs represent
improving local moves. Note that the number of nodes in this directed graph is generally
exponential in the size of a problem instance — for example, in a maximum cut instance,
nodes correspond to cuts of the original graph. The three algorithms that define a PLS

problem enable a straightforward path-following algorithm in this directed graph — the first
algorithm gives a starting node and third algorithm provides the next arc to traverse from
a non-sink node.

4There are many other interesting examples, such as NP \ coNP .
5Allegedly standing for “polynomial parity argument, directed version” [11].

5

Objection
function
increases

Figure 2: A PLS problem is characterized by a DAG with an objective function.

PPAD problems are those solvable by a particular class of naive directed path-following
algorithms — this is the generic reason for membership. In this sense, PPAD problems
are similar to PLS problems, which are solvable by following a path through a directed
acyclic graph. PPAD problems can be thought of as directed graphs (Figure 3), where
nodes again correspond to “intermediate solutions,” , and arcs to “next moves.” Like with
PLS problems, the number of nodes in generally exponential in the parameters of interest.
Rather than being directed acyclic, a PPAD directed graph has in- and out-degree at most
1, and at least one source node. Unlike a PLS problem, there is no objective function, and a
PPAD directed graph can possess cycles. Like a PLS problem, a PPAD problem is formally
specified by three algorithms — this is a “syntactic definition.” The first algorithm suggests
an initial solution that is a source vertex. The third algorithm either verifies that the current
intermediate solution is a witness — by definition, a source or sink vertex di↵erent from the
starting point — or else returns the next intermediate solution. Naive path-following —
invoking the first algorithm once and the third algorithm until the other end of the path
is reached — is guaranteed to terminate at a witness.6 This path might have exponential
length, however, so the non-trivial question is whether or not a witness of a PPAD problem
can be computed in polynomial time.

What do PPAD problems have to do with computing MNE, or anything else for that
matter? To get a feel for this complexity class, we discuss next a canonical example of a
PPAD problem.

6The primary role of the second algorithm is to keep the third algorithm honest — this is technically
necessary so that naive path-following is guaranteed to terminate, no matter what the given three algorithms
are. Recall that in a PLS problem, the second algorithm, which computes the objective function value, can
be used to verify that the third algorithm suggests a superior solution. If the third algorithm fails to produce
a better solution, we just interpret its output as “locally optimal.” In a PPAD problem, the second algorithm
enforces that the corresponding directed graph has in-degree at most 1. It takes as input an intermediate
solution and outputs the previous one. If the third algorithm declares that y should follow x, but the second
algorithm does not agree that x should precede y, then we interpret x as a sink (and hence a witness).

6

Figure 3: PPAD problems are characterized by a graph where each node has in- and out-
degree at most 1.

6 A Canonical PPAD Problem: Sperner’s Lemma

This section presents a computational problem that is clearly well matched with the PPAD

complexity class. The next section describes its relevance to computing a MNE of a bimatrix
game.

Consider a subdivided simplex in the plane; see Figure 4. A legal coloring of its vertices
colors the top vertex red, the left vertex green, and the right vertex blue. A vertex on the
boundary must have one of the two colors of the endpoints of its side. Internal vertices are
allowed to possess any of the three colors. A triangle is trichromatic if all three colors are
represented at its corners.

Sperner’s Lemma asserts that for every legal coloring, there is an odd number of trichro-
matic triangles (and hence at least one). The proof is constructive. Define a graph G that
has one node per triangle, plus a source node outside the simplex. The graph G has one edge
for each red-green side of a triangle. See Figure 4. Every trichromatic triangle corresponds
to a degree-one node of G. Every triangle with one green and two red corners or two green
and one red corner corresponds to a node with degree two in G. The source node of G has
degree equal to the number of red-green edges on the left side of the simplex, which is an
odd number. Because every graph has an even number of nodes of odd degree, G has an odd
number of trichromatic triangles, which proves Sperner’s Lemma.7 Moreover, starting from
the source vertex, naive path-following is guaranteed to terminate at a trichromatic triangle.
Thus, computing a trichromatic triangle of a legally colored subdivided simplex is a PPAD

problem.8

7The same result and proof extend by induction to higher dimensions — every subdivided simplex in
R

n with vertices legally colored with n + 1 colors has an odd number of panchromatic subsimplices, with a
di↵erent color on each corner.

8We are omitting some details. The graph of a PPAD problem is directed, while the graph G we defined
here is undirected. There is, however, a canonical way to direct the edges of this graph G.

Also, the source node of a PPAD problem is supposed to have out-degree 1, while that of the graph G

above has some odd degree 2k +1. This can be corrected by splitting the source node of G into k +1 nodes,
a source with out-degree 1 and k nodes with in- and out-degree 1.

7

Figure 4: Every triangle with an end point is a trichromatic triangle.

7 MNE and PPAD

What does computing a MNE have to do with PPAD, the class of FNP problems solvable
by a particular form of directed path-following? There are two fundamental connections.

First, Sperner’s Lemma turns out to be the combinatorial heart of Nash’s proof that
every finite game has at least one MNE, and its proof yields a path-following algorithm for
computing an approximate MNE (in exponential time). The reduction of Nash’s theorem to
Sperner’s Lemma has two parts. The first part is use Sperner’s Lemma to prove Brouwer’s
fixed-point theorem. Brouwer’s fixed-point theorem states that every continuous function f

that maps a compact convex subset C of Rn to itself has at least one fixed point: a point
x 2 C with f(x) = x. All of the hypotheses — that f is continuous, C is bounded, C is
closed, and C is convex — are necessary (see the Exercises).

Suppose we want to prove Brouwer’s fixed-point theorem when C is a simplex in R2. Let
f : C ! C be continuous. Subdivide C into small triangles. Color a triangle corner green if
f(x) is farther from the left corner of C than x; red if f(x) is farther from the top corner of C

than x; and blue if x is farther from the right corner of C than x. If two of these conditions
apply to x, either corresponding color can be used. (If none of them apply, x is a fixed point
and there’s nothing left to prove.) This results in a legal coloring of the subdivision. By
Sperner’s Lemma, there is at least one trichromatic triangle — a triangle whose corners are
being pulled in di↵erent directions. Taking a sequence of finer and finer subdivisions, we
get a sequence of ever-smaller trichromatic triangles. Because C is compact, the centers of
these triangles contain a sequence x

1

, x

2

, . . . , that converges to a point x

⇤ in C. Because f

is continuous, in the limit, f(x⇤) is at least as far from each of the three corners of C as x

⇤.
This means that x

⇤ is a fixed point of f .9

Nash [10] gave an elegant reduction from the existence of MNE in finite games to

9Here’s the idea for extending the fixed-point theorem to all convex compact subsets of Rn. First,
since Sperner’s Lemma extends to higher dimensions, so does Brouwer’s fixed-point theorem for the special
case of simplices (by the same argument). Second, every pair C1, C2 of compact convex subsets of equal
dimension are homeomorphic — that is, there is a bijection f : C1 ! C2 with f and f

�1 continuous — and
homeomorphisms preserve fixed-point theorems (see the Exercises).

8

Brouwer’s fixed point theorem. Here is a sketch. Consider a k-player game with strat-
egy sets S

1

, . . . , S

k

and payo↵ functions ⇡

1

, . . . ,⇡

k

. The relevant compact convex set is
C = �

1

⇥ · · ·⇥�
k

, where �
i

is the simplex representing the mixed strategies of player i. We
want to define a continuous function f : C ! C — from mixed strategy profiles to mixed
strategy profiles — such that fixed-points of f are MNE of the given game. We define f

separately for each component f

i

: C ! �
i

. A natural first idea is to set f

i

to be a best
response of player i to the mixed strategy profiles of the other players. This does not lead to
a continuous, or even well defined, function, so instead we use a “regularized” version. We
set

f

i

(x
i

,x�i

) = argmax
xi
02�i

g

i

(x
i

0
,x),

where
g

i

(x
i

,x) = E
si⇠xi

0
,s�i⇠x�i [⇡(s)]

| {z }
linear in xi

0

�kx

i

0
� x

i

k

2

2| {z }
strictly convex

.

The first term of the function g

i

encourages a best response while the second “penalty term”
discourages big changes to i’s mixed strategy. Because the function g

i

is strictly concave in
x

i

0, f

i

is well defined. The function f = (f
1

, . . . , f

k

) is continuous (see Exercises). It should be
clear that every MNE of the given game is a fixed point of f . For the converse, suppose that x
is not a MNE, with player i able to increase its expected payo↵ by deviating from x

i

and x

i

0.
A simple computation shows that, for su�ciently small ✏ > 0, g

i

((1�✏)x
i

+✏x

i

0
,x) > g

i

(x
i

,x),
and hence x is not a fixed point of f (see the Exercises).

There is also a second way to prove that computing a MNE of a bimatrix game is a
PPAD problem, via the Lemke-Howson algorithm (see [15]). The Lemke-Howson algorithm
reduces computing a MNE of a bimatrix game to a path-following problem, much in the way
that the simplex algorithm reduces computing an optimal solution of a linear program to
following a path of improving edges along the boundary of the feasible region. The biggest
di↵erence between the Lemke-Howson algorithm and the simplex method is that the former
is not guided by an objective function; all known proofs of its inevitable convergence use
parity arguments akin to the one in the proof of Sperner’s Lemma, thereby showing that the
problem lies in PPAD.

The two connections between PPAD and computing a MNE are incomparable. The
Lemke-Howson argument applies only to games with two players, but it shows that the
problem of computing an exact MNE of a bimatrix game belongs to PPAD. The path-
following algorithm derived from Sperner’s Lemma applies to games with any finite number
of players, but only shows that the problem of computing an approximate MNE is in PPAD.
In fact, with 3 or more players, the problem of computing an exact MNE of a game appears
to be strictly harder than PPAD problems [5].

The upshot of all this is that PPAD is a subclass of TFNP that contains the problem of
computing a MNE of a bimatrix game. Moreover, PPAD is syntactically defined, with the
generic reason for membership being solvability by a naive path-following argument from a
source in a directed graph with all in- and out-degrees at most 1. As such, we expect the
class to admit complete problems. In fact, we have finally identified the right complexity

9

class for building evidence that the problem of computing a MNE of a bimatrix game is
computationally intractable: it is a PPAD-complete problem.

Theorem 7.1 ([2, 3]) Computing a MNE of a bimatrix game is a PPAD-complete prob-
lem.

Theorem 7.1 is one of the greatest hits of algorithmic game theory. Its proof is far too
technical to describe here; for overviews in order of increasing levels of detail, see [13, §4.2],
[12, pp. 41–45], and [4].

8 Discussion and Open Questions

One interpretation of Theorem 7.1, which is not without controversy, is that the seeming
intractability of the Nash equilibrium concept renders it unsuitable for general-purpose be-
havioral prediction. If no polynomial-time algorithm can compute a MNE of a game, then
we don’t expect a bunch of strategic players to find one quickly, either. More generally, in
classes of games of interest, polynomial-time tractability of computing an equilibrium can
be used as a necessary condition for its predictive plausibility.

Intractability is not necessarily first on the list of the Nash equilibrium’s drawbacks. For
example, its non-uniqueness already limits its predictive power in many settings. But the
novel computational intractability critique in Theorem 7.1 is one that theoretical computer
science is particularly well suited to contribute.

If we don’t analyze the Nash equilibria of a game, then what should we analyze? Theo-
rem 7.1 suggests shining a brighter spotlight on computationally tractable classes of games
and equilibrium concepts. For example, our convergence results for no-regret dynamics mo-
tivate identifying properties that hold for all correlated or coarse correlated equilibria.

One natural equilibrium concept whose computational complexity remains poorly un-
derstood is ✏-approximate MNE of bimatrix games. After translating and scaling all player
payo↵s so that they lie in [0, 1], such an equilibrium is, by definition, a pair of mixed strategies
so that neither player can increase its payo↵ by more than ✏ via a unilateral deviation. It is
known that an ✏-approximate MNE of a bimatrix game can be computed in polynomial time
when ✏ ⇡

1

3

[14] and in quasi-polynomial time when ✏ is an arbitrarily small constant (see [7]
and the Problems).10 An interesting open question is whether or not an ✏-approximate MNE
of a bimatrix game can be computed in polynomial time for arbitrarily small constants ✏.

Another fundamental question that is poorly understood is: how hard are PPAD prob-
lems, anyways? In the absence of an unconditional proof about whether or not PPAD prob-
lems are polynomial-time solvable, it is important to relate the assumption that PPAD 6✓ P

to other complexity assumptions stronger than P 6= NP — for example, to cryptographic
assumptions like the existence of one-way functions.

10This quasi-polynomial-time algorithm enumerates approximations of all MNE, and in particular can
identify an approximate MNE with total payo↵ close to that of the best MNE. Intriguingly, this harder
optimization problem can be connected to the infamous planted clique problem [1, 6, 9].

10

References

[1] P. Austrin, M. Braverman, and E. Chlamtac. Inapproximability of NP-complete variants
of Nash equilibrium. Theory of Computing, 9:117–142, 2013.

[2] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of two-player Nash equilibria.
Journal of the ACM, 56(3), 2009.

[3] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing
a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.

[4] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing
a Nash equilibrium. Communications of the ACM, 52(2):89–97, 2009.

[5] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed
points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

[6] E. Hazan and R. Krauthgamer. How hard is it to approximate the best Nash equilib-
rium? SIAM Journal on Computing, 40(1):79–91, 2011.

[7] R. J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies.
In Proceedings of the 4th ACM Conference on Electronic Commerce (EC), pages 36–41,
2003.

[8] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.

[9] L. Minder and D. Vilenchik. Small clique detection and approximate Nash equilibria.
In APPROX-RANDOM, pages 673–685, 2009.

[10] J. F. Nash. Equilibrium points in N -person games. Proceedings of the National Academy
of Science, 36(1):48–49, 1950.

[11] C. H. Papadimitriou. On the complexity of the parity argument and other ine�cient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

[12] C. H. Papadimitriou. The complexity of finding Nash equilibria. In N. Nisan, T. Rough-
garden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 2, pages
29–51. Cambridge University Press, 2007.

[13] T. Roughgarden. Computing equilibria: A computational complexity perspective. Eco-
nomic Theory, 42(1):193–236, 2010.

[14] H. Tsaknakis and P. G. Spirakis. An optimization approach for approximate Nash
equilibria. Internet Mathematics, 5(4):365–382, 2008.

11

[15] B. von Stengel. Equilibrium computation for two-player games in strategic and extensive
form. In N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic
Game Theory, chapter 3, pages 53–78. Cambridge University Press, 2007.

12

CS364A: Algorithmic Game Theory:

The Top 10 List

⇤

Tim Roughgarden†

December 4, 2013

1. The Vickrey auction. Remember back when you first learned it and it seemed surprising
or unnatural? This was our introduction to “awesome auctions” — auctions that are
dominant-strategy incentive-compatible (DSIC) and run in polynomial time. Already
in single-item auctions, we saw how small changes in design, such as a first-price vs. a
second-price payment rule, can have major ramifications for participant behavior.

2. Myerson’s Lemma. For single-parameter problems, DSIC mechanism design reduces to
monotone allocation rule design. We saw many applications, including polynomial-time
Knapsack auctions, and Myerson’s Theorem stating that expected revenue maximiza-
tion with respect to a prior distribution reduces to expected virtual surplus maximiza-
tion.

3. The Bulow-Klemperer Theorem. In a single-item auction, adding an extra i.i.d. bidder
is as good as knowing the underlying distribution and running an optimal auction.
This result, along with the Prophet Inequality, was an important clue that simple and
prior-independent auctions can be almost as good as optimal ones.

4. The VCG Mechanism. Charging participants their externalities yields a DSIC welfare-
maximizing mechanism, even in very general settings.

5. Spectrum auctions. Rookie mistakes in real-world auction design can cost hundreds
of millions of dollars. Examples include selling items sequentially (as in a 2000 spec-
trum auction in Switzerland) or simultaneously using sealed-bid (instead of ascending)
auctions (as in a 1990 spectrum auction in New Zealand).

6. Selfish routing. Worst-case examples are always simple, with Pigou-like networks max-
imizing the price of anarchy (POA). The POA of selfish routing is therefore small only
when network cost functions are highly nonlinear, corroborating empirical evidence
that network over-provisioning leads to good network performance.

⇤
c�2013, Tim Roughgarden.

†
Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

7. Robust POA Bounds. Most of the canonical POA bounds, including all of those in
this course, are proved via smoothness arguments. As such, they apply not only to
Nash equilibria but also extend automatically to more permissive equilibrium concepts,
including coarse correlated equilibria.

8. Potential games. Many games of interest possess potential functions — players are
inadvertently and collectively striving to optimize a potential function. In such games,
pure Nash equilibria (PNE) always exist, and best-response dynamics always converges.

9. No-regret algorithms. No-regret algorithms exist, including simple ones with optimal
regret bounds, like the multiplicative weights algorithm. When players use no-external-
or no-swap-regret algorithms in games played over time, the joint history of play con-
verges to the sets of coarse correlated equilibria (CCE) or correlated equilibria (CE),
respectively. In this sense, CCE and CE are “highly tractable;” so are mixed Nash
equilibria of two-player zero-sum games.

10. Complexity of equilibrium computation. Nash equilibria do not seem to be e�ciently
computable in general. Two analogs of NP -completeness —- PLS-completeness and
PPAD-completeness — are the right tools for making precise these assertions for pure
and mixed Nash equilibria, respectively.

2

CS364A: Exercise Set #1

Due by the beginning of class on Wednesday, October 2, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke). You
can give them a hard copy or send a soft copy by email to cs364a-aut1314-submissions@cs.stanford.edu.
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (in o�ce hours
or via Piazza) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 1 Exercises

Exercise 1

Give at least two suggestions for how to modify the Olympic badminton tournament format to reduce or
eliminate the incentive for teams to intentionally lose a match.

Exercise 2

For this exercise and the next, see Section 1.3 of the AGT book (available for free from the course Web site)
for a formal definition of a Nash equilibrium.

(a) Watch the scene from A Beautiful Mind that purports to explain what a Nash equilibrium is. (It’s
easy to find on YouTube.) The scenario described is most easily modeled as a game with four players
(the men), each with the same five actions (the women). Explain why the solution proposed by the
John Nash character (i.e., Russell Crowe) is not a Nash equilibrium.

(b) (Optional extra credit) Propose a plausible game-theoretic model (probably a sequential game,
rather than a single-shot game) in which the solution proposed by Nash/Crowe is a Nash equilibrium.

Exercise 3

Prove that there is a unique (mixed-strategy) Nash equilibrium in the Rock-Paper-Scissors game described
in class.

Lecture 2 Exercises

Exercise 4

Compare and contrast an eBay auction with the sealed-bid second-price auction described in class. (Read up
on eBay auctions if you don’t already know how they work.) Should you bid di↵erently in the two auctions?

1

Exercise 5

Consider a single-item auction with at least three bidders. Prove that awarding the item to the highest
bidder, at a price equal to the third-highest bid, yields an auction that is not dominant-strategy incentive
compatible (DSIC).

Exercise 6

Suppose there are k identical copies of a good and n > k bidders. Suppose also that each bidder can receive
at most one good. What is the analog of the second-price auction? Prove that your auction is DSIC.

Exercise 7

Suppose you want to hire a contractor to perform some task, like remodeling a house. Each contractor has
a private cost for performing the task. Give an analog of the Vickrey auction in which contractors report
their costs and the auction chooses a contractor and a payment. Truthful reporting should be a dominant
strategy in your auction and, assuming truthful bids, your auction should select the contractor with the
smallest private cost.

[Aside: auctions of this type are called procurement or reverse auctions.]

Exercise 8

Recall the sponsored search setting, in which bidder i has a valuation vi per click. There are k slots with
click-through-rates (CTRs) ↵1 � ↵2 � · · · � ↵k. Recall that the social surplus of an assignment of bidders
to slots is

Pn
i=1 vixi, where xi equals the CTR of the slot to which i is assigned (or 0 if bidder i is not

assigned to any slot).
Prove that the social surplus is maximized by assigning the bidder with the jth highest valuation to the

jth slot for j = 1, 2, . . . , k.

2

CS364A: Exercise Set #2

Due by the beginning of class on Wednesday, October 9, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 3 Exercises

Exercise 9

Use Myerson’s Lemma to prove that the Vickrey auction is the unique single-item auction that is DSIC,
always awards the good to the highest bidder, and charges losers 0.

Exercise 10

Use the “payment di↵erence sandwich” in the proof of Myerson’s Lemma to prove that if an allocation rule
is not monotone, then it is not implementable.

Exercise 11

We concluded the proof of Myerson’s Lemma by giving a “proof by picture” that coupling a monotone and
piecewise constant allocation rule x with the payment formula

p

i

(b
i

,b�i

) =
`X

j=1

z

j

· [jump in x

i

(·,b�i

) at z

j

], (1)

where z1, . . . , z`

are the breakpoints of the allocation function x

i

(·,b�i

) in the range [0, b

i

], yields a DSIC
mechanism. Where does the proof-by-picture break down if the piecewise constant allocation rule x is not
monotone?

Exercise 12

Give a purely algebraic proof that coupling a monotone and piecewise constant allocation rule x with the
payment rule (1) yields a DSIC mechanism.

1

Lecture 4 Exercises

Exercise 13

Consider the following extension of the sponsored search setting discussed in lecture. Each bidder i now has
a publicly known quality �

i

(in addition to a private valuation v

i

per click). As usual, each slot j has a CTR
↵

j

, and ↵1 � ↵2 · · · � ↵

k

. We assume that if bidder i is placed in slot j, its probability of a click is �

i

↵

j

—
thus, bidder i derives value v

i

�

i

↵

j

from this outcome.
Describe the surplus-maximizing allocation rule in this generalized sponsored search setting. Argue that

this rule is monotone. Give an explicit formula for the per-click payment of each bidder that extends this
allocation rule to a DSIC mechanism.

Exercise 14

Consider an arbitrary single-parameter environment, with feasible set X. The surplus-maximizing allocation
rule is x(b) = arg max(x1,...,xn)2X

P
n

i=1 b

i

x

i

. Prove that this allocation rule is monotone.

[You should assume that ties are broken in a deterministic and consistent way, such as lexicographically.]

Exercise 15

Continuing the previous exercise, restrict now to feasible sets X that contain only 0-1 vectors – that is, each
bidder either wins or loses. We can thus identify each feasible outcome with a “feasible set” of bidders (the
winners in that outcome). Assume further that the environment is “downward closed,” meaning that subsets
of a feasible set are again feasible.

Recall from lecture that Myerson’s payment formula dictates that a winning bidder pays its “critical bid”
— the lowest bid at which it would continue to win. Prove that, when S

⇤ is the set of winning bidders and
i 2 S

⇤, i’s critical bid equals the di↵erence between (i) the maximum surplus of a feasible set that excludes
i (you should assume there is at least one such set); and (ii) the surplus

P
j2S

⇤\{i} v

j

of the bidders other
than i in the chosen outcome S

⇤. Also, is this di↵erence always nonnegative?

Remark: In the above sense, a winning bidder pays its “externality” — the surplus loss it imposes on
others.

Exercise 16

Continuing the previous exercise, consider a 0-1 downward-closed single-parameter environment. Suppose
you are given a “black box” that can compute the surplus-maximizing allocation rule x(b) for an arbitrary
input b. Explain how to compute the payments identified in the previous exercise by invoking this black
box multiple times.

Exercise 17

[Do not hand anything in.] Review the Knapsack problem and what one learns about it in an un-
dergraduate algorithms class. Specifically: (i) it is NP-hard; (ii) with integer values and/or item sizes, it
can be solved in pseudopolynomial time via dynamic programming; (iii) a simple greedy algorithm gives a
1
2 -approximation in near-linear time; (iv) rounding and dynamic programming gives a (1� ✏)-approximation
in time polynomial in the number n of items and in 1

✏

. Refer to your favorite algorithms textbook or to the
videos by the instructor on the course site.

Exercise 18

Prove that the Knapsack auction allocation rule induced by the greedy 1
2 -approximation algorithm covered

in lecture is monotone.

2

Exercise 19

The Revelation Principle states that direct-revelation DSIC mechanisms can simulate all other mechanisms
in which bidders always have dominant strategies. Critique the Revelation Principle from a practical per-
spective. Name at least one situation in which you might prefer a non-direct-revelation DSIC mechanism
over a direct-revelation one.

3

CS364A: Exercise Set #3

Due by the beginning of class on Wednesday, October 16, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 5 Exercises

Exercise 20

Consider a single-item auction with two bidders with valuations drawn i.i.d. from the uniform distribution
on [0, 1].

(a) Prove that the expected revenue obtained by the Vickrey auction (with no reserve) is 1
3 .

(b) Prove that the expected revenue obtained by the Vickrey auction with reserve 1
2 is 5

12 .

Exercise 21

Compute the virtual valuation function of the following distributions.

(a) The uniform distribution on [0, a] with a > 0.

(b) The exponential distribution with rate � > 0 (on [0,1)).

(c) The distribution given by F (v) = 1� 1
(v+1)c on [0,1), where c > 0 is some constant.

Which of these distributions are regular (meaning the virtual valuation function is strictly increasing)?

Exercise 22

Consider the distribution in part (c) of the previous problem, with c = 1. Argue that when bidder valuations
are drawn from this distribution, it is not necessarily the case that the expected revenue of an auction equals
its expected virtual surplus. To reconcile this observation with the main result from Lecture 5, identify
which assumption from lecture is violated in this example.

1

Exercise 23

Consider an auction with k identical goods, with at most one given to each bidder. There are n bidders
whose valuations are i.i.d. draws from a regular distribution F . Describe the optimal auction in this case.
Which of the following does the reserve price depend on: k, n, and/or F?

Exercise 24

Repeat the previous exercise for sponsored search auctions, with n bidders with valuations-per-click drawn
i.i.d. from a regular distribution, and with k  n slots with ↵1 � ↵2 � · · · � ↵

k

.

Lecture 6 Exercises

Exercise 25

Consider an arbitrary single-parameter environment, with feasible set X. Suppose bidder i’s valuation is
drawn from a regular distribution F

i

, with strictly increasing virtual valuation function '

i

. The virtual
surplus-maximizing allocation rule is x(b) = arg max(x1,...,xn)2X

P
n

i=1 '

i

(b
i

)x
i

. Prove that this allocation
rule is monotone.
[You should assume that ties are broken in a deterministic and consistent way, such as lexicographically.]

Exercise 26

Consider a single-item auction where bidder i’s valuation is drawn from its own regular distribution F

i

(i.e.,
the F

i

’s can be di↵erent).

(a) Give a formula for the winner’s payment in an optimal auction, in terms of the bidders’ virtual valuation
functions.

(b) Show by example that, in an optimal auction, the highest bidder need not win, even if it has a positive
virtual valuation. [Hint: two bidders with valuations from di↵erent uniform distributions su�ces.]

(c) Give an intuitive explanation of why the property in (b) might be beneficial to the revenue of an
auction.

Exercise 27

Consider a single-item auction with n bidders with valuations drawn i.i.d. from a regular distribution F .
Prove that the expected revenue of the Vickrey auction (with no reserve) is at least n�1

n

times that of the
optimal auction (with the same number n of bidders).
[Hint: deduce this statement from the Bulow-Klemperer theorem. When one new bidder is added, how much
can the maximum-possible expected revenue increase?]

2

CS364A: Exercise Set #4

Due by the beginning of class on Wednesday, October 23, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 7 Exercises

Exercise 28

Recall that raising Yahoo!’s reserve prices was particularly e↵ective for valuable keywords (typical valuations-
per-click well above the old reserve price of $.10) that had few bidders (at most 6, say). Give at least two
examples of keywords that you think might have these properties, and explain your reasoning in 1-2 sentences.

Exercise 29

Prove that the payment pi(b) made by a bidder i in the VCG mechanism is at least 0 and at most bi(!⇤),
where !⇤ is the outcome chosen by the mechanism.

Exercise 30

Consider a combinatorial auction where you know a priori that every bidder is unit demand. This means
that the valuation of a bidder i can be described by m private parameters (one per good) vi1, . . . , vim, and
its valuation for an arbitrary set S of goods is defined as maxj2S vij . Prove that the VCG mechanism can
be implemented in polynomial time for unit-demand bidders. [Cf., Problem 12(d) on Problem Set #2.]

Exercise 31

Consider two goods (A and B) and three bidders. Bidder #1 has valuation 1 for A and B together (i.e.,
v1(AB) = 1) and 0 otherwise. Bidder #2 has valuation 1 for A (i.e., v2(AB) = v2(A) = 1) and 0 otherwise.
Bidder #3 has valuation 1 for B and 0 otherwise. Compute the VCG allocation and payments when only
the first two bidders are present. Do the same when all three bidders are present.

Can adding an extra bidder ever decrease the revenue of the Vickrey (single-item) auction? Give a brief
explanation.

1

Exercise 32

Show that the following is possible: two bidders in a combinatorial auction are given no goods by the VCG
mechanism if they bid truthfully, yet both can achieve positive utility if they both submit suitable false bids.

Can this ever happen in the Vickrey auction? Give a brief explanation.

Exercise 33

Consider a combinatorial auction in a which a bidder can submit multiple bids under di↵erent names,
unbeknownst to the mechanism. The allocation and payment of a bidder is the union and sum of the
allocations and payments, respectively assigned to all of its pseudonyms. Show that the following is possible:
a bidder in a combinatorial auction can earn higher utility from the VCG mechanism by submitting multiple
bids than by bidding truthfully.

Can this ever happen in the Vickrey auction? Give a brief explanation.

Lecture 8 Exercises

Exercise 34

Recall the reverse auction setting from lecture. B denotes the set of bidders. There is a set F ✓ 2B of
feasible sets that is upward closed (i.e., supersets of feasible sets are again feasible).

• Initialize S := B.

• While there is a bidder i 2 S such that S \ {i} is feasible:

(*) Delete some such bidder from S.

• Return S.

Suppose we implement the step (*) using a scoring rule, which assigns a number to each bidder i. At each
iteration, the bidder with the largest score (whose deletion does not destroy feasibility of S) gets deleted.
The score assigned to a bidder can depend on i, i’s bid, the bids of other bidders that have already been
deleted, the feasible set F , and the history of what happened in previous iterations. (Note a score is not

allowed to depend on the value of the bids of other bidders that have not yet been deleted.)
Assume that the scoring rule is increasing — holding everything fixed except for bi, i’s score is increasing

in its bid bi. Then, show that the allocation rule above is monotone: for every i and b�i, if i wins with bid
bi and b0i < bi, then i also wins with bid b0i.

2

CS364A: Exercise Set #5

Due by the beginning of class on Wednesday, October 30, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 9 Exercises

Exercise 35

Consider single-item auctions with known bidder budgets. Give a DSIC auction (possibly randomized) that
is guaranteed to achieve (in expectation) at least a 1

n fraction of the maximum-possible surplus
P

i vixi.

Exercise 36

Continuing the previous exercise, prove that for every DSIC auction (possibly randomized), there is a valu-
ation profile on which its expected surplus is O(1/n) times the maximum possible. For partial credit, prove
this for deterministic DSIC auctions only.

Exercise 37

Consider a 0-1 single-parameter environment (as in Exercise 15) in which each bidder i has a publicly known
budget Bi. Consider the allocation rule x that, given bids b, chooses the feasible outcome that maximizes the
“truncated welfare”

Pn
i=1 min{bixi, Bi}. Argue that this rule is monotone (assuming consistent tie-breaking),

and that the corresponding DSIC mechanism (given by Myerson’s Lemma) never charges a bidder more than
its budget.

Exercise 38

Continuing the previous exercise, give a plausible argument why the mechanism in Exercise 37 might be a
reasonable approach to single-item auctions when bidders have publicly known budgets.

1

Exercise 39

Continuing the previous exercise, consider instead the setting of the clinching auction — a possibly large
number m of identical goods, and each bidder i has a private valuation vi per good and a publicly known
budget Bi. Give an argument why the mechanism in Exercise 37 might not be a reasonable approach for
these multi-unit auctions. (Hint: what if for each i, Bi/vi is a modestly large number but still far smaller
than m?)

Exercise 40

Consider a multi-unit auction where bidders have private valuations per unit and private budgets. We can
still try to run the clinching auction, by asking bidders to report their budgets and running the mechanism
with the reported budgets and valuations. Prove that this mechanism is not DSIC.
[Hint: Dobzinski, Lavi, and Nisan (2008) o↵er the follow intuition: “If bidder A slightly delays reporting a
demand decrease, bidder B will pay as a result a slightly higher price for his acquired items, which reduces
his future demand. In turn, the fact that bidder B now has a lower demand implies that bidder A pays a
lower price for future items...”]

Exercise 41

Prove that the output of the TTCA is uniquely defined — that is, it is independent of which cycle is chosen
in each iteration of the algorithm. [You should prove this directly, without relying on any facts about the
core of the housing allocation problem.]

Lecture 10 Exercises

Exercise 42

Recall the matching-based kidney exchange mechanism from lecture. Prove that this mechanism is DSIC —
no agent (i.e., patient-donor pair) can be made better o↵ (i.e., go from unmatched to matched) by reporting
a strict subset Fi of its true edge set Ei.

Exercise 43

Show that there are cases in which the Gale-Shapley algorithm runs for ⌦(n2) iterations before terminating
(with a stable matching).

Exercise 44

Prove that the Gale-Shapley proposal algorithm is not DSIC for the right-hand side (the women) — i.e.,
there are cases in which a woman can submit a false total ordering over the men and receive a better mate
than when reporting its true preferences.

2

CS364A: Exercise Set #6

Due by the beginning of class on Wednesday, November 6, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 11 Exercises

Exercise 45

Consider a multicommodity network G = (V,E), where for i = 1, 2, . . . , k, ri > 0 units of tra�c travel from
an origin si 2 V to a destination ti 2 V . Extend the definitions of a flow and of an equilibrium flow to
multicommodity networks.

Exercise 46

Extend the two expressions for total travel time to multicommodity networks.

Exercise 47

Extend to multicommodity networks the result that every network with cost functions in a set C has POA
at most the Pigou bound ↵(C).

Exercise 48

Prove that if C is the set of cost functions of the form c(x) = ax + b with a, b � 0, then the Pigou bound
↵(C) is 4

3 .

Lecture 12 Exercises

Exercise 49

Deduce from the first main result in lecture (i.e., that an equilibrium flow costs no more than an optimal
flow with twice the tra�c) the following statement.

1

Given a network G = (V,E) and cost function ce for each edge e 2 E, define modified cost functions
by c̃e(x) = ce(x/2)/2 for each e 2 E. If f̃ is an equilibrium flow in the network G with the modified cost
functions {c̃e}e2E and f

⇤ is an optimal flow in the network G with the original cost functions {ce}e2E , then
the cost of f̃ (with respect to the modified cost functions) is no more than the cost of f

⇤ (with respect to
the original cost functions).

Also, if ce(x) = 1/(ue � x), then what is c̃e(x)?

Exercise 50

Prove that for every network and � > 0, the equilibrium flow has total travel time at most 1
� times that of

an optimal flow that routes (1 + �) times as much tra�c.

Exercise 51

Prove that the bound in the previous exercise is tight: for every �, ✏ > 0 there is a network in which the
equilibrium flow has total travel time at least (1

� � ✏) times that of an optimal flow that routes (1 + �) times
as much tra�c.

Exercise 52

Extend to multicommodity networks the result that the cost of an equilibrium flow is at most that of an
optimal flow that routes twice as much tra�c (between each origin-destination pair).

Exercise 53

Prove that for every pair y, z 2 {0, 1, 2, . . .} of nonnegative integers,

y(z + 1)  5
3
y

2 +
1
3
z

2
.

Exercise 54

The AAE example (Example 18.6 in the AGT book) shows that the POA of atomic selfish routing in networks
with a�ne cost functions is at least 2.5. The example has four players. Give an example with three players
that proves the same lower bound.

2

CS364A: Exercise Set #7

Due by the beginning of class on Wednesday, November 13, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 13 Exercises

Exercise 55

Consider an atomic selfish routing game with a�ne cost functions. Let C(f) denote the total travel time of
a flow f and �(f) the value of Rosenthal’s potential function for f . Prove that

1
2
C(f)  �(f)  C(f)

for every flow f .

Exercise 56

Algorithmic Game Theory, Exercise 18.4. Note this exercise refers to atomic selfish routing games with
weighted players, where di↵erent players can control di↵erent amounts of flow. Example 18.7 from the AGT
book shows that with quadratic cost functions, pure Nash equilibria need not exist in such routing games.
(But this exercise asks about a�ne cost functions.)

Exercise 57

In lecture, we defined a mixed Nash equilibrium of a cost-minimization game to be a set �1, . . . ,�k of
distributions over the strategy sets A1, . . . , Ak such that

Es⇠�[Ci(s)]  Es⇠�[Ci(s0i, s�i)]

for every player i and (pure) deviation s

0
i 2 Ai, where � = �1 ⇥ · · ·⇥ �k is the product distribution induced

by the players’ mixed strategies.
Suppose instead we allow mixed-strategy deviations. That is, consider the distributions �1, . . . ,�k that

satisfy
Es⇠�[Ci(s)]  Es0

i2�0
i,s⇠�[Ci(s0i, s�i)]

for every player i and distribution �

0
i over Ai. Show that �1, . . . ,�k satisfy this condition if and only if it is

a mixed Nash equilibrium in the sense of our original definition.

1

Exercise 58

Consider a cost-minimization game and a product distribution � = �1⇥ · · ·⇥�k. Show that � is a correlated
equilibrium of the game if and only if �1, . . . ,�k form a mixed Nash equilibrium of the game.

Exercise 59

Consider a cost-minimization game. Prove that a distribution � over outcomes A1⇥ · · ·⇥Ak is a correlated
equilibrium if and only if it has the following property: for every player i and function � : Ai ! Ai,

Es⇠�[Ci(s)]  Es⇠�[Ci(�(si), s�i)] .

Exercise 60

Prove that every correlated equilibrium of a cost-minimization game is also a coarse correlated equilibrium.

Exercise 61

Consider an atomic selfish routing network that has four players with the same source s and destination t,
and six parallel edges from s to t, each with cost function c(x) = x.

Consider the distribution � over outcomes that randomizes uniformly over all outcomes with the following
properties:

(1) There is one edge with two players.

(2) There are two edges with one player each (so three edges are empty).

(3) The set of edges with at least one player is either {1, 3, 5} or {2, 4, 6}.

Prove that � is a coarse correlated equilibrium but not a correlated equilibrium.

Lecture 14 Exercises

Exercise 62

Prove that there is a location game in which the POA of pure Nash equilibria is 1
2 , matching the worst-case

bound given in lecture.

Exercise 63

Prove that every location game is a potential game in the sense of Lecture 13. What is the potential function?

Exercise 64

Prove that if s is an ✏-approximate Nash equilibrium of a (�, µ)-smooth cost-minimization game — meaning
that Ci(s)  (1 + ✏)Ci(s0i, s�i) for every player i and deviation s

0
i 2 Ai — with ✏ <

1
µ � 1, then the cost of s

is at most �(1+✏)
1�µ(1+✏) times that of an optimal outcomes.

2

CS364A: Exercise Set #8

Due by the beginning of class on Wednesday, November 20, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 15 Exercises

Exercise 65

Prove that in every network cost-sharing game, the POA is at most k, where k is the number of players.

Exercise 66

Algorithmic Game Theory, Exercise 17.2.

Exercise 67

Prove that in every network cost-sharing game in which all players have a common source vertex and a
common sink vertex, there is a one-to-one correspondence between strong Nash equilibria and minimum-cost
outcomes. (Thus, in such games, strong Nash equilibria always exist and the POA of such equilibria is 1.)

Exercise 68

Prove that the network cost-sharing game shown in Figure 1 has no strong Nash equilibria.

Lecture 16 Exercises

Exercise 69

Exhibit a game with a pure Nash equilibrium and an initial outcome from which best-response dynamics
cycles forever.
[Hint: a game with two players and three strategies per player should be plenty.]

1

t1#

v#

2#

s1#

s2#

t2#

1#

3#

2#

1#

3#

Figure 1: Network cost-sharing game for Exercise 68.

Exercise 70

Suppose a finite cost-minimization game admits a function � with the property that, for every outcome s,
every player i, and every deviation s0i with Ci(s0i, s�i) < Ci(s), �(s0i, s�i) < �(s). Is this enough to conclude
that the game has at least one PNE?

Exercise 71

Recall the result from lecture: in every atomic selfish routing game such that all k players share the same
source vertex and same sink vertex, and such that ce(x + 1) 2 [ce(x),↵ · ce(x)] for every e 2 E and positive
integer x, MaxGain ✏-best-response-dynamics converges to an ✏-pure Nash equilibrium in O(k↵

✏ log �(s0)
�min

)
iterations. Here s

0 is the initial state, �min is the minimum value of �, and in every iteration of MaxGain
✏-best-response dynamics, among all players that have an ✏-move (i.e., a deviation s0i such that Ci(s0i, s�i) <
(1� ✏)Ci(s)), the one with maximum (absolute) gain Ci(s)� Ci(s0i, s�i) is chosen.

Show that the same result holds for the MaxRelativeGain variant of ✏-best-response dynamics, where
among all players with an ✏-move, the one with maximum relative gain [Ci(s)�Ci(s0i, s�i)]/Ci(s) is chosen.

2

CS364A: Exercise Set #9

Due by noon on Friday, December 6, 2013

Instructions:

(1) Turn in your solutions to all of the following exercises directly to one of the TAs (Kostas or Okke).
Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page. Email your solutions to cs364a-aut1314-submissions@cs.stanford.edu. If you prefer
to hand-write your solutions, you can give it to one of the TAs in person at the start of the lecture.

(2) Your solutions will be graded on a “check/minus/zero” system, with “check” meaning satisfactory and
“minus” meaning needs improvement.

(3) Solve these exercises and write up your solutions on your own. You may, however, discuss the exercises
verbally at a high level with other students. You may also consult any books, papers, and Internet
resources that you wish. And of course, you are encouraged to contact the course sta↵ (via Piazza or
o�ce hours) to clarify the questions and the course material.

(4) No late assignments will be accepted.

Lecture 17 Exercises

Exercise 72

Prove that for every ✏ 2 (0, 1

2

] and x 2 [0, 1],

(1� ✏)x  (1� ✏x)

and
(1 + ✏)x  (1 + ✏x).

[Hint: Here’s one way you could structure your proof. For fixed ✏, let f
✏

(x) and g
✏

(x) denote the functions
on the left- and right-hand sides. Verify that f

✏

(0) = g
✏

(0), f
✏

(1) = g
✏

(1), f 0
✏

(0) < g0
✏

(0), and f is convex.]

Exercise 73

The multiplicative weights algorithm, as described in lecture, requires knowledge of the time horizon T to
set the parameter ✏. Modify the algorithm so that it doesn’t need to know T in advance and continues to
have time-averaged external regret O(

p
lnn/

p
T).

[Hint: There is no need to redo the previous analysis from scratch. For example, you could consider restarting
the algorithm each time to get to a day t of the form 2i.]

Exercise 74

Suppose we modify the multiplicative weights algorithm so that the weight update step is wt+1(a) :=
wt(a) · (1 � ✏ct(a)) (rather than wt+1(a) := wt(a) · (1 � ✏)c

t
(a)). Show that this algorithm also has regret

O(
p

lnn/
p

T).
[Hint: This time you should redo the analysis from class, making minor modifications as necessary.]

1

Exercise 75

Modify the online decision-making setting so that every time step t an adversary chooses a payo↵ vec-

tor ⇡t : A ! [0, 1] rather than a cost vector. The time-averaged external regret is now defined as
1

T

max
a2A

P
T

t=1

⇡t(a)� 1

T

P
T

t=1

⇡t(at).
Suppose we modify the multiplicative weights algorithm so that the weight update step is wt+1(a) :=

wt(a) · (1 + ✏)⇡

t
(a) (rather than wt+1(a) := wt(a) · (1 � ✏)c

t
(a)). Show that this algorithm has regret

O(
p

lnn/
p

T).
[Hint: Redo the analysis from class, making minor modifications as necessary. Use Exercise 72.]

Exercise 76

We assumed in class that costs are bounded between 0 and 1. Suppose instead they are bounded between 0
and c

max

. Explain how to make minor modifications to the multiplicative weights algorithm so that it has
time-averaged regret O(c

max

·
p

lnn/
p

T). (You can assume that T is known.) Note this implies O(c

2

max

ln n

✏

2

)
steps to achieve regret ✏.

Exercise 77

Consider a (�, µ)-smooth cost-minimization game (see Lecture 14). Let s

1, . . . , sT be an outcome sequence
such that player i has time-averaged external regret R

i

. Let � denote the uniform distribution over this
multi-set of T outcomes. Prove that the expected cost of � is at most �

1�µ

times the cost of an optimal
outcome, plus the error term 1

1�µ

P
n

i=1

R
i

.

Exercise 78

Consider T iterations of no-regret dynamics in a k-player game. Let pt

i

denote the mixed strategy played by
player i in iteration t, and �t =

Q
k

i=1

pt

i

the corresponding distribution over outcomes on day t.
In lecture we proved that the time-averaged joint distribution 1

T

P
T

t=1

�t is an approximate coarse cor-
related equilibrium, but did not claim anything about any individual distribution �t.

Prove that an individual distribution �t is an approximate coarse correlated equilibrium if and only if it
is an approximate Nash equilibrium (with the same error term).

Lecture 18 Exercises

Exercise 79

Suppose we instantiate the Blum-Mansour reduction using n copies of the multiplicative weights algorithm,
where n is the number of actions. What is the swap regret of the resulting “master” algorithm, as a function
of n and T?

Exercise 80

Let A denote the matrix of row player payo↵s of a two-player zero-sum game. Prove that a pair of x̂, ŷ of
mixed distributions is a mixed Nash equilibrium if and only if it is a minimax pair, meaning

x̂ 2 argmax
x

✓
min

y

xT Ay

◆

and
ŷ 2 argmin

y

⇣
max

x

xT Ay
⌘

.

2

Exercise 81

Prove that if (x
1

, y
1

) and (x
2

, y
2

) are mixed Nash equilibria of a two-player zero-sum game, then so are
(x

1

, y
2

) and (x
2

, y
1

).

3

