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1 Case Study: Network Over-Provisioning

1.1 Motivation

The selfish routing model introduced last lecture can provide insight into many different
kinds of networks, including transportation, communication, and electrical networks. One
big advantage in communication networks is that it’s often relatively cheap to add additional
capacity to a network. Because of this, a popular strategy to communication network man-
agement is to install more capacity than is needed, meaning that the network will generally
not be close to fully utilized (see e.g. [4]).

There are several reasons why network over-provisioning is common in communication
networks. One reason is to anticipate future growth in demand. Beyond this, it has been
observed empirically that networks tend to perform better — for example, suffering fewer
packet drops and delays — when they have extra capacity. Network over-provisioning has
been used as an alternative to directly enforcing “quality-of-service (QoS)” guarantees (e.g.,
delay bounds), for example via an admission control protocol that refuses entry to new traffic
when too much congestion would result [4].

The goal of this section is develop theory to corroborate the empirical observation that
network over-provisioning leads to good performance. Section 1.2 shows how to apply directly
the theory developed last lecture to over-provisioned networks. Section 1.3 offers a second
approach to proving the same point, that selfish routing with extra capacity is competitive
with optimal routing.
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Lectures on Algorithmic Game Theory, published by Cambridge University Press, for the latest version.
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(a) M/M/1 delay function

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

(b) Extra capacity vs. POA curve

Figure 1: Modest overprovisioning guarantees near-optimal routing. The left-hand figure
displays the per-unit cost c(x) = 1/(u − x) as a function of the load x for an edge with
capacity u = 2. The right-hand figure shows the worst-case price of anarchy as a function
of the fraction of unused network capacity.

1.2 POA Bounds for Over-Provisioned Networks

The optimal price of anarchy (POA) bounds for selfish routing developed last lecture are
parameterized by the class of permissible network cost functions. In this section, we consider
a network in which every cost function ce(x) has the form

ce(x) =

{
1

ue−x
if x < ue

+∞ if x ≥ ue.
(1)

The parameter ue should be thought of as the capacity of edge e. A cost function of the
form (1) is the expected delay in an M/M/1 queue, meaning a queue where jobs arrive ac-
cording to a Poisson process with rate x and have independent and exponentially distributed
services times with mean 1/ue. This is generally the first and simplest cost function used to
model delays in communication networks (e.g. [2]). Figure 1(a) displays such a function; it
stays very flat until the traffic load nears the capacity, at which point the cost rapidly tends
to +∞.

For a parameter β ∈ (0, 1), call a selfish routing network with M/M/1 delay functions
β-over-provisioned if fe ≤ (1 − β)ue for every edge e, where f is an equilibrium flow. That
is, at equilibrium, the maximum link utilization in the network is at most (1− β) · 100%.

Figure 1(a) suggests the following intuition: when β is not too close to 0, the equilibrium
flow is not too close to the capacity on any edge, and in this range the edges’ cost functions
behave like low-degree polynomials with nonnegative coefficients. Last lecture we saw that
the POA is small in networks with such cost functions.

More formally, the main theorem from last lecture reduces computing the worst-case
POA in arbitrary β-over-provisioned selfish routing networks to computing the worst-case
POA merely in β-over-provisioned Pigou-like examples. A computation, which the reader
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Figure 2: Nonlinear variant of Pigou’s example. The POA of selfish routing can be arbitrarily
large.

is encouraged to do in the privacy of their own home, shows that the worst-case POA in
β-over-provisioned networks is at most

1

2

(
1 +

√
1

β

)
; (2)

see Figure 1(b). As we’ve come to expect, very simple networks show that the bound in (2)
is tight for all values of β ∈ (0, 1).

Unsurprisingly, the bound in (2) tends to 1 as β tends to 1 and to +∞ as β tends to 0;
these are the cases where the cost functions effectively act like constant functions and like
very high-degree polynomials, respectively. What’s interesting to investigate is intermediate
values of β. For example, if β = .1 — meaning the maximum edge utilization is at most 90%
— then the POA is guaranteed to be at most 2.1. In this sense, a little over-provisioning is
sufficient for near-optimal selfish routing, corroborating what has been empirically observed
by Internet Service Providers.

1.3 A Resource Augmentation Bound

This section proves a guarantee for selfish routing in arbitrary networks, with no extra
assumptions on the cost function. What could such a guarantee look like? Recall that
the nonlinear variant of Pigou’s example (Figure 2) shows that the POA in selfish routing
networks with arbitrary cost functions is unbounded.

In this section, we compare the performance of selfish routing to a “weaker” optimal
solution that is forced to send extra traffic.1 For example, in Figure 2, with one unit of
traffic, the equilibrium flow has cost 1 while the optimal flow has near-zero cost. If the
optimal flow has to route two units of traffic through the network, then there is nowhere to
hide: the best solution continues to route (1− ε) units of traffic on the lower edge, with the
remaining (1 + ε) units of traffic routed on the upper edge, for a total cost exceeding that of
the equilibrium flow (with one unit of traffic).

1Another approach, explored in the systems community [5], is to instead make extra assumptions about
the network structure and the traffic rate.
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This “unfair” comparison between two flows at different traffic rates has an equivalent and
easier to interpret formulation as a comparison between two flows with the same traffic rate
but in networks with with different cost functions. Intuitively, instead of forcing the optimal
flow to route additional traffic, we allow the equilibrium flow to use a “faster” network, with
each original cost function ce(x) replaced by the “faster” function ce(

x
2
)/2. (See the Exercises

for details.) This transformation is particularly easy to interpret for M/M/1 delay functions,
since if ce(x) = 1/(ue − x), then the “faster” function is 1/(2ue − x) — an edge with double
the capacity. The next theorem, after this reformulation, gives a second justification for
network over-provisioning: a modest technology upgrade improves performance more than
implementing dictatorial control.2

Theorem 1.1 ([6]) For every selfish routing network and traffic rate r, the cost of an equi-
librium flow with rate r is at most the cost of an optimal flow with rate 2r.

Proof: Fix a network G with nonnegative, nondecreasing, and continuous cost functions, and
a traffic rate r. Let f and f ∗ denote equilibrium and optimal (minimum-cost) flows at the
traffic rates r and 2r, respectively.

The first part of the proof reuses the trick from last lecture of using fictitious cost func-
tions, frozen at the equilibrium costs, to get a grip on the cost of the optimal flow f ∗. Recall
that since f is an equilibrium flow, all paths P used by f have a common cost cP (f), call
it L. Moreover, cP (f) ≥ L for every path P ∈ P . Thus,∑

P∈P

fP︸︷︷︸
sums to r

· cP (f)︸ ︷︷ ︸
= L if fP > 0

= r · L (3)

while ∑
P∈P

f ∗P︸︷︷︸
sums to 2r

· cP (f)︸ ︷︷ ︸
≥ L

≥ 2r · L. (4)

That is, with respect to the fictitious costs {ce(fe)}, we get a great lower bound on the cost
of f ∗ — at least twice the cost of the equilibrium flow f — much better than what we’re
actually trying to prove.

The second step of the proof shows that using the fictitious costs instead of the accurate
ones overestimates the cost of f ∗ by at most the cost of f . Specifically, we complete the
proof by showing that∑

e∈E

f ∗e · ce(f ∗e )︸ ︷︷ ︸
cost of f∗

≥
∑
e∈E

f ∗e · ce(fe)︸ ︷︷ ︸
≥2rL

−
∑
e∈E

fe · ce(fe)︸ ︷︷ ︸
=rL

. (5)

We prove that (5) holds term-by-term, that is, we show that

f ∗e · [ce(fe)− ce(f ∗e )] ≤ fe · ce(fe) (6)

2Like last lecture, we prove the result for networks with a single source and single sink. The same proof
extends, with minor extra notation, to networks with multiple sources and sinks (see the Exercises).
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Figure 3: Proof by picture of part of Theorem 1.1.

for every edge e ∈ E. When f ∗e ≥ fe, the left-hand side of (6) is nonpositive and there is
nothing to show. When f ∗e < fe, we give a proof by picture; see Figure 3. The left-hand
side of (6) is the area of the shaded region, with width f ∗e and height ce(fe) − ce(f ∗e ). The
right-hand side of (6) is the area of the solid region, with width fe and height ce(fe). Since
f ∗e < fe and ce is nondecreasing, the former region is a subset of the latter. This verifies (6)
and completes the proof. �

In the sense of Theorem 1.1 and its reformulation given in the Exercises, speeding up
(i.e., overprovisioning) a selfish routing network by a modest amount is better than routing
traffic optimally.

2 Atomic Selfish Routing

So far we’ve studied a nonatomic model of selfish routing, meaning that all players were
assumed to have negligible size. This is a good model for cars on a highway or small users of
a communication network, but not if a single strategic player represents, for example, all of
the traffic controlled by a single Internet Service Provider. This section studies atomic selfish
routing networks, where each player controls a non-negligible amount of traffic. While most
aspects of the model will be familiar, it presents a couple of new technical complications.
These complications will also be present in other classes of games that we study later.

An atomic selfish routing network has a finite number k of players. Player i has a source
vertex si and a destination vertex ti; these can be shared across players, or not. Each
player routes 1 unit of traffic on a single si-ti path, and seeks to minimize its cost.3 Flows,
equilibrium flows, and the cost of a flow are defined analogously to last lecture.

To get a feel for the atomic model, consider the variant of Pigou’s example shown in
Figure 4. Suppose there are two players, and recall that each controls 1 unit of flow. The
optimal solution routes one player on each link, for a total cost of 1 + 2 = 3. This is also
an equilibrium flow, in the sense that neither player can decrease its cost via a unilateral

3Two obvious variants of the model allow players to have different sizes and/or to split traffic fractionally
over multiple paths. Both variants have been extensively studied using methods similar to the ones covered
in these lectures.
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Figure 4: A pigou-like network for atomic selfish routing.

deviation. The player on the lower edge does not want to switch, since its cost would jump
from 1 to 2. More interestingly, the player on the upper edge (with cost 2) has no incentive
to switch to the bottom edge, where its sudden appearance would drive the cost up to 2.

There is also a second equilibrium in the network: if both players take the lower edge,
both have a cost of 2 and neither can decrease its cost by switching to the upper edge. This
equilibrium has cost 4. This illustrates an importance difference between the nonatomic and
atomic models: different equilibria are guaranteed to have the same cost in the nonatomic
model, but not in the atomic model.

Our current working definition of the POA — the ratio between the objective function
value of an equilibrium and that of an optimal outcome — is not well defined when different
equilibria have different objective function values. We extend the definition by taking a
worst-case approach: the price of anarchy (POA) of an atomic selfish routing network is

cost of worst equilibrium

cost of optimal outcome
.

For example, in the network in Figure 4, the POA is 4
3
.

A second difference between the two models is that the POA in atomic selfish routing
networks can be larger than in their nonatomic counterparts. To see this, consider the
four-player bidirected triangle network shown in Figure 5. Each player has two strategies,
a one-hop path and a two-hop path. In the optimal flow, all players route on their one-hop
paths, and the cost of this flow is 4 — these one-hop paths are precisely the four edges with
the cost function c(x) = x. This flow is also an equilibrium flow. On the other hand, if all
players route on their two-hop paths, then we obtain a second equilibrium flow. Since the
first two players each incur three units of cost and the last two players each incur two units
of cost, this flow has a cost of 10. As the reader should check, it is also an equilibrium. The
price of anarchy of this instance is therefore 10/4 = 2.5.

There are no worse examples with affine cost functions.4

Theorem 2.1 (POA Bound for Atomic Selfish Routing, Affine Cost Functions [1, 3])
In every atomic selfish routing network with affine cost functions, the POA is at most 5

2
.

4There are also very general and tight POA bounds known for arbitrary sets of cost functions. For
example, in atomic selfish routing networks with cost functions that are polynomials with nonnegative
coefficients, the POA is at most a constant that depends on the maximum polynomial degree d. The
dependence on d is exponential, however, unlike the ≈ d

ln d dependence in nonatomic selfish routing networks.
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Figure 5: In atomic instances with affine cost functions, the POA can be as large as 5/2.

Proof: The following proof is a “canonical POA proof,” in a sense that we’ll make precise in
Lecture 14. Let’s just follow our nose. We need to prove a bound for every equilibrium flow;
fix one f arbitrarily. Let f ∗ denote an optimal (minimum-cost) flow. Write fe and f ∗e for
the number of players in f and f ∗, respectively, that pick a path that includes the edge e.
Write each affine cost function as ce(x) = aex+ be for ae, be ≥ 0.

The first step of the proof is to figure out a good way of applying our hypothesis that f
is an equilibrium flow — that no player can decrease its cost through a unilateral deviation.
After all, the bound of 2.5 does not generally apply to non-equilibrium flows. If we consider
any player i, using path Pi in f , and any unilateral deviation to a different path P̂i, then we
can conclude that i’s equilibrium cost using Pi is at most what its cost would be if it switched
to P̂i. This looks promising: we want an upper bound on the total cost of players in the
equilibrium f , and hypothetical deviations give us upper bounds on the equilibrium costs
of individual players. Which hypothetical deviations should we single out for the proof? A
natural idea is to let the optimal flow f ∗ suggest deviations.

Formally, suppose player i uses path Pi in f and path P ∗i in f ∗. Since f is an equilibrium,
i’s cost only increases if it switches to P ∗i (holding all other players fixed):∑

e∈Pi

ce(fe) ≤
∑

e∈P ∗
i ∩Pi

ce(fe) +
∑

e∈P ∗
i \Pi

ce(fe + 1),

where in the final term we account for the additional unit of load that i contributes to edges
that it newly uses (in P ∗i but not in Pi). For all we know Pi and P ∗i are disjoint; since cost
functions are nondecreasing, we have∑

e∈Pi

ce(fe) ≤
∑
e∈P ∗

i

ce(fe + 1). (7)
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This completes the first step, in which we apply the equilibrium hypothesis to generate an
upper bound (7) on the equilibrium cost of each player.

The second step of the proof sums the upper bound (7) on individual equilibrium costs
over all players to get a bound on the total equilibrium cost:

k∑
i=1

∑
e∈Pi

ce(fe) ≤
k∑

i=1

∑
e∈P ∗

i

ce(fe + 1)

=
∑
e∈E

f ∗e · ce(fe + 1) (8)

=
∑
e∈E

[aef
∗
e (fe + 1) + bef

∗
e ] , (9)

where in (8) we use that the term ce(fe + 1) is contributed exactly once by each player i
that contemplates switching to a path P ∗i that includes the edge e — f ∗e times in all. This
complete the second step of the proof.

The previous step gave an upper bound on a quantity that we care about — the cost of
the equilibrium flow f — in terms of a quantity that we don’t care about, the “entangled”
version of f and f ∗ on the right-hand side of (9). The third and most technically challenging
step of the proof is to “disentangle” the right-hand side of (9) and relate it to the only
quantities that we do care about for a POA bound, the costs of f and f ∗.

We next claim that, for every y, z ∈ {0, 1, 2, . . . , },

y(z + 1) ≤ 5

3
y2 +

1

3
z2. (10)

This inequality is easy to check once guessed, and we leave the verification of it as an exercise.
One can check all cases where y and z are both small, and then observe that it continues
to hold when either one grows large. Note that the inequality holds with equality when
y = z = 1 and when y = 1 and z = 2. We’ll demystify how inequalities like (10) arise next
week.

We now apply inequality (10) once per edge in the right-hand side of (9), with y = f ∗e
and z = fe. We then have

C(f) ≤
∑
e∈E

[
ae

(
5

3
(f ∗e )2 +

1

3
f 2

e

)
+ bef

∗
e

]

≤ 5

3

[∑
e∈E

f ∗e (aef
∗
e + be)

]
+

1

3

∑
e∈E

aef
2
e

≤ 5

3
· C(f ∗) +

1

3
· C(f).

Subtracting 1
3
C(f) from both sides and multiplying through by 3

2
gives

C(f) ≤ 5

3
· 3

2
· C(f ∗) =

5

2
· C(f ∗),

completing the proof. �
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