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Last lecture we proved that every pure Nash equilibrium of an atomic selfish routing
game with affine cost functions (of the form ce(x) = aex + be with ae, be ≥ 0) has cost at
most 5

2
times that of an optimal outcome, and that this bound is tight in the worst case.

There can be multiple pure Nash equilibria in such a game, and this bound of 5
2

applies to
all of them. But how do we know that there is at least one? After all, there are plenty of
games like Rock-Paper-Scissors that possess no pure Nash equilibrium. How do we know
that our price of anarchy (POA) guarantee is not vacuous? This lecture introduces basic
definitions of and questions about several equilibrium concepts. When do they exist? When
is computing one computationally tractable? Why should we prefer one equilibrium concept
over another?

1 Potential Games and the Existence of Pure Nash

Equilibria

Atomic selfish routing games are a remarkable class, in that pure Nash equilibria are guar-
anteed to exist.

Theorem 1.1 (Rosenthal’s Theorem [4]) Every atomic selfish routing game, with arbi-
trary real-valued cost functions, has at least one equilibrium flow.

Proof: We show that every atomic selfish routing game is a potential game. Intuitively,
we show that players are inadvertently and collectively striving to optimize a “potential
function.” This is one of the only general tools for guaranteeing the existence of pure Nash
equilibria in a class of games.
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Figure 1: The function ce and its corresponding (underestimating) potential function.

Formally, define a potential function on the set of flows of an atomic selfish routing game
by

Φ(f) =
∑
e∈E

fe∑
i=1

ce(i), (1)

where fe is the number of player that choose a path in f that includes the edge e. The
inner sum in (1) is the “area under the curve” of the cost function ce; see Figure 1. Contrast
this with the corresponding term fe · ce(fe) in the cost objective function we studied last
week, which corresponds to the shaded bounding box in Figure 1. The similarity between
the potential function and the cost objective function can be useful, as we’ll see later.

The defining condition of a potential function is the following. Consider an arbitrary flow
f , and an arbitrary player i, using the si-ti path Pi in f , and an arbitrary deviation to some
other si-ti path P̂i. Let f̂ denote the flow after i’s deviation from Pi to P̂i. Then,

Φ(f̂)− Φ(f) =
∑
e∈P̂i

ce(f̂e)−
∑
e∈Pi

ce(fe); (2)

that is, the change in the potential function under a unilateral deviation is exactly the
same as the change in the deviator’s individual cost. In this sense, the single function Φ
simultaneously tracks the effect of deviations by each of the players.

Once the potential function Φ is correctly guessed, the property (2) is easy to verify.
Looking at (1), we see that the inner sum of the potential function corresponding to edge e
picks up an extra term ce(fe + 1) whenever e is newly used by player i (i.e., in P̂i but not
Pi), and sheds its final term ce(fe) when e is newly unused by player i. Thus, the left-hand
side of (2) is ∑

e∈P̂i\Pi

ce(fe + 1)−
∑
Pi\P̂i

ce(fe),

which is exactly the same as the right-hand side of (2).
Given the potential function Φ, the proof of Theorem 1.1 is easy. Let f denote the flow

that minimizes Φ — since there are only finitely many flows, such a flow exists. Then, no
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unilateral deviation by any player can decrease Φ. By (2), no player can decrease its cost by
a unilateral deviation and so f is an equilibrium flow. �

2 Extensions

The proof idea in Theorem 1.1 can be used to prove a number of other results. First, the
proof remains valid for arbitrary cost functions, nondecreasing or otherwise. We’ll use this
fact in Lecture 15, when we discuss a class of games with “positive externalities.”

Second, the proof of Theorem 1.1 never uses the network structure of a selfish routing
game. That is, the argument remains valid for congestion games, the generalization of atomic
selfish routing games in which there is an abstract set E of resources (previously, edges),
each with a cost function, and each player i has an arbitrary collection Si ⊆ 2E of strategies
(previously, si-ti paths), each a subset of resources. We’ll discuss congestion games at length
in Lecture 19.

Finally, analogous arguments apply to the nonatomic selfish routing networks introduced
in Lecture 11. We sketch the arguments here; details are in [5]. Since players have negligible
size in such games, we replace the inner sum in (1) by an integral:

Φ(f) =
∑
e∈E

∫ fe

0

ce(x)dx, (3)

where fe is the amount of traffic routed on edge e by the flow f . Because cost functions
are assumed continuous and nondecreasing, the function Φ is continuously differentiable and
convex. The first-order optimality conditions of Φ are precisely the equilibrium conditions of
a flow in a nonatomic selfish routing network (see Exercises). This gives a sense in which the
local minima of Φ correspond to equilibrium flows. Since Φ is continuous and the space of all
flows is compact, Φ has a global minimum, and this flow must be an equilibrium. This proves
existence of equilibrium flows in nonatomic selfish routing networks. Uniqueness of such flows
follows from the convexity of Φ — its only local minima are its global minima. When Φ
has multiple global minima, all with the same potential function value, these correspond to
multiple equilibrium flows that all have the same total cost.

3 A Hierarchy of Equilibrium Concepts

How should we discuss the POA of a game with no pure Nash equilibria (PNE)? In addition
to games like Rock-Paper-Scissors, atomic selfish routing games with varying player sizes
need not have PNE, even with only two players and quadratic cost functions [5, Example
18.4]. For a meaningful POA analysis of such games, we need to enlarge the set of equilibria
to recover guaranteed existence. The rest of this lecture introduces three relaxations of PNE,
each more permissive and more computationally tractable than the previous one (Figure 2).
All three of these more permissive equilibrium concepts are guaranteed to exist in every
finite game.
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Figure 2: The Venn-diagram of the hierarchy of equilibrium concepts.

3.1 Cost-Minimization Games

A cost-minimization game has the following ingredients:

• a finite number k of players;

• a finite strategy set Si for each player i;

• a cost function Ci(s) for each player i, where s ∈ S1×· · ·×Sk denotes a strategy profile
or outcome.

For example, atomic routing games are cost-minimization games, with Ci(s) denoting i’s
travel time on its chosen path, given the paths s−i chosen by the other players.

Conventionally, the following equilibrium concepts are defined for payoff-maximization
games, with all of the inequalities reversed. The two definitions are completely equivalent.

3.2 Pure Nash Equilibria (PNE)

Recall the definition of a PNE: unilateral deviations can only increase a player’s cost.

Definition 3.1 A strategy profile s of a cost-minimization game is a pure Nash equilibrium
(PNE) if for every player i ∈ {1, 2, . . . , k} and every unilateral deviation s′i ∈ Si,

Ci(s) ≤ Ci(si
′, s−i). (4)

PNE are easy to interpret but, as discussed above, do not exist in all games of interest. We
leave the POA of pure Nash equilibria undefined in games without at least one PNE.
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3.3 Mixed Nash Equilibria (MNE)

When we discussed the Rock-Paper-Scissors game in Lecture 1, we introduced the idea of
a player randomizing over its strategies via a mixed strategy. In a mixed Nash equilibrium,
players randomize independently and unilateral deviations can only increase a player’s ex-
pected cost.

Definition 3.2 Distributions σ1, . . . , σk over strategy sets S1, . . . , Sk of a cost-minimization
game constitute a mixed Nash equilibrium (MNE) if for every player i ∈ {1, 2, . . . , k} and
every unilateral deviation s′i ∈ Si,

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(si
′, s−i)] , (5)

where σ denotes the product distribution σ1 × · · · × σk.
Definition 3.2 only considers pure-strategy unilateral deviations; also allowing mixed-strategy
unilateral deviations does not change the definition (Exercise).

By the definitions, every PNE is the special case of MNE in which each player plays
deterministically. The Rock-Paper-Scissors game shows that, in general, a game can have
MNE that are not PNE.

Here are two highly non-obvious facts that we’ll discuss at length in Lecture 20. First,
every cost-minimization game has at least one MNE; this is Nash’s theorem [3]. Second,
computing a MNE appears to be a computationally intractable problem, even when there
are only two players. For now, by “seems intractable” you can think of as being roughly
NP -complete; the real story is more complicated, as we’ll discuss in the last week of the
course.

The guaranteed existence of MNE implies that the POA of MNE is well defined in every
finite game — this is an improvement over PNE. The computational intractability of MNE
raises the concern that POA bounds for them need not be meaningful. If we don’t expect the
players of a game to quickly reach an equilibrium, why should we care about performance
guarantees for equilibria? This objection motivates the search for still more permissive and
computationally tractable equilibrium concepts.

3.4 Correlated Equilibria (CE)

Our next equilibrium notion takes some getting used to. We define it, then explain the
standard semantics, and then offer an example.

Definition 3.3 A distribution σ on the set S1×· · ·×Sk of outcomes of a cost-minimization
game is a correlated equilibrium (CE) if for every player i ∈ {1, 2, . . . , k}, strategy si ∈ Si,
and every deviation s′i ∈ Si,

Es∼σ[Ci(s) | si] ≤ Es∼σ[Ci(si
′, s−i) | si] . (6)
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Importantly, the distribution σ in Definition 3.3 need not be a product distribution; in this
sense, the strategies chosen by the players are correlated. Indeed, the MNE of a game corre-
spond to the CE that are product distributions (see Exercises). Since MNE are guaranteed
to exist, so are CE. Correlated equilibria also have a useful equivalent definition in terms of
“switching functions;” see the Exercises.

The usual interpretation of a correlated equilibrium [1] involves a trusted third party.
The distribution σ over outcomes is publicly known. The trusted third party samples an
outcome s according to σ. For each player i = 1, 2, . . . , k, the trusted third party privately
suggests the strategy si to i. The player i can follow the suggestion si, or not. At the time of
decision-making, a player i knows the distribution σ, one component si of the realization σ,
and accordingly has a posterior distribution on others’ suggested strategies s−i. With these
semantics, the correlated equilibrium condition (6) requires that every player minimizes its
expected cost by playing the suggested strategy si. The expectation is conditioned on i’s
information — σ and si — and assumes that other players play their recommended strategies
s−i.

Believe it or not, a traffic light is a perfect example of a CE that is not a MNE. Consider
the following two-player game:

stop go
stop 0,0 0,1
go 1,0 -5,-5

If the other player is stopping at an intersection, then you would rather go and get on with
it. The worst-case scenario, of course, is that both players go at the same time and get
into an accident. There are two PNE, (stop,go) and (go,stop). Define σ by randomizing
50/50 between these two PNE. This is not a product distribution, so it cannot correspond
to a MNE of the game. It is, however, a CE. For example, consider the row player. If the
trusted third party (i.e., the stoplight) recommends the strategy “go” (i.e., is green), then
the row player knows that the column player was recommended “stop” (i.e., has a red light).
Assuming the column player plays its recommended strategy (i.e., stops at the red light),
the best response of the row player is to follow its recommendation (i.e., to go). Similarly,
when the row player is told to stop, it assumes that the column player will go, and under
this assumption stopping is a best response.

In Lecture 18 we’ll prove that, unlike MNE, CE are computationally tractable. One proof
goes through linear programming. More interesting, and the focus of our lectures, is the fact
that there are distributed learning algorithms that quickly guide the history of joint play to
the set of CE.

3.5 Coarse Correlated Equilibria (CCE)

We should already be quite pleased with positive results, like good POA bounds, that apply
to the computationally tractable set of CE. But if we can get away with it, we’d be happy
to enlarge the set of equilibria even further, to an “even more tractable” concept.
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Definition 3.4 ([2]) A distribution σ on the set S1 × · · · × Sk of outcomes of a cost-
minimization game is a coarse correlated equilibrium (CCE) if for every player i ∈ {1, 2, . . . , k}
and every unilateral deviation s′i ∈ Si,

Es∼σ[Ci(s)] ≤ Es∼σ[Ci(si
′, s−i)] . (7)

In the equilibrium condition (7), when a player i contemplates a deviation si
′, it knows only

the distribution σ and not the component si of the realization. Put differently, a CCE only
protects against unconditional unilateral deviations, as opposed to the conditional unilateral
deviations addressed in Definition 3.3. Every CE is a CCE — see the Exercises — so CCE
are guaranteed to exist in every finite game and are computationally tractable. As we’ll see
in a couple of weeks, the distributed learning algorithms that quickly guide the history of
joint play to the set of CCE are even simpler and more natural than those for the set of CE.

3.6 An Example

We next consider a concrete example, to increase intuition for the four equilibrium concepts
in Figure 2 and to show that all of the inclusions can be strict.

Consider an atomic selfish routing game (Lecture 12) with four players. The network
is simply a common source vertex s, a common sink vertex t, and 6 parallel s-t edges
E = {0, 1, 2, 3, 4, 5}. Each edge has the cost function c(x) = x.

The pure Nash equilibria of this game are the
(
6
4

)
outcomes in which each player chooses

a distinct edge. Every player suffers only unit cost in such an equilibrium. One mixed
Nash equilibrium that is obviously not pure has each player independently choosing an
edge uniformly at random. Every player suffers expected cost 3/2 in this equilibrium. The
uniform distribution over all outcomes in which there is one edge with two players and two
edges with one player each is a (non-product) correlated equilibrium, since both sides of (6)
read 3

2
for every i, si, and s′i (see Exercises). The uniform distribution over the subset of

these outcomes in which the set of chosen edges is either {0, 2, 4} or {1, 3, 5} is a coarse
correlated equilibrium, since both sides of (7) read 3

2
for every i and s′i. It is not a correlated

equilibrium, since a player i that is recommended the edge si can reduce its conditional
expected cost to 1 by choosing the deviation s′i to the successive edge (modulo 6).

3.7 Looking Ahead: POA Bounds for Tractable Equilibrium Con-
cepts

The benefit of enlarging the set of equilibria is increased tractability and plausibility. The
downside is that, in general, fewer desirable properties will hold.

For example, consider POA bounds, which by definition compare the objective function
value of the worst equilibrium of a game to that of an optimal solution. The larger the set
of equilibria, the worse (i.e., further from 1) the POA. Is there a “sweet spot” equilibrium
concept that is simultaneously big enough to enjoy tractability and small enough to permit
strong worst-case guarantees? In the next lecture, we give an affirmative answer for many
interesting classes of games.
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