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1. The Vickrey auction. Remember back when you first learned it and it seemed surprising
or unnatural? This was our introduction to “awesome auctions” — auctions that are
dominant-strategy incentive-compatible (DSIC) and run in polynomial time. Already
in single-item auctions, we saw how small changes in design, such as a first-price vs. a
second-price payment rule, can have major ramifications for participant behavior.

2. Myerson’s Lemma. For single-parameter problems, DSIC mechanism design reduces to
monotone allocation rule design. We saw many applications, including polynomial-time
Knapsack auctions, and Myerson’s Theorem stating that expected revenue maximiza-
tion with respect to a prior distribution reduces to expected virtual surplus maximiza-
tion.

3. The Bulow-Klemperer Theorem. In a single-item auction, adding an extra i.i.d. bidder
is as good as knowing the underlying distribution and running an optimal auction.
This result, along with the Prophet Inequality, was an important clue that simple and
prior-independent auctions can be almost as good as optimal ones.

4. The VCG Mechanism. Charging participants their externalities yields a DSIC welfare-
maximizing mechanism, even in very general settings.

5. Spectrum auctions. Rookie mistakes in real-world auction design can cost hundreds
of millions of dollars. Examples include selling items sequentially (as in a 2000 spec-
trum auction in Switzerland) or simultaneously using sealed-bid (instead of ascending)
auctions (as in a 1990 spectrum auction in New Zealand).

6. Selfish routing. Worst-case examples are always simple, with Pigou-like networks max-
imizing the price of anarchy (POA). The POA of selfish routing is therefore small only
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when network cost functions are highly nonlinear, corroborating empirical evidence
that network over-provisioning leads to good network performance.

7. Robust POA Bounds. Most of the canonical POA bounds, including all of those in
this course, are proved via smoothness arguments. As such, they apply not only to
Nash equilibria but also extend automatically to more permissive equilibrium concepts,
including coarse correlated equilibria.

8. Potential games. Many games of interest possess potential functions — players are
inadvertently and collectively striving to optimize a potential function. In such games,
pure Nash equilibria (PNE) always exist, and best-response dynamics always converges.

9. No-regret algorithms. No-regret algorithms exist, including simple ones with optimal
regret bounds, like the multiplicative weights algorithm. When players use no-external-
or no-swap-regret algorithms in games played over time, the joint history of play con-
verges to the sets of coarse correlated equilibria (CCE) or correlated equilibria (CE),
respectively. In this sense, CCE and CE are “highly tractable;” so are mixed Nash
equilibria of two-player zero-sum games.

10. Complexity of equilibrium computation. Nash equilibria do not seem to be efficiently
computable in general. Two analogs of NP -completeness —- PLS-completeness and
PPAD-completeness — are the right tools for making precise these assertions for pure
and mixed Nash equilibria, respectively.
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