
CS364A: Problem Set #3

Due to the TAs by noon on Friday, November 8, 2013

Instructions:

(0) We’ll grade this assignment out of a total of 75 points; if you earn more than 75 points on it, the extra
points will be treated as extra credit.

(1) Form a group of at most 3 students and solve as many of the following problems as you can. You
should turn in only one write-up for your entire group.

(2) Turn in your solutions directly to one of the TAs (Kostas or Okke). Please type your solutions if possible
and feel free to use the LaTeX template provided on the course home page. Email your solutions to
cs364a-aut1314-submissions@cs.stanford.edu. If you prefer to hand-write your solutions, you can
give it to one of the TAs in person.

(3) If you don’t solve a problem to completion, write up what you’ve got: partial proofs, lemmas, high-level
ideas, counterexamples, and so on.

(4) Except where otherwise noted, you may refer to your course notes, and to the textbooks and research
papers listed on the course Web page only. You cannot refer to textbooks, handouts, or research papers
that are not listed on the course home page. If you do use any approved sources, make you sure you
cite them appropriately, and make sure that all your words are your own.

(5) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(6) No late assignments will be accepted.

Problem 14

(10 points) This problem concerns the same class of reverse auctions as in Exercise 34. Under the same
assumptions as in that exercise, prove that the corresponding DSIC reverse auction is in fact weakly group-
strategyproof. This means that for every coalition S ⊆ B of bidders, every set b−S of bids of the other
bidders B \S, and every set vS of true valuations for S, there is no set bS of bids that results in every bidder
of S receiving strictly higher utility than with truthful bids vS .

Problem 15

This problem considers auctions that provide revenue guarantees.

(a) (3 points) Consider an unlimited-supply auction (n bidders with private valuations, n identical goods,
each bidder wants only one) with a twist: the auctioneer incurs a fixed production cost of 1 if there
is at least one winner; if no goods are sold, then no such cost is incurred. Call an auction for this
problem budget-balanced if, whenever there is at least one winner, the prices charged to the winners
sum to exactly the cost incurred (namely, 1). Define the surplus of an outcome with winners S to be
0 if S = ∅ and −1 +

∑
i∈S vi otherwise.

Note that the surplus can be maximized in this problem using the extension of the VCG mechanism
described in Problem 12(a). Prove that with the standard VCG payments (in which losers pay 0), this
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VCG mechanism is not budget-balanced — in fact, it can generate 0 revenue even when the auctioneer
incurs cost 1.

(b) (5 points) Prove that the following direct-revelation mechanism (given bids b) is budget-balanced and
DSIC:

– Initialize S to be all bidders.

– While S 6= ∅:
∗ If bi ≥ 1

|S| for every i ∈ S, then halt. The winning bidders are those in S and each pays 1
|S| .

∗ Otherwise, delete from S an arbitrary bidder with bi < 1
|S| .

– If S becomes empty, then halt with no winners (and no payments).

(c) (8 points) The mechanism in (b) does not generally maximize the surplus. Precisely, show that the
largest-possible difference (over all possible valuation profiles v) between the maximum surplus and
the surplus achieved by this mechanism is exactly −1 +

∑n
i=1

1
i . (This is roughly lnn, minus a small

constant.)

(d) (5 points) We can generalize the result in (b) as follows. Consider an unlimited-supply auction with
players N , in which the auctioneer incurs a (publicly known) cost of C(S) when the set of winners
is S ⊆ N . Assume that C(∅) = 0, that C is nondecreasing (meaning C(S) ≤ C(T ) whenever S ⊆ T ),
and that C is submodular, meaning that

C(T ∪ {i})− C(T ) ≤ C(S ∪ {i})− C(S)

whenever S ⊆ T and i /∈ T .1

The Shapley value of i in S, denoted χSh(i, S), is defined as follows. For an ordering π of the players
of S, let Tπ denote those preceding i in π. Then χSh(i, S) := Eπ[C(Tπ ∪ {i})− C(Tπ)], where π is
chosen uniformly at random. In other words, assuming that the players of S are added to the empty
set 1-by-1 in a random order, χSh(i, S) is the expected jump in cost caused by i’s arrival.

Prove that, under the assumptions on C above, χSh(i, S) ≥ χSh(i, T ) whenever S ⊆ T .

(e) (4 points) By using Shapley values as prices, generalize the budget-balanced truthful mechanism in (b)
to an unlimited-supply auction with an arbitrary nondecreasing, submodular cost function. Be sure to
prove that your mechanism is DSIC and budget-balanced.

(f) (5 points) Prove that the mechanism in (e) is weakly groupstrategyproof (see Problem 14 for a defini-
tion).

Problem 16

In this problem we modify the multi-item auction setting of the clinching auction (Lecture 9) in two ways.
First, we make the problem easier by assuming that bidders have no budgets. Along a different axis, we
make the problem more general: rather than having a common value vi for every good that it gets, a bidder
i has a private marginal valuation vij for its jth good, given that it already has j− 1 goods. (Previously, vij

was independent of j.) Thus, if i receives k goods at a combined price of p, its utility is (
∑k

j=1 vij)− p. We
assume throughout this problem that every bidder gets diminishing returns from goods: for every bidder i,
vi1 ≥ vi2 ≥ vi3 ≥ · · · ≥ vim.

(a) (3 points) The VCG mechanism has a fairly simple explicit description in this setting. What is it?

1This is a set-theoretic type of “diminishing returns”. For example, when C(S) depends only on |S|, submodularity becomes
discrete concavity.
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(b) (7 points) Suppose we adapt the clinching auction from lecture to the present setting, by redefining
bidder demand functions in the obvious way. That is, for a bidder i that has already clinched ` goods,
and a price p, we define Di(p) as max{k − `, 0}, where k ≤ m is the largest value of j with vij > p.2

Prove that the allocation and payments of this clinching auction coincide with that of the VCG mech-
anism.

Problem 17

(10 points) Prove that the Gale-Shapley proposal algorithm is DSIC for the men — i.e., reporting a false
total ordering over the women can only cause a man to be matched to a woman ranked lower in his (true)
preference list.

Problem 18

(10 points) Algorithmic Game Theory, Exercise 18.2(b).

Problem 19

(15 points) Algorithmic Game Theory, Exercise 18.8(e).

Problem 20

In this problem we consider nonatomic selfish routing networks with one source, one sink, one unit of selfish
traffic, and affine cost functions (of the form ce(x) = aex + be for ae, be ≥ 0). In parts (a)-(c), we consider
the objective of the maximum cost incurred by a flow f :

max
P : fP >0

∑
e∈P

ce(fe).

The price of anarchy is then defined in the usual way, as the ratio between the maximum cost of an equilibrium
flow and that of a flow with minimum-possible maximum cost. (Of course, in an equilibrium flow, all traffic
incurs exactly the same cost; this is not generally true in a non-equilibrium flow.)

(a) (4 points) Prove that in a network of parallel links (each directly connecting the source to the sink),
the price of anarchy with respect to the maximum cost objective is 1.

(b) (4 points) Prove that the price of anarchy with respect to the maximum cost objective can be as large
as 4/3 in general networks (with affine cost functions, one source and one sink).

(c) (5 points) Prove that the price of anarchy with respect to the maximum cost objective is never larger
than 4/3 (in networks with affine cost functions, one source and one sink).

[Hint: try to reduce this to facts you already know.]

(d) (7 points) A flow that minimizes the average cost of traffic generally routes some traffic on costlier
paths than others. Prove that the ratio between the cost of the longest used path and that of the
shortest used path in a minimum-cost flow is at most 2 (in networks with affine cost functions, one
source and one sink). Prove that this bound can be achieved.

2As in the version of the auction in lecture, we can count goods j with vij = p toward i’s demand or not, according to
convenience. Alternatively, feel free to assume that all of the vij ’s are distinct for this problem.
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Problem 21

Recall the Generalized Second Price (GSP) keyword auction from Problem 3. For this problem we’ll think
about bidders with known valuations and the pure-strategy Nash equilibria of the corresponding game. Note
that in part (e) of Problem 3 you proved that in every such game (for any k, n, valuations, and click-through
rates), there is a pure-strategy Nash equilibrium with the maximum-possible surplus. That is, the best Nash
equilibrium captures the full surplus. This problem investigates additional Nash equilibria that do not share
this property.

(a) (5 points) Show that even when k = 1 and n = 2, the price of anarchy of the GSP game can be
arbitrarily bad.

(b) (5 points) Consider now a Nash equilibrium in which every bid bi is at most the player’s valuation vi.
Suppose that players i and j are assigned to slots with click-through rates αh and α`, respectively,
with h < `. Prove that

α`

αh
+

vi

vj
≥ 1.

(c) (10 points) Consider again a Nash equilibrium in which every bid bi is at most the player’s valuation vi.
Prove (perhaps using (b)) that the surplus of this equilibrium is at least 50% of the maximum possible.

4


