
CS364A: Problem Set #5/Take-Home Final

Due to the TAs by noon on Friday, December 13, 2013

Instructions:

(0) We’ll grade this assignment out of a total of 75 points; if you earn more than 75 points on it, the extra
points will be treated as extra credit.

(1) Form a group of at most 3 students and solve as many of the following problems as you can. You
should turn in only one write-up for your entire group.

(2) Turn in your solutions directly to one of the TAs (Kostas or Okke). Please type your solutions if possible
and feel free to use the LaTeX template provided on the course home page. Email your solutions to
cs364a-aut1314-submissions@cs.stanford.edu. If you prefer to hand-write your solutions, you can
give it to one of the TAs in person.

(3) If you don’t solve a problem to completion, write up what you’ve got: partial proofs, lemmas, high-level
ideas, counterexamples, and so on.

(4) Except where otherwise noted, you may refer to your course notes, and to the textbooks and research
papers listed on the course Web page only. You cannot refer to textbooks, handouts, or research papers
that are not listed on the course home page. If you do use any approved sources, make you sure you
cite them appropriately, and make sure that all your words are your own.

(5) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(6) No late assignments will be accepted.

Problem 30

(15 points, plus 10 more extra credit) Recall atomic selfish routing games with parallel edges (two vertices,
a common source s and a common sink t, and m parallel edges from s to t). This problem considers the
generalization in which players can have different cost functions: each player j incurs a cost cj

i (k) on the ith
edge if it is one of k players using the edge. Assume that for each fixed j and i, cj

i (k) is nondecreasing in k.
Consider the version of best-response dynamics in which you begin at an arbitrary outcome, and as long

as the current outcome is not a (pure-strategy) Nash equilibrium, an arbitrary player who can benefit by
deviating is allowed to switch its strategy (i.e., its chosen edge). Assume that a deviating player switches to
its best (i.e., cost-minimizing) strategy. You can assume that there are no ties, with all cj

i (k)’s distinct.
Solve two of the following four problems for full credit. You will receive extra credit for each problem

after the first two that you solve.

(i) Prove that best-response dynamics need not converge.

(ii) Prove that, despite (i), a pure-strategy Nash equilibrium always exists.

(iii) Give a polynomial-time algorithm for computing a pure-strategy Nash equilibrium.

(iv) Show that if there are only two edges, then best-response dynamics converges to a pure-strategy Nash
equilibrium.
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Problem 31

(10 points) Show by example — an explicit (non-zero-sum) two-player game — that the time-averaged history
of joint play generated by no-regret dynamics need not converge to a mixed Nash equilibrium.

Problem 32

(10 points) Show that each of the following problems can be formulated directly as a linear programming
problem.

(i) Given the payoff matrix of a two-player zero-sum game, compute a mixed-strategy Nash equilibrium.

(ii) Given a k-player game in “normal form” — a list of the payoffs πi(s) for every player i and outcome
s ∈ S1 × · · · × Sk — compute a coarse correlated equilibrium.

(iii) Given a k-player game in normal form, compute a correlated equilibrium.

Problem 33

Consider a two-player, non-zero sum game, specified by payoff matrices A and B, in which both players have
n strategies. Assume that all payoffs are rational numbers between 0 and 1.

(a) (4 points) The support of a mixed strategy is the set of pure strategies that are played with strictly
positive probability. Suppose you were promised that there was a mixed-strategy Nash equilibrium of
(A,B) with row and column supports S and T , respectively. Show how you can then recover such an
equilibrium in polynomial time.

[Hint: you may use the fact that linear programs can be solved in polynomial time.]

(b) (3 points) Give a 2O(n)-time algorithm to compute an exact mixed-strategy Nash equilibrium of a
two-player game.

(c) (9 points) Consider a mixed-strategy Nash equilibrium (x∗, y∗) of (A,B). Suppose we draw K =
(s log n)/ε2 independent samples (r1, c1), . . . , (rK , cK) from the product distribution x∗ × y∗, where
ε > 0 is a parameter and s > 0 is a sufficiently large constant. Form the corresponding empirical
distributions x̂ and ŷ, where components are the frequencies of play in the sequence. Prove that, with
high probability, (x̂, ŷ) is an ε-approximate Nash equilibrium in the sense that every strategy in a
player’s support has expected payoff within (additive) ε of that of a best response.

[Hint: if you don’t know about them, read up about Chernoff Bounds.]

(d) (5 points) Use (an extension of) (a) and (c) to give an nO((log n)/ε2)-time algorithm for computing an
ε-approximate mixed-strategy Nash equilibrium of a two-player game.

(e) (4 points) Extend your algorithm and analysis to compute, with the same running time bound, an
ε-approximate mixed-strategy Nash equilibrium with expected total payoff close to that of the best
(maximum-payoff) exact Nash equilibrium.

Problem 34

We continue the study of algorithms for approximate Nash equilibria in bimatrix games, in the sense of the
previous problem. However, we’ll use a weaker definition of approximate equilibria than in Problem 33: now,
we’ll call (x̂, ŷ) an ε-approximate Nash equilibrium if x̂T Aŷ ≥ xT Aŷ − ε for all row mixed strategies x and
x̂T Bŷ ≥ x̂T By − ε for all column mixed strategies y.

(a) (5 points) Prove that there is a 1
2 -approximate Nash equilibrium in which one player plays a pure

strategy and the other randomizes uniformly between two strategies.
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(b) (10 points) Consider the following idea for improving on (a). Suppose we form the matrix A−B, view it
as a zero-sum game, and solve for an exact mixed-strategy Nash equilibrium (x∗, y∗). (By Problem 32,
this can be done in polynomial time.) Perhaps (x∗, y∗) is an ε-approximate Nash equilibrium for (A,B)
for a satisfactory value of ε; if not, we generalize (a) and have one player play a pure strategy while
the other randomizes (not necessarily uniformly) between a pure strategy and its optimal strategy for
A−B.

Can you use these ideas (with appropriate parameter choices) to improve upon the result in (a)? What
is the minimum value of ε for which your algorithm computes an ε-approximate Nash equilibrium in
polynomial time?

Problem 35

Consider again the problem of computing some exact mixed-strategy Nash equilibrium of a (non-zero-sum)
bimatrix game.

(a) (5 points) A bimatrix game (A,B) is symmetric if both players have the same strategy set and B = AT .
(Rock-Paper-Scissors and the Prisoner’s Dilemma are both examples.) Nash’s theorem (or the Lemke-
Howson algorithm) can be adapted to show that every symmetric game has a symmetric Nash equi-
librium, in which both players employ the same mixed strategy. Prove that the problem of computing
a mixed Nash equilibrium of a general bimatrix game polynomial-time reduces to that of computing a
symmetric Nash equilibrium of a symmetric bimatrix game.

(b) (5 points) Prove that the problem of computing a mixed Nash equilibrium of a general bimatrix game
polynomial-time reduces to that of computing any Nash equilibrium of a symmetric bimatrix game.

(c) (5 points) Prove that the problem of computing a mixed Nash equilibrium of a general bimatrix game
polynomial-time reduces to that of computing an asymmetric Nash equilibrium of a symmetric bimatrix
game, if one exists.
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