COMS 4995 (Randomized Algorithms): Exercise Set #5

For the week of September 30–October 4, 2019

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or in the course discussion forum.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 21

Show that Chebyshev's inequality is nearly tight, in the following sense: for arbitrarily large positive integers t, there is a random variable X with the following properties:

- 1. $\mathbf{E}[X] = O(1)$ (e.g., at most 2).
- 2. Var[X] = O(1) (e.g., at most 4).
- 3. $\Pr[|X \mathbf{E}[X]| \ge t \cdot \operatorname{StdDev}[X]] = \Omega\left(\frac{1}{t^2}\right)$, where the constant hidden in the big-omega is independent of t.

[Hint: Consider throwing n balls into n bins. But instead of doing it uniformly, randomize only over outcomes where one bin gets lots of balls and the other bins get zero or one ball each.]

Exercise 22

In Lecture #9 we proved that if X is a standard Gaussian (i.e., with mean 0 and variance 1), then for every $a \ge 0$,

$$\Pr[X \ge a] \le e^{-a^2/2}.$$

Derive from this the following inequality, which massively improves over Chebyshev's inequality: for a Gaussian random variable with mean μ and variance σ^2/n ,

$$\mathbf{Pr}[|X - \mathbf{E}[X]| > \epsilon] \le 2e^{-n\epsilon^2/2\sigma^2}.$$

(We're using variance σ^2/n to match up with our application of Chebyshev's inequality to averages of n i.i.d. random variables each with variance σ^2 .)

Exercise 23

In Lecture #9 we proved the following:

- 1. Scaling a standard Gaussian random variable by σ results in a Gaussian with mean 0 and variance σ^2 . (Actually, this is by definition.)
- 2. Adding τ to a Gaussian random variable with mean μ and variance σ^2 yields a Gaussian with mean $\mu + \tau$ and variance σ^2 . (Again, by definition.)

- 3. The sum of two independent standard Gaussian random variables is a Gaussian with mean 0 and variance 2. (This was the proof where we rotated the axes to make our double integral easy to evaluate.)
- (a) Extend the third point above to a sum of two independent mean-0 Gaussians with arbitrary variances. (I.e., prove that if $X \sim \mathcal{N}(0, \sigma_1^2)$ and $Y \sim \mathcal{N}(0, \sigma_2^2)$, then $X + Y \sim \mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$.) [Hint: Use the same idea but modify the boundary of the integration region appropriately.]
- (b) Extend the third point above to a sum of two independent Gaussians with arbitrary means and variances. (I.e., prove that if $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$, then $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.)