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Abstract

A general approach to the design of budget-balanced cost-sharing mechanisms is to
use the Shapley value, applied to the given cost function, to define payments from the
players to the mechanism. Is the corresponding Shapley value mechanism “optimal”
in some sense? We consider the objective of minimizing worst-case inefficiency subject
to a revenue constraint, and prove results in three different regimes.

1. For the public excludable good problem, the Shapley value mechanism minimizes
the worst-case efficiency loss over all truthful, deterministic, and budget-balanced
mechanisms that satisfy equal treatment. This result follows from a characteriza-
tion of the Shapley value mechanism as the unique one that satisfies two additional
technical conditions.

2. For the same problem, even over a much more general mechanism design space
that allows for randomization and approximate budget-balance and does not im-
pose equal treatment, the worst-case efficiency loss of the Shapley value mecha-
nism is within a constant factor of the minimum possible.
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3. For no-deficit mechanisms that need not satisfy approximate budget-balance, we
prove a general positive result: for every monotone cost function, a suitable blend
of the VCG and Shapley value mechanisms is no-deficit and enjoys good approx-
imate efficiency guarantees.

Keywords: Shapley value, cost-sharing mechanisms, approximate efficiency

1 Introduction

In a cost-sharing mechanism design problem, several participants with unknown preferences
vie to receive some good or service, and each possible outcome has a known cost. Formally,
we consider problems defined by a set U of players and a cost function C : 2U → R+ that
describes the cost incurred by the mechanism as a function of the outcome (i.e., of the set S
of “winners”). We assume that each player i has a private nonnegative value vi for winning.

For example, in the public excludable good problem (e.g. [7, 22]), the problem is to de-
termine whether or not to finance a public good and, if so, who is allowed to use it.1 This
problem corresponds to the cost function C with C(∅) = 0 and C(S) = 1 for every S 6= ∅.
Many other cost functions have been considered in the cost-sharing literature (Section 1.2),
and most of them include public excludable good problems as a special case.

A (direct-revelation) cost-sharing mechanism is a protocol that decides, as a function of
players’ bids, which players win and at what prices. For example, the general Vickrey-Clarke-
Groves (VCG) mechanism specializes to the following procedure for a public excludable good
problem.

VCG Mechanism (Public Excludable Good)

1. Accept a bid bi from each player i.

2. Choose the outcome S := U if
∑

i∈U bi > 1, and S := ∅ otherwise.

3. Charge each winner i the minimum bid for which she would still win (holding
others’ bids fixed), namely max{0, 1−

∑
j∈U\{i} bj}.

It is well known that the VCG mechanism is truthful, meaning that for every player it is a
dominant strategy to set her bid equal to her private value for winning. By design, the VCG
mechanism is also efficient, meaning that it always selects the set S ⊆ U of winners that
maximizes the total value to the winners less the cost incurred, that is, the social welfare∑

i∈S vi − C(S). One drawback of the VCG mechanism is that its revenue can be far from
the cost incurred. For example, in a public excludable good problem in which all of the
players have valuations larger than 1

|U |−1 , the VCG mechanism obtains zero revenue (while

the cost is 1).

1In 1959, the citizens of Palo Alto, Portola Valley, and Los Altos Hills voted on whether or not to finance
a new park. The measure only passed in Palo Alto, and to this day entrance to Foothills Park is restricted
to Palo Alto residents.
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A second approach to designing a cost-sharing mechanism is to insist on budget balance,
meaning that the sum of players’ payments equals the cost of the outcome chosen. For a sym-
metric problem like a public excludable good problem, perhaps the most natural approach
is to require equal payments from the winners, and subject to this choose as many winners
as possible. The Shapley value mechanism implements this idea. For the special case of a
public excludable good, the Shapley value mechanism chooses the largest set S of players
such that bj ≥ 1/|S| for all j ∈ S. The mechanism can be described more procedurally as
follows.2

Shapley Value Mechanism (Public Excludable Good)

1. Accept a bid bi from each player i.

2. Initialize S := U .

3. If bi ≥ 1/|S| for every i ∈ S, then halt with winners S, and charge each player
i ∈ S the price pi = 1/|S|.

4. Let i∗ ∈ S be a player with bi∗ < 1/|S|.

5. Set S := S \ {i∗} and return to Step 3.

The Shapley value mechanism is also truthful—overbidding can only cause a player to win
when she would prefer to lose, and vice versa for underbidding. By design, it is budget-
balanced. It is not efficient, however.

Example 1.1 (Inefficiency of Shapley Value Mechanism) Consider a public exclud-
able good problem with k players, where the valuation of player i is 1

i
− δ for small δ > 0.

By induction, the Shapley value mechanism will remove player k + 1− i in its ith iteration,
terminating with the empty outcome, which has zero social welfare. The welfare-maximizing
outcome is to choose the full set S = U of winners. This results in social welfare approaching
Hk−1 as δ → 0, where Hk =

∑k
i=1

1
i

denotes the kth Harmonic number (which lies between
ln k and ln k + 1).

Thus, the VCG mechanism sacrifices budget-balance in the service of efficiency, while
the Shapley value mechanism makes the opposite trade-off. This trade-off between efficiency
and budget-balance is fundamental: no truthful mechanism can be both [11, 24]. This
impossibility result raises the issue of understanding the feasible trade-offs between the two
objectives.

This paper is motivated primarily by the following question:

2We call this mechanism the Shapley value mechanism (following [22]) because the prices charged to the
winning set S correspond to the Shapley value applied to the cost function C restricted to S (since C is
symmetric, the Shapley values are equal). The Shapley value mechanism can be defined analogously for
arbitrary cost-sharing problems (see [22]).
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Does the Shapley value mechanism have the best-possible efficiency guarantee for a
budget-balanced mechanism, for public excludable goods and for more general cost-
sharing problems?

1.1 Summary of Results

Formalizing the question above requires specifying a performance measure that we want to
optimize and the design space of mechanisms that we are willing to consider. Throughout
this paper, we consider the objective of minimizing inefficiency, in the worst case over all
valuation profiles. (See Section 2 for formal definitions.) We prove results for three different
choices of the mechanism design space.

1. Our strongest optimality result is for the space of truthful, deterministic, and budget-
balanced mechanisms for public excludable good problems that satisfy equal treatment
(two players with equal bids receive the same allocations and prices). Here, the Shapley
value mechanism minimizes the worst-case efficiency loss (Corollary 3.5). This result
follows from a characterization of the Shapley value mechanism as the unique one that
satisfies two additional technical conditions (Theorem 3.4).

2. Our second regime continues to focus on public excludable good problems but consid-
ers a much more general mechanism design space that allows for randomization and
approximate budget-balance, and with no imposition of equal treatment. We show
that randomized mechanisms can have strictly smaller worst-case efficiency loss than
any deterministic mechanism (Propositions 4.1 and 4.2), including the Shapley value
mechanism. Our main result here is that, even with respect to this large design space,
the Shapley value mechanism still has worst-case efficiency loss within a constant factor
of the minimum possible (Theorem 5.1).

3. Finally, we relax the approximate budget-balance constraint to a no-deficit condition,
requiring that a mechanism’s revenue is at least the cost incurred. Here, we give a quite
general positive result (Theorem 6.1): for every monotone cost function, a “hybrid”
mechanism that blends the VCG and Shapley value mechanisms is no-deficit and enjoys
good approximate efficiency guarantees.

1.2 Related Work

Moulin [20] considers truthful mechanisms for public excludable good problems, and sub-
sequent work on the problem includes Deb and Razzolini [6, 7], Moulin and Shenker [22],
and Massó et al. [16]. The idea of comparing different cost-sharing mechanisms using the
worst-case efficiency loss measure is from Moulin and Shenker [22]. The notion of loss in [22]
is additive; Roughgarden and Sundararajan [26] develop an analogous theory for relative
approximation guarantees. Subsequent works that give approximate efficiency guarantees
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for specific cost-sharing mechanisms include Chawla et al. [5], Roughgarden and Sundarara-
jan [25], Mehta et al. [17], Brenner and Schäfer [3, 4], Bleischwitz et al. [1], Bleischwitz and
Schoppmann [2], Gupta et al. [12], Moulin [21], and Juarez [15].

Moulin and Shenker [22] and Roughgarden and Sundararajan [26] prove that the Shapley
value mechanism has the minimum-possible worst-case inefficiency of any budget-balanced
“Moulin mechanism,” meaning a cost-sharing mechanism derived from a cross-monotonic
cost-sharing method (see [22]). Brenner and Schäfer [3] give additional negative results for
the inevitable inefficiency of Moulin mechanisms. None of the optimality results in this paper
(Corollary 3.5 or Theorem 5.1) are confined to Moulin mechanisms; for example, we never
require group-strategyproofness (a property of every Moulin mechanism [22]).

Our Theorem 3.4 is similar to the characterization result of Deb and Razzolini [7], who
also show that the Shapley value mechanism is the only one that satisfies certain condi-
tions. We weaken their stand-alone condition to consumer sovereignty and do not require
the voluntary non-participation condition. Also, our proof is arguably simpler. Less directly
related are characterizations of group-strategyproof (rather than only truthful) cost-sharing
mechanisms that satisfy various conditions, including those of Moulin and Shenker [22],
Immorlica, Mahdian, and Mirrokni [13], Pountourakis and Vidali [23], and Juarez [14]. Sub-
sequent to the preliminary publication of our characterization result [8], Massó et al. [16]
extended our Corollary 3.5 by relaxing the budget-balance requirement to the no-deficit
condition, and replacing the equal treatment condition with different fairness conditions.
Also after the publication of [8], our lower bound in Theorem 5.1 was extended to Bayesian
incentive-compatible mechanisms by Fu et al. [9].

Finally, our Theorem 6.1 can be viewed as a simplification of a comparable result proved
by Georgiou and Swamy [10], who also focus on computationally efficient mechanisms for
various cost-sharing problems. Prior to [10], Bleischwitz et al. [1] gave an analogous result
(with a different mechanism) for all subadditive cost functions (where C(S ∪ T ) ≤ C(S) +
C(T ) for all S, T ⊆ U).

2 Preliminaries

2.1 Cost-Sharing Problems and Mechanisms

We consider cost-sharing problems with a population U of k players and a public cost func-
tion C defined on all subsets of U . We always assume that C(∅) = 0 and that C is monotone
(i.e., S ⊆ T implies that C(S) ≤ C(T )). We focus on direct-revelation mechanisms; such
mechanisms accept a bid bi from each player i and determine an allocation S ⊆ U and a
payment pi for each player i ∈ U . Player i has a private value vi for being included in the
chosen set S. We assume that players have quasilinear utilities, meaning that each player i
aims to maximize ui(S, pi) = vixi − pi, where xi = 1 if i ∈ S and xi = 0 if i /∈ S.

We discuss only mechanisms that satisfy the following standard assumptions: individual
rationality, meaning that pi = 0 if i /∈ S and pi ≤ bi if i ∈ S; and no positive transfers,
meaning that payments from the bidders to the mechanism are always nonnegative.
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A mechanism is truthful (or strategyproof) if no player can ever strictly increase her utility
by misreporting her valuation. Formally, truthfulness means that for every player i, every
bid vector b with bi = vi and every non-truthful bid b′i, ui(S, pi) ≥ ui(S

′, p′i), where (S,p) and
(S ′,p′) denote the outputs of the mechanism for the bid vectors b and (b′i,b−i), respectively.
When discussing truthful mechanisms, we typically assume that players bid their valuations
and conflate the (unknown) valuation profile v with the (known) bid vector b.

Section 3 uses the following standard fact about deterministic truthful mechanisms.

Proposition 2.1 Let M be a deterministic, truthful, and individually rational cost-sharing
mechanism with player set U . Then for every player i ∈ U and bid vector b−i for players
other than i, there is a threshold ti(b−i) ∈ R+ ∪ {+∞} such that: (i) if player i bids more
than ti(b−i), then she is included in the output set S, at the price ti(b−i); (ii) if player i bids
less than ti(b−i), then she is excluded from S.

For example, in the VCG mechanism for a general cost-sharing problem—which chooses
the welfare-maximizing outcome and charges each winner the minimum bid at which she
would continue to win—the threshold ti(b−i) equals the difference between the maximum
reported social welfare that can be attained by the other players when player i is not and
is included in the winner set S. (This is nonnegative under our assumption that the cost
function C is monotone.) In the Shapley value mechanism (Section 1), for a public excludable
good problem, the threshold ti(b−i) is defined by

ti(b−i) =
1

fi(b−i) + 1
, (1)

where fi(b−i) denotes the size of the largest subset S of U \{i} such that bj ≥ 1/(|S|+1) for
all j ∈ S. This is precisely the set of other players that win in the Shapley value mechanism
when player i also bids high enough to win.

2.2 Randomized Mechanisms

A randomized mechanism is, by definition, a probability distribution over deterministic (and
possibly non-truthful) mechanisms. Such a mechanism is universally truthful if every mech-
anism in its support is truthful. Such a mechanism is truthful in expectation if no player can
ever strictly increase her expected utility by misreporting her valuation. Every universally
truthful mechanism is truthful in expectation, but the converse does not hold.

By a randomized threshold mechanism, we mean a mechanism that, for each player i,
chooses a random threshold ti(b−i) (cf., Proposition 2.1) from a distribution that is indepen-
dent of bi. Thresholds for different players need not be stochastically independent. Every
randomized threshold mechanism is universally truthful.

Section 5 uses the following known result.

Proposition 2.2 ([18]) For every truthful-in-expectation cost-sharing mechanism M , there
is a universally truthful cost-sharing mechanism M ′ such that, for every bid vector b, the
expected revenues of M and M ′ are equal.
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2.3 Social Cost Minimization and Budget-Balance

We study two kinds of objectives for cost-sharing mechanisms, one for revenue and one for
economic efficiency. First, for a parameter β ≥ 1, a mechanism is β-budget-balanced if the
sum

∑
i∈S pi of the prices charged lies between C(S)/β and C(S), where S is the chosen set

of winners. We say that a mechanism is budget-balanced if it is 1-budget-balanced. Section 6
also considers no-deficit mechanisms, where the sum of the payments is always at least as
large as the cost incurred.

Following several previous works (see Section 1.2), we measure the inefficiency of a cost-
sharing mechanism via the social cost objective. The social cost π(S) of an outcome S with
respect to a cost function C and valuation profile v is, by definition, the cost C(S) of the
outcome plus the excluded value

∑
i/∈S vi:

π(S) = C(S) +
∑
i/∈S

vi. (2)

In Example 1.1, the minimum-possible social cost (with S = U) is 1, while the social cost of
the outcome of the Shapley value mechanism (with S = ∅) is ≈ Hk.

The social cost objective function is ordinally equivalent to the negative of the social
welfare (i.e., the negative of

∑
i∈S vi − C(S)). It is also, in a precise sense, the “minimal

perturbation” of the welfare objective function that admits non-trivial relative approximation
guarantees; see [26] for details and additional justification for studying this objective.3

A (randomized) cost-sharing mechanism is α-approximate if, assuming truthful bids,
the (expected) social cost of its outcome is at most α ≥ 1 times that of a, optimal (i.e.,
social cost-minimizing) outcome. For example, the VCG mechanism is 1-approximate by
design. Example 1.1 shows that the Shapley value mechanism is not α-approximate for
public excludable good problems for any α < Hk. Roughgarden and Sundararajan [26]
proved that the Shapley value mechanism is Hk-approximate for public excludable good
problems, and more generally for all monotone submodular cost functions.

3 Deterministic Symmetric Mechanisms: Characteri-

zation and Lower Bound

This section proves a lower bound on the social cost approximation factor of every deter-
ministic and budget-balanced cost-sharing mechanism that satisfies the “equal treatment”
property. We derive this lower bound from a new characterization of the Shapley value
mechanism, discussed next.

This section considers mechanisms that satisfy the following symmetry property.

3We state all of our results in terms of relative approximations to the optimal social cost, but our
proofs immediately yield analogous results for the additive efficiency loss measure proposed by Moulin and
Shenker [22].
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Definition 3.1 (Equal Treatment) A mechanism satisfies equal treatment if and only if
every two players i and j that submit the same bid receive the same allocation and price.

Next is a technical condition. Proposition 2.1 does not specify the behavior of a truthful
mechanism when a player bids exactly her threshold ti(b−i). There are two valid possibilities,
each of which yields zero utility to a truthful player: the player does not win (at price 0),
or wins and is charged her bid. The following condition breaks ties in favor of the second
outcome.

Definition 3.2 (Upper Semi-Continuity) A mechanism satisfies upper semi-continuity
if and only if the following condition holds for every player i and bids b−i of the other players:
if player i wins with every bid larger than bi, then it also wins with the bid bi.

We stress that while our characterization result (Theorem 3.4) relies on upper semi-continuity,
our lower bound (Corollary 3.5) does not depend on it. The same comment applies to the
final condition.

Definition 3.3 (Consumer Sovereignty) A mechanism satisfies consumer sovereignty if
and only if, for all players i and bids b−i of the other players, there exists a bid bi such that
player i wins when the bid profile is (bi,b−i).

By definition, the Shapley value mechanism (Section 1) satisfies equal treatment, upper
semi-continuity, and consumer sovereignty. Our characterization result states that no other
deterministic and budget-balanced cost-sharing mechanism satisfies these three conditions.

Theorem 3.4 (Characterization) A deterministic, truthful, and budget-balanced cost-sharing
mechanism for public excludable good problems satisfies equal treatment, consumer sovereignty,
and upper semi-continuity if and only if it is the Shapley value mechanism.

Proof: Fix such a mechanism M . We first note that all thresholds ti(b−i) induced by M
must lie in [0, 1]: every threshold is finite by consumer sovereignty, and is at most 1 by the
budget-balance condition. We proceed to show that for all players i and bids b−i by the
other players, the threshold function ti has the same value as that for the Shapley value
mechanism (1). We prove this by downward induction on the number of coordinates of b−i
that are equal to 1.

For the base case, fix i and suppose that b−i is the all-ones vector. Suppose that bi = 1.
Since all thresholds are in [0, 1] and M is upper semi-continuous, all players win. By equal
treatment and budget-balance, all players pay 1/k. Thus, ti(b−i) = 1/k when b−i is the
all-ones vector, as for the Shapley value mechanism.

For the inductive step, fix a player i and a bid vector b−i that is not the all-ones vector.
Set bi = 1 and consider the bid vector b = (bi,b−i). Let S denote the set of players j
with bj = 1. Let R ⊇ S denote the output of the Shapley value mechanism for the bid
vector b—the largest set of players such that bj ≥ 1/|R| for all j ∈ R.

As in the base case, consumer sovereignty, budget-balance, and equal treatment imply
that M allocates to all of the players of S at a common price p. For a player j outside S,
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b−j has one more bid of 1 than b−i (corresponding to player i), and the inductive hypothesis
implies that its threshold is that of the Shapley value mechanism for the same bid vector b.
For players of R \ S, this threshold is 1/|R|. For a player outside R, this threshold is some
value strictly greater than its bid. Since bj ≥ 1/|R| for all j ∈ R and M is upper semi-
continuous, it chooses precisely the winner set R when the bid vector is b. This generates
revenue |S|p+ (|R| − |S|)/|R|. Budget-balance dictates that the common threshold p for all
players of S, and in particular the value of ti(b−i), equals 1/|R|. This agrees with player i’s
threshold for the bids b−i in the Shapley value mechanism, and the proof is complete. �

Theorem 3.4 implies that the Shapley value mechanism is the optimal deterministic,
budget-balanced mechanism for public excludable good problems that satisfies the equal
treatment property.

Corollary 3.5 (Lower Bound for Deterministic Symmetric Mechanisms) No deter-
ministic and budget-balanced cost-sharing mechanism for public excludable good problems that
satisfies equal treatment is better than Hk-approximate, where k is the number of players.

Proof: Let M be such a mechanism. If M fails to satisfy consumer sovereignty, then we
can find a player i and bids b−i such that ti(b−i) = +∞. Letting the valuation of player i
tend to infinity shows that the mechanism fails to achieve a finite social cost approximation
factor.

Suppose that M satisfies consumer sovereignty. The proof of Theorem 3.4 shows that
the outcome of the mechanism agrees with that of the Shapley value mechanism except on
the measure-zero set of bid vectors for which there is at least one bid equal to 1/i for some
i ∈ {1, . . . , k}. As in Example 1.1, setting players’ valuations to vi = 1

i
− δ for each i, for

arbitrarily small δ > 0, shows that M is no better than Hk-approximate. �

Corollary 3.5 immediately applies also to deterministic and budget-balanced cost-sharing
mechanisms for more general families of problems (Section 1), as long as the mechanism
satisfies equal treatment for the special case of public excludable good problems.

4 The Power of Randomization

Section 5 generalizes the lower bound in Corollary 3.5 to wider classes of mechanisms, includ-
ing randomized mechanisms. But does randomization ever help in cost-sharing mechanism
design? This section proves the first efficiency separation between deterministic and ran-
domized budget-balanced mechanisms. It suffices to consider two-player public excludable
good problems.

Proposition 4.1 (Lower Bound for Deterministic Mechanisms) Let M be a deter-
ministic budget-balanced cost-sharing mechanism for the 2-player public excludable good prob-
lem. Then, M is at least 1.5-approximate.
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Proof: Consider the bid vector with b1 = b2 = 1. Every mechanism that provides a social
cost approximation ratio better than 2 must allocate to both players. Suppose this is the
case and player 1 pays p while player 2 pays 1− p. Without loss of generality, assume that
p ≤ 0.5. By Proposition 2.1, player 2’s threshold function satisfies t2(1) = 1− p.

Now suppose b1 = 1 and b2 = 1 − p − ε for small ε > 0. The optimal social cost is 1,
with both players winning. Since t2(1) = 1− p, player 2 does not win in M . Whether or not
player 1 wins, the incurred social cost is 1 + 1− p− ε ≥ 1.5− ε. �

There is a randomized mechanism with strictly better approximate efficiency.

Proposition 4.2 (Upper Bound for Randomized Mechanisms) There is a universally
truthful, budget-balanced, and 1.25-approximate mechanism for the two-player public exclud-
able good problem.

Proof: We use a simple modification of the Shapley value mechanism from Section 1. In the
first iteration, the mechanism selects γ ∈ [0, 1] uniformly at random. If players 1 and 2’s
bids are at least γ and 1−γ, respectively, then the mechanism halts with S = {1, 2}, p1 = γ,
and p2 = 1 − γ. If one of the players did not bid high enough, then this player is removed
and, in the second iteration, the remaining player is asked to pay the full cost 1.

This mechanism is universally truthful (as is easily verified), and it is clearly budget-
balanced. To bound its expected social cost, assume truthful bids with v1 ≥ v2 and define
x = v1 + v2 − 1. If x < 0 then, with probability 1, the empty outcome is chosen, and
this outcome is welfare-maximizing. If v2 ≥ 1, then the outcome S = {1, 2} is chosen with
probability 1, and this is again optimal.

The most interesting case is when x, v1, v2 ∈ [0, 1]. The optimal social cost in this case
is 1. The mechanism selects a γ such that v1 ≥ γ and v2 ≥ 1 − γ with probability x. In
this event, both players win and the incurred social cost is 1. Otherwise, neither player wins
and the social cost is 1 + x. The expected approximation ratio obtained by the algorithm
for this valuation profile is x · 1 + (1 − x) · (1 + x). Choosing x = 0.5 maximizes this ratio,
at which point the ratio is 1.25.

Finally, if v1 ≥ 1 but v2 < 1, both players win with probability v2, and only player 1 wins
otherwise. The optimal social cost is again 1 and the expected social cost incurred by the
mechanism is v2 · 1 + (1− v2)(1 + v2). This quantity is maximized when v2 = 0.5, at which
point the expected social cost is 1.25. �

Remark 4.3 (Lower Bound for Universally Truthful Mechanisms) For two-player
public excludable good problems, no universally truthful and budget-balanced cost-sharing
mechanism is better than 1.25-approximate. To see this, consider choosing one of the valu-
ation profiles (1, 1

2
− δ) or (1

2
− δ, 1), uniformly at random, where δ > 0 is arbitrarily small.

The optimal social cost is 1 with probability 1.
Consider first a deterministic mechanism M with threshold functions t1 and t2 (Proposi-

tion 2.1). Since M is budget-balanced on the bid vector (1, 1), t1(1) + t2(1) = 1. Since either
t1(1) ≥ 1

2
or t2(1) ≥ 1

2
, the expected social cost of M is at least 1

2
· 1 + 1

2
· (1 + 1

2
− δ), which

tends to 5/4 as δ → 0. Since every universally truthful mechanism is just a distribution
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over deterministic truthful mechanism, the same computation applies to them. Since the
expected cost of a universally truthful and budget-balanced mechanism M ′ on this input
distribution is (arbitrarily close to) 5

4
times the optimal social cost, there exists a valuation

profile ((1, 1
2
− δ) or (1

2
− δ, 1)) on which the expected social cost incurred by M ′ is at least

5
4

times the optimal social cost.4

5 A General Lower Bound

This section proves a lower bound that is stronger than that in Corollary 3.5 in several
respects: it applies even to randomized (truthful-in-expectation) mechanisms, to mecha-
nisms that are only approximately budget-balanced, and to mechanisms that need not sat-
isfy the equal treatment condition. Quantitatively, the lower bound is weaker than that
of Corollary 3.5 by a constant factor (independent of the number k of players). Propo-
sitions 4.1 and 4.2 imply that this constant-factor loss is inevitable when comparing the
Shapley value mechanism to randomized mechanisms, even assuming universal truthfulness
and exact budget-balance.

Theorem 5.1 (Lower Bound for Randomized Mechanisms) There is a constant c >
0 such that the following holds: no truthful-in-expectation and β-budget-balanced mechanism
for public excludable good problems is better than c·Hk/β-approximate, where k is the number
of players.

Proof: Fix values for k and β ≥ 1. Since no mechanism can be better than 1-approximate,
we can assume that k is sufficiently large (otherwise take c = β/Hk). The plan of the proof
is to define a distribution over valuation profiles such that the sum of the valuations is likely
to be large but every mechanism is likely to produce the empty allocation. Let a1, . . . , ak
be independent draws from the distribution with density 1/z2 on [1, k] and remaining mass
(1/k) at zero. Set vi = ai/4kβ for each i and V =

∑k
i=1 vi. We first note that V is likely to

be at least a constant fraction of (ln k)/β. To see why, we have

E[V ] = kE[vi] =
ln k

4β

and

Var[V ] = kVar[vi] ≤ kE[v2i ] =
1

16β2
,

and hence

σ[V ] ≤ 1

4β
.

By Chebyshev’s inequality, which states that

Pr[|X − E[X]| ≥ γ · σ[X]] ≤ 1

γ2

4In computer science, this method of proving limitations on randomized algorithms via a suitable distri-
bution over inputs is sometimes called “Yao’s minimax principle” (see e.g. [19]).
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for all γ > 0 (e.g. [19]), we have that V is at least (ln k− 2)/4β probability at least 3/4. For
sufficiently large k, (ln k − 2)/4β is at least Hk/8β.

Let M be a mechanism that is truthful in expectation and β-budget-balanced in expec-
tation, meaning that for every bid vector, the expected revenue of M is at least a β fraction
of its expected cost. For a public excludable good problem, the expected cost equals 1 minus
the probability that no player wins. We claim that the expected revenue of M , over both
the random choice of valuation profile and the internal coin flips of the mechanism, is at
most 1/4β. To see why the claim implies the theorem, note that this would imply that the
expected cost of M is at most 1/4, and so with probability at least 3/4, M chooses the
empty allocation. Conditioned on the event that

∑
i∈U vi ≥ Hk/8β, the probability that M

chooses the empty allocation is at least 1/2. Thus, there exists a valuation profile v with∑
i∈U vi ≥ Hk/8β such that, with probability at least 1/2 over the internal randomness of M ,

M chooses the empty allocation. The expected social cost of M on this valuation profile is
at least Hk/16β, while the optimal social cost is at most 1.

To prove the claim and upper bound the expected revenue of M with respect to this
distribution over valuation profiles, first assume that M is a truthful deterministic mecha-
nism. For every fixed threshold t = ti(b−i) that arises in the mechanism (Proposition 2.1),
the expected (over vi) revenue extracted from player i is t · Pr[vi ≥ t] ≤ 1/4kβ. By the
linearity of expectation, the expected (over v) revenue of every deterministic truthful mech-
anism is at most 1/4β. Since a universally truthful mechanism is just a distribution over
deterministic truthful mechanisms, the expected revenue of every such mechanism is at most
1/4β. Finally, Proposition 2.2 states that for every truthful-in-expectation mechanism M ,
there is a universally truthful mechanism M ′ such that M and M ′ have the same expected
revenue (over the mechanisms’ internal randomness) on every bid profile. We conclude that
the expected revenue of every truthful-in-expectation mechanism is at most 1/4β, which
completes the proof. �

The worst-case lower bound in Theorem 5.1 applies immediately to approximately budget-
balanced cost-sharing mechanisms for families of cost-sharing problems that include public
excludable good problems as a special case.

Scaling the prices of the Shapley value mechanism (Section 1) down by a β ≥ 1 factor
yields a truthful mechanism that is β-budget-balanced and (Hk

β
+ β)-approximate [26]. This

fact shows that the linear degradation in β of the lower bound in Theorem 5.1 is necessary,
at least up to β ≈

√
Hk.

6 A General Upper Bound

This section notes that a blend of the VCG mechanism (for general cost functions) and
the Shapley value mechanism (for a public excludable good) is truthful and approximately
efficient even for very general cost functions.5 This hybrid mechanism need not be approxi-

5Why not just run the Shapley value mechanism, which remains well defined for arbitrary cost functions?
(Each iteration, each remaining player is asked to pay her Shapley value with respect to the cost function

12



mately budget-balanced, but it is no-deficit, meaning that the revenue obtained is always at
least the cost incurred. This result can be viewed as a simplification of one in Georgiou and
Swamy [10].

Consider an arbitrary player set U and monotone cost function C.

Hybrid Mechanism (Monotone Cost Functions)

1. Accept a bid bi from each player i.

2. Let

S∗ ∈ argmaxS⊆U

[∑
i∈S

bi − C(S)

]
denote a welfare-maximizing outcome.

3. Initialize S := S∗.

4. If bi ≥ C(S∗)/|S| for every i ∈ S, then halt with winners S.

5. Let i∗ ∈ S be a player with bi∗ < C(S∗)/|S|.

6. Set S := S \ {i∗} and return to Step 4.

7. Charge each winner i ∈ S a payment equal to the minimum bid at which i would
continue to win (holding b−i fixed).

That is, the hybrid mechanism computes the welfare-maximizing allocation S∗ (according
to the reported bids) and then uses the Shapley value (i.e., equal-share) mechanism to share
the cost C(S∗) among the largest subset of S∗ that is willing to pay it. The final payment by
a winner can be viewed as the maximum of the payment from the “VCG phase” and from
the “cost-sharing phase.”

Theorem 6.1 (Properties of the Hybrid Mechanism) For every monotone cost func-
tion, the hybrid mechanism is truthful, satisfies the no positive transfers, individual rational-
ity and no-deficit conditions, and is Hk-approximate.

Proof: The individual rationality and no positive transfers properties are immediate from the
definition of the payment rule. For truthfulness, the key observation is that the allocation
rule of the hybrid mechanism is monotone, meaning that a winner would continue to win at
any higher bid. To see this, fix a player i and bids b−i of the other players. Fix a winning
bid bi and another bid b̄i with b̄i > bi. Let S∗ and S̄∗ be the welfare-maximizing outcomes
for the bid vectors (bi,b−i) and (b̄i,b−i), respectively. Because player i wins with bid bi,
it is in S∗. After raising player i’s bid from bi to b̄i, S

∗ remains the welfare-maximizing
outcome (i.e., S̄∗ = S∗). Thus player i graduates to the second phase and participates in

restricted to the remaining player set.) The problem is that this mechanism need not be truthful (without
making an additional submodularity assumption) [22].
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same cost-sharing problem whether she bids bi or b̄i. Since the Shapley value mechanism for
a public excludable good has a monotone allocation rule, if player i wins with the bid bi, she
also wins with the bid b̄i. Because the allocation rule is monotone and each player is charged
the minimum bid at which she would continue to win, the mechanism is truthful.

For the no-deficit condition, observe that the mechanism either halts with S = ∅ (in
which case there are no costs and no payments), or else it terminates with a winning set
S ⊆ S∗ and revenue at least C(S∗). Since C is monotone, C(S) ≤ C(S∗) and hence the
mechanism’s revenue is at least its cost.

Finally, for the social cost approximation guarantee, by definition the set S∗ of players
that graduate to the cost-sharing phase minimizes the social cost C(S∗) +

∑
i/∈S∗ vi (this is

equivalent to maximizing social welfare). For the public excludable good problem considered
in the second phase, the additional additive efficiency loss caused by the Shapley mechanism
is Hk − 1, scaled by the cost C(S∗) of producing the good [22, 26]. Thus the social cost of
the final winner set S satisfies

C(S) +
∑
i/∈S

vi ≤ C(S∗) +
∑
i/∈S∗

vi + (Hk − 1) · C(S∗) ≤ Hk ·

(
C(S∗) +

∑
i/∈S∗

vi

)
,

completing the proof. �

Remark 6.2 (Generalizations) The hybrid mechanism can be generalized to work with
surrogates of the VCG and Shapley value mechanisms; computational efficiency is one mo-
tivation for using surrogates in place of these mechanisms. The VCG mechanism can be
replaced by any truthful mechanism — ideally, an approximately welfare-maximizing one
— for which the output set is invariant under increases of a winner’s bid. The Shapley
value mechanism can be replaced by any truthful and no-deficit mechanism, which ideally
excludes as little valuation as possible. For instance, for subadditive cost functions (with
C(S ∪ T ) ≤ C(S) + C(T ) for all S, T ⊆ U), the mechanism from Bleischwitz et al. [1] is a
good surrogate for the Shapley value mechanism. Georgiou and Swamy [10] formalize this
composition technique and use it to identify computationally efficient implementations of
no-deficit mechanisms with good worst-case inefficiency for families of cost functions derived
from facility location, network design, and covering problems.
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