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Abstract

We develop polynomial-time algorithms for finding correlated equilibria—a well-
studied notion of rationality that generalizes the Nash equilibrium—in a broad class of
succinctly representable multiplayer games, encompassing graphical games, anonymous
games, polymatrix games, congestion games, scheduling games, local effect games, as
well as several generalizations. Our algorithm is based on a variant of the existence
proof due to Hart and Schmeidler [23], and employs linear programming duality, the
ellipsoid algorithm, Markov chain steady state computations, as well as application-
specific methods for computing multivariate expectations over product distributions.

For anonymous games and graphical games of bounded tree-width, we provide a
different polynomial-time algorithm for optimizing an arbitrary linear function over the
set of correlated equilibria of the game. In contrast to our sweeping positive results for
computing an arbitrary correlated equilibrium, we prove that optimizing over correlated
equilibria is NP-hard in all of the other classes of games that we consider.

1 Introduction

The Nash equilibrium [35] is the standard notion of rationality in game theory. It is standard
in at least three dictionary senses: everybody uses it; its many refinements and generaliza-
tions are always measured against it; and finally, it has served as the flagship open computa-
tional problem in the emerging area at the interface between game theory and algorithms. In
this latter regard, it was very recently established that computing a mixed Nash equilibrium
is PPAD-complete, even in a two-person game [9, 12, 37].
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As mentioned above, there are several other competing notions of rationality; chief among
them is the correlated equilibrium, proposed by Aumann [3]. While the mixed Nash equilib-
rium is a distribution on the strategy space that is “uncorrelated” (that is, the product of
independent distributions, one of each player), a correlated equilibrium is a general distribu-
tion over strategy profiles. It must however possess an equilibrium (quiescence) property: If
a strategy profile is drawn from this distribution (presumably by a trusted external agent),
and each player is told separately his/her own component, then no player has an incentive to
choose a different strategy, because, assuming that all other players also obey, the suggested
strategy is the best in expectation. (See Section 2 for a precise definition and examples.)
The correlated equilibrium has several important advantages: It is a perfectly reasonable,
simple, and plausible concept; it is guaranteed to always exist (simply because the Nash
equilibrium is an example of a correlated equilibrium); it arises from simple and natural
dynamics in senses that the Nash equilibrium does not (see [8, 21, 22]); and it can be found
in polynomial time for any number of players and strategies by linear programming, since
the inequalities specifying the quiescence property above are linear. In fact, the correlated
equilibrium that optimizes any linear function (such as the sum) of the players’ utilities can
be computed this way. Such optimization is obviously useful in games where player pay-
offs can be meaningfully compared, and also ensures Pareto optimality (within the set of
correlated equilibria) in games where they cannot.

A parenthesis: But why should one be interested in algorithms for computing equilibria
(in the absence of a professional bias, that is)? Equilibria are concepts of rationality, models
of player behavior, coveted existence theorems that demonstrate the modeling power of
games — albeit in a context that is not explicitly computational. Indeed, several game
theorists cannot understand our community’s obsession with this aspect. We believe that
the complexity of equilibria is of fundamental importance in game theory, and not just a
computer scientist’s afterthought. Intractability of an equilibrium concept would make it
implausible as a model of behavior. In the words of Kamal Jain: “If your PC cannot find it,
then neither can the market.” In more detail, most interpretations of an equilibrium concept
involve someone (either the participants or a third party), at some point, determining an
equilibrium, and there is no clear reason why a group of agents cannot be efficiently simulated
by a machine.

But there is a disconnect between the focus of current algorithmic research in game theory
and the motivating consideration explained above: We study games because we believe they
are productive models of markets, auctions, networks. And still, most algorithmic research
in game theory has been aimed at the 2-player case. Clearly, we need to expand our scope
to include multiplayer games. That is the focus of this paper.

But applying our field’s methodology and norms to multiplayer games is tricky. Many
computational problems related to multiplayer games (computing correlated equilibria, for
instance) are “easy” in our way of thinking, but for the wrong reason: The input length
is exponential — one number for each combination of strategies. Clearly, this is not an
acceptable situation. If a computational problem is important, the description of its typical
instance cannot require an astronomical number of bits.
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In conclusion: Equilibrium problems in games, of which the correlated equilibrium is a
quite prominent example, are worthy objects of study from the algorithmic point of view.
Multiplayer games are the most compelling specimens in this regard. But, to be of interest,
they must be somehow represented succinctly. This paper is about, and largely settles, the
question of the existence of polynomial-time algorithms for computing correlated equilibria in
succinctly representable multiplayer games.

Succinct Games

In the recent literature we have seen the introduction of many examples of important classes
of multiplayer games with succinct representation (see below). But the most ancient such
class is that of symmetric games, studied by von Neumann and Nash themselves. These are
games in which players are identical and indistinguishable, in that a player’s utility depends
on the player’s choice (but not identity) and on the number of other players who have chosen
each of the strategies. Thus, a symmetric game with n players and m << n strategies
needs about nm, as opposed to mn, numbers for its description (the number of partitions,
with repetitions, of n strategy choices to m bins). We show that correlated equilibria of
a symmetric game can be optimized over—and in particular, one can be computed—in
time polynomial in this succinct representation (for all m and n). Our results also hold
for anonymous games (e.g. [5]), a generalization of symmetric games with player-specific
utility functions (each a symmetric function of the actions chosen by the other players).
Finally, we prove that even mixed Nash equilibria can be efficiently computed in symmetric
games when the number of players is large relative to the number of strategies; this stands
in contrast to the PPAD-completeness of the problem when there is a constant number of
players [7, 9, 12, 19]. (See also [6] for a recent work on the complexity of pure Nash equilibria
in symmetric games.)

Another important class of succinct games is that of graphical games [25, 26], where we are
given a network connecting the players, and each player’s utility depends only on the choices
of the players in its neighborhood. Here, we show that optimizing over correlated equilibria
is NP-hard, even when the underlying graph is bipartite and has bounded degree. Since
correlated equilibria are linear programs, objects in which existence and linear optimization
are typically computationally equivalent, it is natural to be pessimistic about efficiently
computing correlated equilibria in general graphical games. Nevertheless, we provide a
polynomial-time algorithm for computing a correlated equilibrium in every graphical game.
We also show that optimization is tractable provided the graph has bounded tree-width,
generalizing a result of Kakade et al. [25].

In a polymatrix game [44, 24, 14] each player plays a 2-person game with each other
player, and his/her choices are the same in each of these games; the utilities are then added.
B. von Stengel (personal communication, July 2004) observed that it is NP-hard to compute
the correlated equilibrium that optimizes the sum of all utilities in such games. Once more,
a polynomial-time algorithm for computing a correlated equilibrium in such a game follows
from our results.

In fact, we can solve a class of games that generalizes both graphical games and polyma-
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trix games: In a hypergraphical game several subsets of the players are involved in separate
games with utilities added. If the hypergraph is a clique graph, we have a polymatrix game;
if every vertex has nonzero utility in only one hyperedge, and these nonzero hyperedges
have a certain symmetry property, we have a graphical game. We can compute correlated
equilibria for this general class of games in polynomial time.

In a congestion game [40] we have a set of resources, and the strategies of each player
are subsets of these resources. Each resource has a delay that is a function of the number of
players using it, and the (negative) utility of a player is the sum of the delays of the resources
in the set that s/he chose. Such games are guaranteed to have pure Nash equilibria, but
finding them is in general PLS-complete [15]. The nonatomic version of such games were
studied extensively by Roughgarden and Tardos [41]. Again, we prove that finding an optimal
correlated equilibrium is NP-hard, but give a polynomial-time algorithm for finding some
correlated equilibrium. In fact, the algorithm works for the more general case of local effect
games [31], as well as a version of congestion games, with different equilibrium properties,
known as scheduling games [18].

Finally, there is a rather obvious, yet not treated in the literature, succinct representation
of games which could be called sparse games, in which some utility values are given explicitly,
and the rest are assumed to be zero (in analogy with sparse matrices). All our positive results
are easily seen to hold for this representation, which will not be mentioned any further.

Note that, in all these applications of our techniques, ours is the first polynomial-time
algorithm for computing any kind of equilibrium (without making severe additional restric-
tions). And we know of no other natural classes of succinct games for which this problem
is still open — with the exception of certain “succinct games of superpolynomial type” (see
Section 2) in which the number of strategies itself is exponential in the description, and for
which radically different methods seem to be required, as well as a generic class of games
defined by circuits [42].

There is a related research tradition in Game Theory concerned with learning equilibria
via repeated play, during which players modify their strategy in response to the observed
behavior of other players. For example, in fictitious play, each player perceives the other
players’ history of play as a histogram of some fixed mixed strategy, and plays best response
to that. The question is, does such a process converge to any kind of equilibrium? Fictitious
play converges to the Nash equilibrium in the case of (two-player) zero-sum games, but
not in the general case. However, it was shown recently by Hart and Mas-Colell [22], by
an extension of the proof of Blackwell’s Approachability Theorem [4], that another natural
variant, in which a player switches from the current strategy to another with probability
proportional to the player’s regret for having played the present strategy instead of the other
in the past, converges to the set of correlated equilibria; a similar result for a different type
of learning dynamics had been known [17]. Such learning processes apply very generally,
including to all of the succinct games studied here, and can be interpreted as approximating
equilibria within some ε — in this sense, they have the same goal as the present paper.
However, seen this way, the learning methods require an exponential number of iterations to
converge, proportional to (1

ε
)k for a constant k > 1. Our ellipsoid-based algorithm, on the
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other hand, is polynomial in log 1
ε
. In addition, there is no known way to optimize over the

set of correlated equilibria via the learning approach in [17, 22].

The Main Ideas

The ingredients of our basic algorithm are: Linear programming duality; a novel use of the
ellipsoid algorithm; the steady state distribution of a Markov process; and calculating mul-
tivariate expectations. Our work builds on an ingenious observation on correlated equilibria
made some time ago by Hart and Schmeidler [23], motivated by the following natural ques-
tion: why is the feasibility of the linear program that describes the set of correlated equilibria
(see (CE) below) typically proved so indirectly, via Nash’s and Brouwer’s theorems? There
surely must be a more direct proof. They give such a proof by a sort of “doubly nested”
application of game-theoretic duality. We present a version of their proof that is based on
linear programming duality and is computationally explicit. It turns out that the dual ob-
ject of interest is the steady-state distribution of a certain Markov chain (a concept also
mentioned in [36], an independent proof of the same existence result, and is further explored
in [34]).

A correlated equilibrium of a multiplayer game is an exponential object; a polynomial
algorithm must find a succinct representation of such. Our algorithm employs polynomial
mixtures of products, or pmp’s: A distribution over the strategy space is given as the convex
combination of polynomially many product (independent, Nash equilibrium-like) distribu-
tions; in other words, an n-dimensional tensor with polynomially small (positive) rank. Such
a correlated equilibrium has an attractive implementation (sampling algorithm): First sam-
ple the products, and then sample the strategies of each player according to the resulting
product distribution. The correlated equilibria computed by our algorithm are pmp’s.

Briefly, our algorithm works on the dual (D) of (CE), which has polynomially many
variables and exponentially many constraints. The existence proof implies (D) is infeasible;
despite this fact, we run the ellipsoid algorithm on it — a maneuver dubbed “ellipsoid
algorithm against hope.” We use Markov chain computations at each step of the ellipsoid
algorithm to find a violated convex combination of the constraints of (D). At the conclusion
of the algorithm, we have a polynomial number of such combinations (the cuts of the ellipsoid
algorithm) that are themselves infeasible, call those (D′). Solving the dual of this new linear
program, call it (P′), gives us the required correlated equilibrium as a pmp.

Even though (P′) has polynomial dimensions, its constraint matrix must be computed as
the product of two exponentially large matrices (the constraints of (P) times the matrix whose
columns are the computed pmp’s). The computation implicit in the matrix multiplication
formula for each element of the constraint matrix of (P′) suggests an expectation calculation;
for each class of succinct games we need a problem-dependent trick to carry this out. Almost
magically, in all cases outlined above, this turns out to always be doable in polynomial
time, by utilizing one or two of three techniques: Linearity of expectation (polymatrix
games, hypergraphical games), dynamic programming (congestion, scheduling, and local
effect games), or implementing the definition of expectation on polynomially small domains
(graphical and hypergraphical games).
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To optimize over the correlated equilibria of a succinctly represented game, we require
further ideas. We give a general optimization framework based on dimensionality reduction
of the above linear programming formulations. In more detail, for each player, the strategy
profiles of all opponents are divided into equivalence classes, in which the player’s utility
depends only on his/her own choice. This reduces the number of variables of the linear
program to a polynomial, but introduces new “consistency” issues between the equivalence
classes of different players. We prove that this reduced linear program can be optimized
over efficiently provided a suitable “consistency problem” can be implemented in polynomial
time, and we show how to efficiently solve the consistency problem for anonymous games
and graphical games of bounded tree-width. The correlated equilibria computed by our
optimization algorithm are a degenerate type of pmp: distributions with polynomial support.
We complement this positive result by proving that, for all other classes of games that we
study, optimizing over the set of correlated equilibria is NP-hard.

Finally, for anonymous games and tree graphical games, we refine the preceding positive
results and identify explicit polynomial-size linear programs that characterize the set of
correlated equilibria. As a consequence, interior-point methods can be used in lieu of the
ellipsoid method for computing optimal correlated equilibria in such games.

2 Definitions

In a (finite) game we have n players 1, . . . , n. Each player p ≤ n has a finite set of strategies
or choices, Sp, with |Sp| ≥ 2. The set S =

∏n
p=1 Sp is called the set of strategy profiles. We

shall denote
∏

q 6=p Sq by S−p. We use m for the maximum of all the |Sp|’s. The utility or
payoff function of player p is a function up mapping S to the integers.

Example 2.1 The chicken game has 2 players (think of them as very competitive drivers
speeding from different streets to an intersection), each with two strategies: S1 = S2 =
{stop, go}. The utilities, tabulated below, reflect the situation (in the format u1(s), u2(s),
where the strategies of player 1 are the rows and of 2 the columns):

stop go
stop 4, 4 1, 5
go 5, 1 0, 0

A distribution on S is a vector of nonnegative real numbers, one for each strategy profile
in S, adding up to 1. A distribution x on S is a product (or of rank one) if for each player p
there is a distribution xp on Sp such that for all s = (s1, . . . , sn) ∈ S, xs =

∏n
p=1 xp

sp
.

A correlated equilibrium is a distribution x on S such that for all players p and all
strategies i, j ∈ Sp the following is true: Conditioned on the p-th component of a strategy
profile drawn from x being i, the expected utility for p of playing i is no smaller than that
of playing j: ∑

s∈S−p

[up
is − up

js]xis ≥ 0, (CE),
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where we denote by is the strategy profile resulting from s ∈ S−p by adding the component
i ∈ Sp. Intuitively, if a trusted intermediary were to draw a strategy profile s from this
distribution and announce to each player p separately (and privately) p’s own component i,
p will have no incentive to choose another strategy j—assuming that the other players
also conform to the intermediary’s suggestion, i is the optimum response in expectation.
Finally, a (mixed) Nash equilibrium is a correlated equilibrium that happens to be a product
distribution.

Example 2.2 The following five distributions are correlated equilibria in the chicken game.

0 1
0 0

0 0
1 0

1/4 1/4
1/4 1/4

0 1/2
1/2 0

1/3 1/3
1/3 0

The first two are pure Nash equilibria, and the third is the only other Nash equilibrium,
corresponding to both players playing the mixed strategy {1/2, 1/2}. The fourth correlated
equilibrium can be interpreted as a traffic light: a trusted intermediary tosses a fair coin
and, depending on the outcome, suggests a strategy to each player; neither player has an
incentive to disobey. Notice that, in terms of utility expectations, it does better than the
Nash equilibrium. The last correlated equilibrium (it takes a second to verify that it is one)
is the one that maximizes the expected sum of utilities, obtained by a linear maximization
over (CE).

A succinct game G = (I, T, U) is defined, like all computational problems, in terms of a
set of efficiently recognizable inputs I, and two polynomial algorithms T and U . For each
z ∈ I, T (z) returns a type, that is, an integer n ≥ 2 (the number of players) and an n-tuple
of integers (t1, . . . , tn), each at least 2 (the cardinalities of the strategy sets). If n and the
tp’s are polynomially bounded in |z|, the game is said to be of polynomial type. Given any
n-tuple of positive integers s = (s1, . . . , sn), with sp ≤ tp for all p ≤ n, U(z, p, s) returns an
integer standing for the utility up(s). The resulting game is denoted G(z).

Examples of polynomial succinct games were discussed in the introduction and will be
defined more formally in Section 4.

Finally, given a succinct game G, a polynomial correlated equilibrium scheme consists of
two polynomial-time algorithms A and R. A on input z ∈ I produces (deterministically or
not) an output y. R is a randomized algorithm which, on input z and y, will select an element
s of the strategy space of G(z) with probability corresponding to a correlated equilibrium of
G(z). We give numerous examples in Section 4.
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3 The Basic Algorithm

The Existence Proof

The following result is usually proved via Nash’s Theorem. Our proof is a more constructive
variant of that in [23]:

Theorem 3.1 Every game has a correlated equilibrium.

Proof: Consider the linear program

max
∑

s

xs

Ux ≥ 0 (P )

x ≥ 0

where the objective is the sum of all x’s and by Ux ≥ 0 we mean the constraints of (CE), one
for every player and pair of strategies. The program (P) is either trivial (with maximum 0) or
unbounded, the latter case occurring precisely when the game has a correlated equilibrium.
Therefore, by duality, to prove the theorem, it suffices to show that the dual of (P)

UT y ≤ −1 (D)

y ≥ 0

is always infeasible. We now need the following lemma.

Lemma 3.2 For every y ≥ 0 there is a product distribution x such that xUT y = 0.

To see that the lemma establishes the theorem, notice that xUT y is a convex combination
of left-hand sides of constraints of (D), and hence for every feasible y it should evaluate to
something negative.

We now turn to the proof of the lemma. We look at the expression for xUT y setting
xs = x1

s1
· . . . · xn

sn
(since the lemma promises a solution in product form). This product is

linear and homogeneous in the utilities (since the entries of the matrix U are linear in the
utilities); consider therefore the coefficient in this expression of the typical utility up

is, where
s ∈ S−p and i ∈ Sp. This coefficient is[∏

q 6=p

xq
sq

]
·

xp
i

∑
j∈Sp

yp
ji −

∑
j∈Sp

xp
jy

p
ij

 .

(Recall that the variables yp
ij of (D) are one for each player p and pair of strategies (i, j) of

this player.) Now the second term of this expression is recognized as the equilibrium equation
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of the steady-state distribution xp
i of a Markov chain yp

ij (normalizing the y’s appropriately
so they add to one or less per row). Hence, by setting, for each player p, the xp

i ’s to be the
steady state distribution of the Markov chain defined by the normalized yp

ij’s (one of the
possible ones if the chain happens to be periodic, or to any distribution if they are all zero),
all second factors become zero, and so does the expression xUT y. This concludes the proof
of the lemma and the theorem. �

It is worth reflecting a little on this. That the certificate of existence of a correlated
equilibrium is in product form might appear to bring us a little closer to computing a Nash
equilibrium, but, apparently, not close enough [9, 12]. This proof leads us to an interesting
interpretation of the dual [34]: The dual variable yp

ij may be thought of as the tendency
player p might have to switch from strategy i to strategy j. The steady state of this process
suggests then a distribution that exposes dual infeasibility. A final observation is that this
intriguing mapping from y values to x values is universal for all games of the same type
(strategy set cardinalities), since it does not depend on the up

s’s.

Ellipsoid Against Hope

The challenge now is to turn this existence proof into a polynomial algorithm. The idea
is to apply the ellipsoid algorithm [27, 38, 20] to the dual (D), which is guaranteed to be
infeasible. Notice that (D) has polynomially many variables (their number, denoted by N , is
about nm2) and exponentially many constraints (M ≈ mn), while for (P) the opposite holds,
and hence the ellipsoid algorithm is appropriate for (D). At each step i we have a candidate
solution yi; we use the lemma to obtain xi and the violated inequality xiU

T y ≤ −1. We then
proceed to the next step. Naturally, since we know that (D) is infeasible, the algorithm will
end up reporting “infeasible” after the ellipsoid has shrunk too much to contain anything of
interest. But by then we will have a polynomial collection of product distributions — the
ingredients of the sought correlated equilibrium.

In particular, after the termination of the ellipsoid algorithm at the Lth step, we have
L product distributions x1, . . . , xL such that, for each i ≤ L, [xiU

T ]y ≤ −1 is violated
by yi. This (modulo a complication related to arithmetic precision discussed in the next
subsection) means that [XUT ]y ≤ −1, where X is the matrix whose rows are the xi’s, is
itself an infeasible linear program — one of polynomially many constraints.

But this implies in turn that the dual program [UXT ]α ≥ 0, α ≥ 0 is unbounded. Such
a nonzero α vector provides the desired correlated equilibrium, a convex combination of the
xi’s that satisfies (P).

The Issue of Arithmetic Precision

As any student of the ellipsoid algorithm knows, there are nontrivial, if usually benign, issues
of arithmetic precision involved in it. This application of the method, however, presents us
with two unusually sticky complications.
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The first complication is that the eigenvector computations required to compute xi from
the yi, via matrix inversion, introduce an increase at each step in the number of bits of the
rational numbers involved by a factor of m —the dimension of the inverted matrices. This,
of course, becomes problematic after polynomially many steps.

The second problem is this: The ellipsoid method starts with a ball of radius uN , where u
is the largest in absolute value coefficient of the constraints (assumed integer), and ends when
the ellipsoid has volume smaller than u−Θ(N), after L = O(N2 log u) steps. Our assertion
that [XUT ]y ≤ −1 is infeasible rests on the presumption that y1, . . . , yL is a legitimate run
of the ellipsoid algorithm also on the new program. However, the largest integer coefficient
of the new constraint matrix is much larger than before, and thus the ellipsoid algorithm
would have run much longer on it.

The following manoeuvre takes care of both complications: At each step we round the
components of the product distribution xi to the nearest multiple of ε = 1/(4nMNuN+1),
to obtain x̃i, and we consider the inequality x̃iU

T y ≤ −1
2
. We claim that it is a valid

inequality of (D) that is violated at yi. In proof, suppose that there is a y within the
current ellipsoid violating x̃iU

T y ≤ −1
2

yet satisfying xUT y ≤ −1 . Then (x̃i − xi)U
T y > 1

2

implying 2nεMNu||y|| > 1
2

(since the rounding error in the components of x is about n
times that of the constituent distributions of the product), or, plugging in the value of
ε, ||y|| > uN , which contradicts our assumption that the violating y is within the current
ellipsoid. By the opposite sequence of inequalities, yi must violate x̃iU

T y ≤ −1
2
. We conclude

that x̃iU
T y ≤ −1

2
is a proper inequality for use at the ith step of the ellipsoid algorithm.

Which brings us to the appropriate number of steps for the algorithm. We take it to be
L′ = O(N2 log 1

ε
), enough so that it is also a valid limit for the modified dual [x̃UT ]y ≤ −1

2
.

Polynomial Combinations of Products

We can now state our main result of this section, a strengthening of the Existence Theorem
(Theorem 3.1) and its constructive proof that is pregnant with the algorithmic results of the
next section:

Theorem 3.3 Every game has a correlated equilibrium that is a convex combination of
product distributions, whose number is polynomial in n and m.

Notice again that this theorem follows trivially from Nash’s; the advantage is that, as
we shall see in the next section, its proof is polynomially constructive. Also note that
the strengthening is trivial without the polynomial bound (any correlated equilibrium is
the convex combination of products of pure strategies, one for each strategy profile in its
support).

Proof: The ingredients of the proof are in the discussion above. Running the ellipsoid
algorithm on (D) with separating hyperplanes derived from the ellipsoid centers via steady-
state calculation and rounding, and extending the algorithm to L′ steps, yields an L′ × N
infeasible system [X̃UT ]y ≤ −1

2
, y ≥ 0, call it (D′). The dual of (D′) is an N × L′ system

[UX̃T ]α ≥ 0, α ≥ 0, call it (P′), which must have a nonzero solution α. This solution,
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scaled to be a distribution, provides the L′ multipliers such that the product X̃T α is clearly
a solution of (P), and thus a correlated equilibrium of the required form. That the number
of products does not depend on log u is a consequence of the fundamental theorem of linear
programming: (P′) has nm2 constraints. �

Notice that all steps of this proof are polynomially constructive except for the penultimate
one, the construction of the matrix [UX̃T ] needed for the solution of (P′) (as well as the
calculation of the normal vector to the cut at each step of the ellipsoid algorithm, which,
however, is easily seen to be a column of this product). The problem is that it is a N ×M
times M×L′ matrix product; and, even though N and L′ are polynomially large, M ≈ mn is
not. In the next section we show how to overcome this obstacle for a certain kind of succinct
game that encompasses essentially all known classes.

4 Computing A Correlated Equilibrium

The Main Result

Consider a succinct game G. We say that G has the polynomial expectation property if
there is a polynomial algorithm E which, given z ∈ I, p ≤ n and a product distribution
{xs : s ∈ S} with rational coefficients over the set S of strategy profiles of G(z), returns in
polynomial time the expectation of the utility up

s under the given product distribution:

E(z, p, xs) = Exs [up
s : s ∈ S] .

Theorem 4.1 If G is a succinct game of polynomial type and has the polynomial expectation
property, then it has a polynomial correlated equilibrium scheme.

Proof: A polynomial algorithm calculating a polynomial mixture of products is definitely a
polynomial correlated equilibrium scheme: The sampling algorithm R first samples from the
products and then for each player separately.

Hence we shall try to adapt the algorithm of the previous subsection to this situation.
Since all other steps are trivially polynomial (by polynomial type), it suffices to show that the
polynomial expectation property enables a polynomial solution of the penultimate step in
the previous proof: Computing the product UX̃T . In fact, it suffices to show how to compute
each of the polynomially many entries, so let us concentrate on the entry corresponding to
the p, i, j row of U and the ` row of X̃, the product distribution x̃` (for notational clarity we
switch to superscripts for the rows of X̃). By inspection the term is∑

s∈S−p

[up
is − up

js]x̃
`
is,

which is easily seen to be x̃`,p
i · [E(z; x̃`|p← i)− E(z; x̃`|p← j)], where by x̃`|p← i we mean

the product distribution x̃` except for the p-th factor which is replaced by the distribution

11



concentrated on strategy i. Since this expression can be computed by two invocations of the
polynomial algorithm E , this completes the proof of the theorem. �

We next show that essentially all known succinct game genres of polynomial type have
the polynomial expectation property. Interestingly, optimization over correlated equilibria
is an NP-hard problem in many of these classes of games (see Section 5).

Classes of Succinct Games

Graphical Games. In a graphical game G [26], input z describes an undirected graph H
(where H(p) is the set of neighbors of p, including p) and, for each p a game Gp, explicitly
represented, with players in H(p).

All graphical games have the polynomial expectation property. Given z, p, and x1, . . . , xn,
E will calculate explicitly the expected utility under this play for the game Gp, going over
all strategy profiles of Gp and ignoring the mixed strategies of players not in H(p). This is
obviously polynomial in z.

In sharp contrast, efficient optimization over the set of correlated equilibria of a graphical
game is possible only in special cases. We show in Section 5 that for a graphical game with
bounded tree-width, an optimal correlated equilibrium (with respect to any linear function
of players’ payoffs) can be computed in polynomial time. We also show that this problem is
NP-hard even in bounded-degree bipartite graphical games.

Polymatrix Games. In a polymatrix game G [24], input z describes
(

n
2

)
2-person games

Gpq with each player p having the same strategy set Sp in each. The algorithm U on input
p, s1, . . . , sn computes

∑
q 6=p up

pq(sp, sq), where we represent the utilities of Gpq by up
pq.

Polymatrix games have the polynomial expectation property. Given z, a player p, and a
product distribution x1, . . . , xn, algorithm E will return the sum (by linearity of expectation)
over all q 6= p of Exp,xqup. Notice that each term can be exhaustively computed in time
proportional to the representation of Gpq, and thus the total calculation is polynomial in z.

Hypergraphical Games. In a hypergraphical game z describes a hypergraph H = ([n], E)
and, for each hyperedge h ∈ E, an explicit game Gh involving the players in h. Player p has
the same set of strategies Sp in all games s/he is involved. The payoff U(z, p, s1, . . . , sn) is
the sum of all payoffs of p in all games involving him/her.

These games generalize polymatrix games and graphical games but also have the poly-
nomial expectation property.

Congestion Games and Local Effect Games. In congestion games [40] z describes
a set E of resources, and, for each player p, a set of strategies Sp ⊆ 2E; that is, each
strategy is a subset of E. Input z also describes explicitly, for each e ∈ E, a delay function
de : {1, . . . , n} 7→ Z+. The algorithm U , on input z, p ≤ n, and sq ∈ Sq for each q ≤ n, will
compute the total delay

∑
e∈sp

de(ce(s1, . . . , sn)), where ce(s1, . . . , sn), the congestion of e in

the strategy profile, is the cardinality of {q ≤ n : e ∈ sq}. (Thus U computes the “negative
utility” of a player in congestion games.)

12



To see that congestion games have the polynomial expectation property, we need to show
how to compute the expectation of U when that sq’s are distributed according to some
product distribution x1, . . . , xn. This expectation equals

∑
sp∈Sp

xp
sp
· Es−p

∑
e∈sp

de(ce(s1, . . . , sn))

∣∣∣∣∣ sp

 =
∑

sp∈Sp

xp
sp
·
∑
e∈sp

Es−p [de(1 + |{q 6= p : e ∈ sq}|)] .

We compute each of the expectations on the right-hand side as follows. For each e ∈ E and
q ≤ n, we define wq(e) to be

∑
s∈Sq : e∈s xq

s — that is, the probability that player q will use
a strategy containing e. Then we compute for each r ≤ n− 1, via straightforward dynamic
programming, the probability Pr(e) that

∑
q 6=p bq(e) = r, where the bq(e)’s are independent

Bernoulli random variables equal to 1 with probability wq(e) and zero otherwise. With these
ingredients in place, it is easy now to compute the expectation of de(1 + |{q 6= p : e ∈ sq}|)
as
∑n−1

r=0 de(1 + r) · Pr(e). Note that this argument applies even in congestion games with
player-specific payoffs (as studied by Milchtaich [33]).

Local effect games [31] generalize congestion games in that they allow the cost of e to p
to be the sum of terms of the form df,e(cf (s1, . . . , sn)) for all f ∈ E; that is, the congestion
of each resource affects additively the cost of the other resources. It is not hard to see that,
combining the above ideas with linearity of expectation, we have the polynomial expectation
property in this larger class of games as well. Again, this argument applies even with player-
dependent costs.

Facility Location and Network Design Games. In a facility location game, see for
example [10], players choose one of a set of facility locations, each with a given cost; the cost
of each facility is then divided equally between the players who chose it, while each player
also pays her distance to the facility she chose. In the more general network design game
from [1], players choose paths in a graph to connect their terminals (we assume here that
the paths are given explicitly in the input so that the game has polynomial type), and the
cost of each edge is shared equally among the players who included it in their path. Both of
these types of games correspond to congestion games with non-increasing delay functions;
the preceding argument carries over and proves that both have the polynomial expectation
property.

Scheduling Games. In a scheduling game (generalizing a definition in [18]) strategies are
machines in a finite set M , and the cost of choosing machine m ∈ M is the sum over all
players p who also chose machine m, of given terms of the form t(m, p) (the time it takes to
execute p’s job on m). Adapting the argument for congestion games shows that scheduling
games have the polynomial expectation property.

Symmetric Games. In a symmetric game the type is of the form n, m,m, . . . , m (that is,
all players have the same strategies) and z explicitly lists an integer utility for each i ≤ n
(the strategy of the player) and each partition of n−1 into m parts (the strategy distribution
of the other players).

In Sections 5 and 6 we show how to efficiently optimize over the correlated equilibria of a
symmetric game. It is interesting to note, as a matter of curiosity, that the approach in this
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section for finding a single equilibrium also works for symmetric games. But it needs some
work, rather than a direct application of Theorem 4.1: First we must make sure that our
algorithm can be coached to return a convex combination of symmetric product distributions
(where all players play the same). And, when the input is restricted to such distributions,
it turns out that symmetric games do have the polynomial expectation property: The basic
idea is to compute the probability that a particular partition of n − 1 into m parts will be
realized under a symmetric product distribution, which can be done via an extension of the
dynamic programming algorithm described for congestion games.

We summarize the above discussion as follows:

Theorem 4.2 The following classes of succinct games have a polynomial correlated equilib-
rium scheme:

1. Graphical games.

2. Polymatrix games.

3. Hypergraphical games.

4. Congestion games.

5. Local effect games.

6. Facility location games.

7. Network design games.

8. Scheduling games.

9. Symmetric games.

5 Computing Optimal Correlated Equilibria

The previous section shows how to efficiently compute some correlated equilibrium of a
succinct game. But a stronger result is true for explicitly represented games: the optimal
correlated equilibrium, with respect to an arbitrary linear function of the players’ expected
payoffs, can be computed in polynomial time. Is the same true for succinct games? This
section presents both positive (Sections 5.3 and 5.4) and negative (Section 5.5) results for
this question.

14



5.1 Motivation

Why doesn’t the primal-dual pair (P) and (D) from Section 3 extend to the more general
optimization problem? As an example, suppose we want to maximize the sum of the players’
expected payoffs. The obvious approach is to supplement the primal problem (P) with the
objective

max
∑
s∈S

usxs,

where us denotes
∑

p up
s, subject to the additional constraint

∑
s xs = 1. The new constraint

supplies the dual problem with a new variable—z, say—and the new coefficients in the
primal objective are passed on to the right-side of the dual. As a consequence, the new dual
constraints are of the form

(Us)
T y ≤ −us + z, (1)

where Us denotes the column of the matrix U corresponding to strategy s. (In the previous
dual (D), the right-hand side is −1 for every constraint.) The ellipsoid method applies
only if there is a separation oracle for these dual constraints. Previously, given a candidate
dual solution y, it was enough to exhibit a non-negative and non-zero vector x such that
xUT y = 0. Now, given a candidate dual solution (y, z), the right-hand side of (1) may be
either positive or negative, and computing such a vector x is no longer sufficient. Even when
y is identically zero, the separation problem specializes to checking whether or not there is
a strategy profile with total utility greater than a given threshold z—an NP-hard problem
for many of the succinct games treated in Section 4 (see Section 5.5).

On the other hand, in important examples such as symmetric and graphical games, the
exponentially many dual constraints (1) can be classified into a polynomial number of player-
specific “equivalence classes”, such that feasibility within a class can be summarized by a
single constraint. The next section formalizes this idea and shows that, provided a certain
“consistency problem” across equivalence classes of different players can be solved efficiently,
optimal correlated equilibria can be computed in polynomial time.

5.2 Reduced Forms of Games

Motivated by the preceding discussion, we begin with a definition of “equivalent outcomes”.
Such a definition is necessarily player-specific, as generally no two outcomes are equivalent
from every player’s perspective.

Definition 5.1 Let G = (S1, . . . , Sn, u
1, . . . , un) be a game. For p = 1, 2, . . . , n, let Pp =

{C1
p , . . . , C

rp
p } be a partition of S−p into rp classes.

(a) For a player p, two strategy profiles s and s′ are p-equivalent if sp = s′p, and both s−p

and s′−p belong to the same class of the partition Pp.

(b) The set P = {P1, . . . , Pn} of partitions is a reduced form of G if up(s) = up(s
′) whenever

s and s′ are p-equivalent.
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The size of a reduced form of a game is the total number of classes in its partitions, plus the
number of bits needed to describe player payoffs.

Example 5.2 Let G be an anonymous game in which each player has the strategy set S
and player p has utility function up. Then G has a natural reduced form with size equal to
that of its succinct description: for each player p, there is one partition class of Pp for each
ordered partition of n− 1 (the other players) into m parts (the strategies).

Example 5.3 In the natural reduced form of a graphical game G, the partition Pp of a
player p has a class Cj

p for each assignment j of strategies to the players that are neighbors
of p in the graphical game. The size of this reduced form is the same as that of the succinct
description of G.

Succinct games need not have succinct reduced forms in the sense of Definition 5.1.
Indeed, a reduced form of a game requires at least one partition class per distinct payoff
that can be earned by a player. In games where payoffs are defined as a function (such as
the sum) of the input, including polymatrix and congestion games, the number of distinct
payoffs (and hence the size of a reduced form) can be exponential in that of the game’s
natural description. This should not be viewed as a failure of Definition 5.1, however, as we
show in Section 5.5 that computing optimal correlated equilibria is NP-hard in such games.

5.3 Algorithmic Framework

Our algorithm for computing optimal correlated equilibria is based on the following linear
programming relaxation for a game G and reduced form P = {Pp}. Write Sp(j, `) for the
set of strategy profiles s with sp = ` and s−p ∈ Cj

p , and up(j, `) for the payoff to player p in
all of these profiles (well defined by Definition 5.1). Consider maximizing

n∑
p=1

wp

 rp∑
j=1

∑
`∈Sp

up(j, `)xp(j, `)

 , (2)

where the wp’s are arbitrary real-valued player weights, subject to

rp∑
j=1

[up(j, `)− up(j, `′)] xp(j, `) ≥ 0 (3)

for all players p and strategies `, `′ ∈ Sp;

rp∑
j=1

∑
`∈Sp

xp(j, `) = 1 (4)

for all players p; and
xp(j, `) ≥ 0 (5)
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for all players p, indices j ∈ {1, 2, . . . , rp}, and strategies ` ∈ Sp. We interpret the decision
variable xp(j, `) as the aggregate probability assigned to the strategy profiles of Sp(j, `). The
size of this linear program is polynomial in the size of the given reduced form P .

The linear program defined by (2)–(5) is closely related to the primal problem (P) from
Section 3. Roughly, the former program can be obtained from the latter one in two steps:
first, each decision variable (one per strategy profile) is replicated n times, one for each
player; second, groups of the decision variables (strategy profiles) corresponding to a player
p are added together according to the classes of the partition Pp. The definition of a reduced
form ensures that the second step is well defined, in that only decision variables with identical
coefficients are grouped and added together.

The next lemma records the fact that the linear program defined by (2)–(5) is a relaxation
for the problem of computing an optimal correlated equilibrium; we omit the straightforward
proof.

Lemma 5.4 Let G have a reduced form {Pp} and let {zs}s∈S be a correlated equilibrium
of G. For each player p, index j ∈ {1, . . . , rp}, and strategy ` ∈ Sp, define xp(j, `) by

xp(j, `) =
∑

s∈Sp(j,`)

zs. (6)

Then {xp(j, `)} satisfies (3)–(5), and the objective function value of x in (2) is the weighted
expected payoff

∑n
p=1 wp

∑
s∈S up(s)zs under z.

Why do we only claim that (2)–(5) is a relaxation of the problem of computing an optimal
correlated equilibrium, rather than an exact formulation? Consider a feasible solution x
to (3)–(5). We say that x extends to a non-negative vector z, defined on S, if x is induced
by z according to (6). The following converse to Lemma 5.4 is easy to show.

Lemma 5.5 Let G have a reduced form {Pp}, let x be a feasible solution to (3)–(5), and
suppose that x extends to z. Then z is a correlated equilibrium of G, and the weighted
expected payoff

∑n
p=1 wp

∑
s∈S up(s)zs under z equals the objective function value (2) of x.

Unfortunately, because the strategy profiles corresponding to two variables xp(j, `) and
xp′(j

′, `′) for distinct player p, p′ generally overlap, a feasible solution to (3)–(5) need not
extend to a vector z defined on S. (See also Example 6.1.) We therefore would like to
optimize only over a subset of (3)–(5)—the feasible solutions that are also extensible. This
motivates our final definition, which is for a procedure that efficiently generates supplemen-
tary inequalities that enforce extensibility. Theorem 5.7 shows that the complexity of this
procedure controls that of the problem of computing optimal correlated equilibria.

Definition 5.6 Let P be a reduced form of a game G. The separation problem for P is the
following algorithmic problem:

Given rational numbers yp(j, `) for all p ≤ n, j ≤ rp, and ` ∈ Sp, is there a strategy
profile s such that ∑

(p,j,`) : s∈Sp(j,`)

yp(j, `) < 0? (7)
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Note that the left-hand side of (7) involves precisely n summands, one for each player.
Section 5.4 gives concrete examples of such separation problems. We conclude this sec-

tion by proving that a tractable separation problem is all that is required for the efficient
computation of a correlated equilibrium.

Theorem 5.7 Let G be a game, P a reduced form of G, and w a set of real-valued player
weights. If the separation problem for P can be solved in polynomial time, then a correlated
equilibrium of G that maximizes the weighted sum of players’ expected payoffs can be computed
in time polynomial in the size of P.

Proof: Let G = (S1, . . . , Sn, u
1, . . . , un) be a game and P a reduced form such that the

separation problem for P is solvable in polynomial time. Consider the linear program given
by (2)–(5) and a feasible solution x. The problem of checking whether or not x extends to a
vector z—a correlated equilibrium of G, by Lemma 5.5—is naturally formulated as a linear
system Az = x, z ≥ 0. The matrix A has exponentially many columns (one per strategy
profile of G) but polynomially many rows (one per decision variable xp(j, `) of (2)–(5)).

By Farkas’s Lemma, the solution x can be extended to a correlated equilibrium of G if
and only if for every y with yT A ≥ 0, yT x ≥ 0. Note that the vector y is indexed by the
variables in (3)–(5).

This observation suggests extra inequalities to add to (3)–(5) to ensure extensibility: for
every vector y with yT A ≥ 0, include the inequality yT x ≥ 0. Every such inequality is valid
in the sense that every correlated equilibrium of G induces a solution to (3)–(5) that also
satisfies this extra inequality.

Naively, there are infinitely many such extra inequalities to add. Fortunately, we need
only include those inequalities that can arise as an optimal solution to the following problem:

(*) Given x satisfying (3)–(5), minimize yT x subject to yT A ≥ 0.

Since problem (*) is a linear program, the minimum is always attained by one of the finitely
many basic solutions [11]. Moreover, in all such basic solutions, the vector y can be described
with a number of bits polynomial in P [20, §6.2].

We have therefore defined a finite linear system, which we will call the full linear system
for P , so that x is a solution to the full linear system if and only if x can be extended to a
correlated equilibrium of G. By Lemmas 5.4 and 5.5, the optimal solution to the full linear
system extends to an optimal correlated equilibrium of G.

We can efficiently compute a solution to the full linear system via the ellipsoid algo-
rithm [20, 27], provided we can define a polynomial-time separation oracle—an algorithm
that takes as input a candidate solution and, if the solution is not feasible, produces a vio-
lated constraint. Such a separation oracle is tantamount to a polynomial-time algorithm for
problem (*), a linear program with exponentially many constraints (indexed by strategy pro-
files). We can solve problem (*) with a second application of the ellipsoid method. Here, the
separation oracle required is precisely the separation problem for P (Definition 5.6) which,
by assumption, admits a polynomial-time algorithm. The proof is therefore complete. �

18



The optimal correlated equilibrium computed by the above algorithm can be sampled
from in polynomial time. In other words, the algorithm provides a refinement of a polynomial
correlated equilibrium scheme (Section 2) that is guaranteed to sample the strategy space
of the given game G according to an optimal correlated equilibrium. Indeed, the algorithm
explicitly computes a solution x that can be extended to an optimal correlated equilibrium z.
As in the proof of Theorem 5.7, the problem of computing z from x can be formulated
as a linear program (with the all-zero objective, say), the dual of which can be solved
in polynomial time via the ellipsoid method. The ellipsoid method will only generate a
polynomial number of dual constraints during its execution, and these constraints suffice to
compute an optimal dual solution. The primal variables (strategy profiles) that correspond
to these dual constraints then suffice to solve the primal problem optimally. Since this
“reduced primal” has a polynomial number of variables and constraints, it can be solved
in polynomial time, yielding an optimal correlated equilibrium z. (Strategy profiles not
included in the “reduced primal” are understood to have zero probability.) Since z has
polynomial-sized support, it can be directly sampled from in polynomial time.

5.4 Applications

We now demonstrate the power of Theorem 5.7 by applying it to anonymous (and hence
symmetric) games, as well as to graphical games.

Theorem 5.8 Optimal correlated equilibria of anonymous games can be computed in poly-
nomial time.

Proof: Given an anonymous game, we consider the reduced form P described in Example 5.2.
The separation problem for P is then: given rational numbers yp(j, `) for each player p, each
ordered partition j of n− 1 into m parts, and each choice ` for player p’s strategy, is there
a strategy profile s with ∑

(p,j,`) : s∈Sp(j,`)

yp(j, `) < 0? (8)

We can solve this problem in polynomial time as follows. We first enumerate all ordered
partitions of n into m parts; the number of such partitions is polynomial in the size of P .
For each such partition (k1, . . . , km), we minimize the left-hand side of (8) over all ways of
assigning k` players to strategy ` (for each `); this step can be implemented in polynomial
time using min-cost flow. Theorem 5.7 now implies the theorem. �

Theorem 5.9 Optimal correlated equilibria of graphical games with bounded tree-width can
be computed in polynomial time.

Proof: Let G be a graphical game and let P be the natural reduced form described in
Example 5.3. The separation problem for P is the following: given rational numbers yp(j, `)
for each player p, each set j of strategy choices of p’s neighbors, and each choice ` for
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player p’s strategy, is there a strategy profile s with∑
(p,j,`) : s∈Sp(j,`)

yp(j, `) < 0? (9)

If the graph H in the graphical game G has bounded tree-width, then this problem can be
solved in polynomial time by straightforward dynamic programming; we sketch the main
step for completeness.

Consider a node w in a (rooted) tree decomposition T of H; if such a decomposition
is not explicitly given, one can be computed in polynomial time provided H has bounded
tree-width (see e.g. [29]). Let Aw and Bw denote the vertices of H that correspond to w and
to the subtree of T rooted at w, respectively. Let Γ(Aw) denote the vertices that are either
in Aw or have a neighbor in Aw.

There is one subproblem for each node w ∈ T and each assignment of strategies to a
subset of the vertices of Γ(Aw); since |Aw| = O(1), the number of subproblems is polynomial
in the description of the graphical game G. For each subproblem, the goal is to compute a
strategy profile s ∈ S that minimizes ∑

(p,j,`) : p∈Bw,s∈Sp(j,`)

yp(j, `)

subject to the additional constraint that the strategy profile s should adopt the prescribed
assignments for players of Γ(Aw). To solve such a subproblem, given solutions to the sub-
problems corresponding to the children of w in T , the algorithm first enumerates all possible
extensions of the prescribed strategy assignments to assignments for all players of Γ(Aw),
thereby fixing the value of

∑
(p,j,`) : p∈Aw

yp(j, `), and then computes strategies for the rest of
the players in Bw using the appropriate precomputed solutions for the children of w in T .
Since |Aw| = O(1), each subproblem can be solved in time polynomial in the description
of G. The final solution—the strategy profile minimizing the left-hand side of (9)—is the
solution to the subproblem at the root of T that does not pre-assign strategies to any of the
players. �

As we noted in the Introduction, Theorem 5.9 was first proved by Kakade et al. [25] for
tree graphical games using tools from probabilistic inference.

5.5 Hardness Results for Optimal Correlated Equilibria

Our results for computing optimal correlated equilibria in succinct games (Theorem 5.7)
are less all-encompassing than our results for computing arbitrary correlated equilibria (Sec-
tions 3 and 4). We now show that this difference is fundamental: in all of the classes of
games not covered by Theorems 5.8 and 5.9, computing an optimal correlated equilibrium is
an NP-hard problem. This negative result dispels any lingering concern that our approach
to optimizing over correlated equilibria was too modest: for these other classes of games,
there is no linear system that characterizes the correlated equilibria and can be optimized
over in polynomial time (assuming P 6= NP ).
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Theorem 5.10 In the following classes of succinct games, it is NP-hard to compute a cor-
related equilibrium that maximizes the sum of the players’ expected payoffs:

1. Bounded-degree, bipartite graphical games.

2. Polymatrix games.

3. Hypergraphical games.

4. Congestion games.

5. Local effect games.

6. Facility location games.

7. Network design games.

8. Scheduling games.

The hardness result for polymatrix games is due to B. von Stengel (personal commu-
nication, July 2004); we provide proofs for all of the other cases. Most of our reductions
are based on the following lemma. We say that an outcome of a game is dominant if it
simultaneously maximizes the payoff earned by each of the players.

Lemma 5.11 The problem of checking whether or not a game of polynomial type has a dom-
inant outcome reduces to the problem of computing a correlated equilibrium that maximizes
the sum of the players’ expected payoffs.

Proof: Given a game of polynomial type, the maximum-possible payoff that can be earned
by each player, and the sum A of these payoffs, can be computed in polynomial time. If the
game has a dominant outcome, then this outcome is also a correlated equilibrium with total
payoff A. If there is no dominant outcome, then there is no outcome with total payoff at
least A, and hence no distribution over outcomes (correlated equilibrium or otherwise) with
total expected payoff at least A. �

Proof of Theorem 5.10: We first show the NP-hardness of deciding the existence of a domi-
nant outcome (and hence computing optimal correlated equilibria) in bounded-degree, bipar-
tite graphical games. This hardness result obviously carries over to hypergraphical games.
We reduce from E3SAT-5, the special case of SAT in which each clause has exactly 3 literals
and each variable occurs in at most 5 clauses. Given such a SAT formula, we construct a
bipartite graph H = (V1, V2, E) where vertices of V1 correspond to clauses (“clause vertices”)
and vertices of V2 correspond to variables (“variable vertices”). Edge (v, w) is present in H
if and only if v ∈ V1, w ∈ V2, and the variable corresponding to w appears in the clause
corresponding to v. Each variable vertex has two strategies, “true” and “false”. Each clause
vertex has three strategies, one for each of the variables in the clause. Variable vertices
always receive zero payoff. The payoff of a clause vertex is 1 if its strategy corresponds to a
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variable vertex that has picked a strategy (i.e., a truth assignment) that satisfies the clause,
and zero otherwise. Since H has bounded degree, its description size is polynomial in that
of the given SAT formula. Since H has a dominant outcome if and only if the give SAT
formula is satisfiable, the reduction is complete.

We proceed to congestion (and hence local effect) games. The reduction is from EXACT
COVER BY 3-SETS (X3C). Suppose the given instance has ground set X with 3n elements
and m 3-sets A1, . . . , Am. We construct a congestion game with ground set E = X ∪ {x0}.
Players in the congestion game correspond to sets Ai of the X3C instance, and each has two
strategies: Ai and {x0}. The delay function de for every element e ∈ E other than x0 is
given by de(1) = 1 and de(y) = 2 for all y ≥ 2. Element x0 has delay function dx0(y) = 3 for
y ≤ m−n and dx0(y) = 4 for y > m−n. This congestion game has a dominant outcome if and
only if the X3C instance admits an exact cover. Lemma 5.11 then implies that computing
optimal correlated equilibria in congestion games is NP-hard. Similar reductions from X3C
establish hardness for facility location and network design games.

Finally, we address scheduling games. Checking whether or not such a game has a
dominant outcome can be accomplished in polynomial time, so we furnish a direct reduction
from X3C, based on one of Lenstra, Shmoys, and Tardos [30]. The m machines correspond
to sets, the 3n jobs (players) to elements of the X3C instance. The job p corresponding to
an element x requires 1 unit of processing time on machines that correspond to sets that
contain x, and 2 units on other machines. There are also m−n “dummy players” whose jobs
require 3 units of processing time on every machine. Clearly, outcomes with makespan 3
are in bijective correspondence with exact covers of the given X3C instance. When such an
outcome exists, it is a correlated equilibrium. Moreover, in this case, the only correlated
equilibria that minimize the sum of the players’ costs are job assignments with makespan 3.
It is therefore NP-hard to compute optimal correlated equilibria in scheduling games. �

6 Explicit Descriptions of Correlated Equilibria

Theorem 5.7 provides a general algorithm for computing optimal correlated equilibria, but it
falls short of the classical guarantee for explicitly represented games in one respect: it does
not give an explicit polynomial-size linear system that characterizes the correlated equilibria
of a succinct game. Explicit linear characterizations are necessarily more problem-specific
than the generic algorithms presented in Sections 3–5, but they remain important for two
reasons. The first is conceptual: an explicit description provides a concrete understanding of
the set of correlated equilibria. The second is computational: given an explicit linear system
describing the correlated equilibria of a game, optimal correlated equilibria can be efficiently
computed using any polynomial-time linear programming algorithm (such as interior-point
methods), and the ellipsoid method is not required. This section gives explicit polynomial-
size linear systems for the correlated equilibria of both anonymous games and tree graphical
games.
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6.1 Anonymous Games

Recall from Example 5.2 that an anonymous game with n players and m strategies has a
natural reduced form P , where there is one partition class of Pp for each ordered partition j
of n−1 (the other players) into m parts (the strategies). We denote the set of all such ordered
partitions by Ψ(n − 1, m) and identify each element j ∈ Ψ(n − 1, m) with a nonnegative
integral m-vector with sum of components equal to n− 1.

We begin with the linear system (3)–(5) from the previous section, with one decision
variable xp(j, `) for each player p, each j ∈ Ψ(n−1, m), and each strategy ` ∈ S. Recall that
a feasible solution to this system is extensible, and corresponds to a correlated equilibrium
of the anonymous game, if and only if there is a probability distribution z over the strategy
profiles S that satisfies the intended aggregations given in (6).

Example 6.1 Not all feasible solutions to (3)–(5) extend to correlated equilibria, even for
2-player, 2-strategy symmetric games. To see this, set all utilities to zero and set x1({2}, 1) =
x2({2}, 1) = 1, where {2} denotes the partition class in which the other player selects the
second strategy.

To home in on the extensible solutions, we add a polynomial number of additional decision
variables and constraints. We include a new nonnegative decision variable x(k) for each
ordered partition k ∈ Ψ(n, m) of n into m parts; these are intended to keep track of the
distribution of all players among the m strategies. Looking ahead, we have in mind a two-
stage sampling procedure: first a partition of Ψ(n, m) is chosen, and then an assignment of
players to classes of the partition is selected. To implement this, we add the following new
constraints, where e` denotes the `th standard basis vector in Rm:∑

` : k`>0

xp(k − e`, `) = x(k) (10)

for every k ∈ Ψ(n, m) and player p;

n∑
p=1

xp(k − e`, `) = k` · x(k) (11)

for every k ∈ Ψ(n, m) and every strategy ` with k` > 0; and∑
k∈Ψ(n,m)

x(k) = 1. (12)

Given these new constraints, the original normalization constraints (4) are redundant and
can be dropped.

The new constraints are valid in the sense that they are satisfied by correlated equilibria
of the anonymous game.
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Lemma 6.2 Let G be an n-player, m-strategy anonymous game and let {zs}s∈S be a corre-
lated equilibrium of G. For each player p, ordered partition j ∈ Ψ(n − 1, m), and strategy
` ∈ S, define xp(j, `) as in (6). For each k ∈ Ψ(n, m), let S(k) denote the strategy profiles
in which k` players choose strategy ` for each ` ∈ S, and define x(k) by

x(k) =
∑

s∈S(k)

zs.

Then {xp(j, `)}p,j,` and {x(k)}k satisfy (10)–(12).

Proof: Since z is a probability distribution on S and the S(k)’s form a partition of S,
constraint (12) is clearly satisfied. Similarly, the constraints (10) hold because, for each p
and k ∈ Ψ(n, m), the collection {Sp(k − e`, `)}` : k`>0 is a partition of S(k). Finally, the
constraints (11) hold because, for each k ∈ Ψ(n, m) and ` ∈ S, each strategy profile s ∈ S(k)
inhabits precisely k` of the sets {Sp(k−e`, `)}np=1—those of the k` players choosing strategy `
in the profile s. �

We now show that the additional variables and constraints in (10)–(12) provide the
desired explicit description of correlated equilibria in anonymous games.

Theorem 6.3 For every anonymous game G, every nonnegative feasible solution to (3)
and (10)–(12) extends to a correlated equilibrium of G. Moreover, strategy profiles can be
sampled from this correlated equilibrium in polynomial time.

Proof: Let {xp(j, `)}p,j,` and {x(k)}k denote a nonnegative feasible solution to (3) and (10)–
(12). We prove the theorem by giving a polynomial-time algorithm that outputs a random
strategy profile s ∈ S with the properties that

Pr[s ∈ S(k)] = x(k) (13)

for every k ∈ Ψ(n, m) and
Pr[s ∈ Sp(j, `)] = xp(j, `) (14)

for every p ∈ {1, . . . , n}, j ∈ Ψ(n−1, m), and ` ∈ S. (The extension z of x is then implicitly
defined by zs = Pr[s] for every s ∈ S.)

The algorithm first samples, by enumeration, an ordered partition k ∈ Ψ(n, m) according
to the distribution {x(k)}. Given k, it constructs the complete bipartite graph Kn,n =
(V1, V2, E). Vertices of V1 correspond to players; for each ` ∈ S, k` vertices of V2 are deemed
“`-vertices”. Perfect matchings in this graph are in bijective correspondence with strategy
profiles of S(k).

We now construct a fractional perfect matching in this bipartite graph. We can assume
that x(k) > 0. For each player p ∈ V1 and `-vertex w ∈ V2, we assign fractional weight

yp,w =
xp(k − e`, `)

k` · x(k)
(15)
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to the edge (p, w). For each player p and strategy `, the total amount of y-weight on edges
between p and `-vertices is xp(k − e`, `)/x(k); by (10), it follows that the total amount of
y-weight incident to each player is 1. Also, constraints (11) ensure that the total amount
of y-weight incident to each vertex of V2 is 1. By Birkhoff’s Theorem, we can express y as
a probability distribution over at most n2 perfect matchings; moreover, this decomposition
can be computed in polynomial time. Finally, we sample from this distribution over perfect
matchings (by enumeration) and return the corresponding strategy profile.

By the definition of its first step, this sampling procedure meets requirement (13). To
verify (14) and complete the proof, fix p, j ∈ Ψ(n− 1, m), and ` ∈ S. We have

Pr[s ∈ Sp(j, `)] =
∑

k∈Ψ(n,m)

Pr[s ∈ Sp(j, `)|s ∈ S(k)] ·Pr[s ∈ S(k)]

= x(j + e`) ·Pr[s ∈ Sp(j, `)|s ∈ S(j + e`)] (16)

= x(j + e`) ·
xp(j, `)

x(j + e`)
(17)

= xp(j, `),

where (16) follows from (13) and the fact that Pr[s ∈ Sp(j, `)|s ∈ S(k)] = 0 unless k = j+e`,
and (17) follows from the definition (15) of the fractional matching y and the fact that the
probability that p is assigned to ` equals the y-weight on edges between the vertex p and the
`-vertices of V2. �

6.2 Tree Graphical Games

We now give an explicit polynomial-size linear system describing the correlated equilibria of
a tree graphical game. This result appears, essentially, in Kakade et al. [25]. Here, we give
a new and arguably more direct proof.

Let G be a tree graphical game with graph T . Recall (Example 5.3) that this game
has a natural reduced form P , where the partition Pp of each player p has rp classes, one
for each assignment of strategies to the players that are neighbors of p. A pair (j, `), with
j ∈ {1, 2, . . . , rp} and ` ∈ Sp, thus dictates a strategy to all of the players of H(p). As with
anonymous games, we must augment the linear system (3)–(5) to ensure the extensibility of
a feasible solution.

For a neighboring pair p, q of vertices in T , let Spq denote the possible joint strategy
assignments to p and q. For spq ∈ Spq and a pair (j, `) (with either j ≤ rp and ` ∈ Sp,
or j ≤ kq and ` ∈ Sq), we abuse notation and write (j, `) = spq to mean that the strategy
assignments dictated to {p.q} by the pair (j, `) agree with spq. We then add the following
constraints, called Intersection Consistency Constraints in [25]:∑

j≤rp,`∈Sp : (j,`)=spq

xp(j, `) =
∑

j≤kq ,`∈Sq : (j,`)=spq

xq(j, `) (18)

for every neighboring pair p, q of players and spq ∈ Spq. Every solution x induced by a
probability distribution z over strategy profiles according to (6) satisfies (18).
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The linear system defined by (3)–(5) and (18) has size polynomial in the length of the
description of the tree graphical game G. We now show that it characterizes the correlated
equilibria of G.

Theorem 6.4 For every tree graphical game G, every feasible solution to (3)–(5) and (18)
extends to a correlated equilibrium of G. Moreover, strategy profiles can be sampled from this
correlated equilibrium in polynomial time.

Proof: Let {xp(j, `)}p,j,` denote a feasible solution to (3)–(5) and (18). As in the proof of
Theorem 6.3, we proceed by giving a randomized polynomial-time algorithm that outputs a
strategy profile s such that

Pr[s ∈ Sp(j, `)] = xp(j, `) (19)

for every p ∈ {1, . . . , n}, j ∈ {1, 2, . . . , rp}, and ` ∈ Sp.
Let T be the graph of the given graphical game G, rooted at an arbitrary player p.

The idea is to randomly and irrevocably assign strategies to the players via breadth-first
search. The algorithm first randomly chooses strategy assignments for H(p)—the root p and
its children—according to the distribution {xp(j, `)}j,`. (This is a probability distribution
by (4)–(5).) The algorithm then considers the children of p in an arbitrary order. For such a
player q, let spq ∈ Spq denote the strategies chosen for p and q in the first step. The algorithm
randomly assigns strategies to the children of q according to the distribution{

xq(j, `)∑
(j′,`′) : (j′,`′)=spq

xq(j′, `′)

}
(j,`) : (j,`)=spq

. (20)

The induction below, which relies on the Intersection Consistency Constraints (18), justifies
assuming that the denominator in (20) is non-zero. Iterating this procedure for all of the
players of T in breadth-first order defines a random strategy profile.

We prove that the output of this algorithm satisfies (19) by structural induction on T .
This identity holds at the root by definition. Consider a player q with parent p in T and
suppose that (19) holds for p. Fix j ≤ kq and ` ∈ Sq, and let spq denote the unique strategy
assignment to p and q that is consistent with the pair (j, `). We conclude that

Pr[s ∈ Sq(j, `)] = Pr[s ∈ Sq(j, `)|spq] ·Pr[spq]

=

(
xq(j, `)∑

(j′,`′) : (j′,`′)=spq
xq(j′, `′)

)
·

 ∑
j′≤rp,`′∈Sp : (j′,`′)=spq

xp(j
′, `′)

 (21)

=

(
xq(j, `)∑

(j′,`′) : (j′,`′)=spq
xq(j′, `′)

)
·

 ∑
j′≤kq ,`′∈Sq : (j′,`′)=spq

xq(j
′, `′)

 (22)

= xq(j, `),

where (21) follows from the rounding procedure (19) (at q) and the inductive hypothesis
(at p), and (22) follows from the Intersection Consistency Constraints (18). �
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7 Computing Nash Equilibria in Symmetric Games

Finally, in this section we present a polynomial-time algorithm for computing a symmetric
Nash equilibrium —one in which all players employ the same mixed strategy— in succinctly
represented symmetric games, provided the number of players is large relative to the number
of strategies.

Theorem 7.1 The problem of computing a symmetric Nash equilibrium in a symmetric
game with n players and m strategies can be solved to arbitrary precision in time polynomial
in nm, the number of bits required to describe the utility functions, and the number of bits of
precision desired.

Proof: Let G be an n-player, m-strategy symmetric game. Nash [35] proved that G has a
symmetric Nash equilibrium x∗ = (x∗1, . . . , x

∗
m). We can “guess” the support of x∗ (i.e., try

all possibilities) in time exponential in m but independent of n — and thus polynomial in
nm. (The support of x∗ is the set of strategies i for which x∗i > 0.) So suppose we know the
support of x∗, which without loss of generality is {1, 2, . . . , j} for some 1 ≤ j ≤ n. Let U`

denote the expected payoff to player p, if player p chooses strategy ` and every other player
chooses a strategy at random according to the distribution x∗. Since G is symmetric, U` is a
polynomial in the j variables x∗1, . . . , x

∗
j of degree n− 1 that is independent of the player p.

Since x∗ is a Nash equilibrium, it must satisfy the equations U` = U`+1 for 1 ≤ ` < j
and the inequalities Uj ≤ U` for ` > j. Conversely, every vector (x1, . . . , xj) with non-
negative components that sum to 1 and that satisfies these equations and inequalities yields
a symmetric Nash equilibrium. Finding such a vector amounts to solving O(m) simultaneous
equations and inequalities with degree O(n) in O(m) variables. It is known — see Rene-
gar [39] and the references therein — that this problem can be solved in time polynomial in
nm, the number of bits of the numbers in the input, and in the number of bits of precision
desired. �

Since the succinct representation of a symmetric game has size Ω(poly(nm)) when m =
O(log n/ log log n), we have the following corollary of Theorem 7.1.

Corollary 7.2 The problem of computing a Nash equilibrium of a succinctly represented
n-player m-strategy symmetric game with m = O(log n/ log log n) is in P .

Corollary 7.2 stands in contrast to symmetric games with a constant number of players:
combining recent hardness results [9, 12] with a classical reduction [7, 19] from general to
symmetric games shows that it is PPAD-complete to compute a symmetric Nash equilibrium
in such games.

Incidentally, a different application of the decision procedure for the first-order theory of
the reals to games was developed independently by Lipton and Markakis [32].

8 Open Problems

Our work suggests a number of interesting open questions.
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• Now that an ellipsoid-based algorithm for computing correlated equilibria has been dis-
covered, we should pursue faster, more combinatorial versions. One possible approach
would be to employ the techniques in [2, 28] (which generalize several combinatorial
algorithms for specially structured linear programs).

• Is there an approach to finding correlated equilibria in games of exponential type,
such as extensive-form games [43], congestion and network design games in which
player strategies are given implicitly in terms of the s − t paths in a graph, or for
classes of circuit games [16]? What kinds of super-succinct representations of correlated
equilibria are needed? Note that there are no standard techniques that work on linear
programs that have both dimensions exponential. Daskalakis and Papadimitriou [13]
explore certain problems of doubly exponential type defined in terms of highly regular
graphs, such as the 2-dimensional grid; in such games correlated equilibria can be
computed efficiently by exploiting symmetry.

• It would be very interesting to investigate whether there is a polynomial algorithm for
correlated equilibria in the case of games in which the utility functions are given as a
circuit [42], a generic succinct representation generalizing all of the ones we consider
here. For such games computing expected utility for product distributions is a #P -
complete problem, and hence our approach does not apply. However, showing that,
under some complexity assumptions, there is no polynomial-time correlated equilibrium
scheme for such games seems a very intriguing and challenging problem.

• Our approach works for all kinds of succinct multiplayer games of polynomial type in
the literature known to us. There are, however, artificial examples for which it does
not seem to: A simple one is a variant of polymatrix games in which a player’s utility
is the maximum utility over all games played, as opposed to the sum. The maximum
destroys, of course, linearity of expectation. Is there a correlated equilibrium scheme
for this class?

• The previous two questions bring about a third, a rather novel complexity-theoretic
problem: What kinds of negative complexity results can be shown about the existence
of polynomial correlated equilibrium schemes (recall the definition)? By which kinds of
reductions can one rule out the existence of a polynomial sampling algorithm R driven
by a polynomially computable input?

• Theorem 5.10 shows that computing optimal correlated equilibria is an NP-hard prob-
lem in many important classes of succinct games. The approximability of this problem
should be systematically studied.
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