
Optimal Efficiency Guarantees for Network

Design Mechanisms?

Tim Roughgarden??1 and Mukund Sundararajan? ? ?1

Department of Computer Science, Stanford University,
353 Serra Mall, Stanford, CA 94305.

Abstract. A cost-sharing problem is defined by a set of players vying
to receive some good or service, and a cost function describing the cost
incurred by the auctioneer as a function of the set of winners. A cost-
sharing mechanism is a protocol that decides which players win the auc-
tion and at what prices. Three desirable but provably mutually incompat-
ible properties of a cost-sharing mechanism are: incentive-compatibility,
meaning that players are motivated to bid their true private value for re-
ceiving the good; budget-balance, meaning that the mechanism recovers
its incurred cost with the prices charged; and efficiency, meaning that
the cost incurred and the value to the players served are traded off in an
optimal way.
Our work is motivated by the following fundamental question: for which
cost-sharing problems are incentive-compatible mechanisms with good
approximate budget-balance and efficiency possible? We focus on cost
functions defined implicitly by NP-hard combinatorial optimization prob-
lems, including the metric uncapacitated facility location problem, the
Steiner tree problem, and rent-or-buy network design problems. For fa-
cility location and rent-or-buy network design, we establish for the first
time that approximate budget-balance and efficiency are simultaneously
possible. For the Steiner tree problem, where such a guarantee was previ-
ously known, we prove a new, optimal lower bound on the approximate
efficiency achievable by the wide and natural class of “Moulin mech-
anisms”. This lower bound exposes a latent approximation hierarchy
among different cost-sharing problems.

1 Introduction

Mechanism Design. In the past decade, there has been a proliferation of large
systems used and operated by independent agents with competing objectives
(most notably the Internet). Motivated by such applications, an increasing amount

? Preliminary versions of most of these results appear in a technical report [32].
?? Supported in part by ONR grant N00014-04-1-0725, an NSF CAREER Award, and

an Alfred P. Sloan Fellowship.
? ? ? Supported in part by OSD/ONR CIP/SW URI ”Software Quality and Infrastruc-

ture Protection for Diffuse Computing” through ONR Grant N00014-01-1-0795 and
by OSD/ONR CIP/SW URI ”Trustworthy Infrastructure, Mechanisms, and Exper-
imentation for Diffuse Computing” through ONR Grant N00014-04-1-0725.

of algorithm design research studies optimization problems that involve self-
interested entities. Naturally, game theory and economics are important for
modeling and solving such problems. Mechanism design is a classical area of
microeconomics that has been particularly influential. The field of mechanism
design studies how to solve optimization problems in which part of the problem
data is known only to self-interested players. It has numerous applications to,
for example, auction design, pricing problems, and network protocol design [8,
15, 24, 27].

Selling a single good to one of n potential buyers is a paradigmatic problem
in mechanism design. Each bidder i has a valuation vi, expressing its maximum
willingness to pay for the good. We assume that this value is known only to the
bidder, and not to the auctioneer. A mechanism (or auction) for selling a single
good is a protocol that determines the winner and the selling price. Each bidder i
is “selfish” in the sense that it wants to maximize its “net gain” (vi − p)xi from
the auction, where p is the price, and xi is 1 (0) if the bidder wins (loses).

What optimization problem underlies a single-good auction? One natural
goal is economic efficiency, which in this context demands that the good is sold
to the bidder with the highest valuation. This goal is trivial to accomplish if
the valuations are known a priori. Can it be achieved when the valuations are
private?

Vickrey [34] provided an elegant solution. First, each player submits a sealed
bid bi to the seller, which is a proxy for its true valuation vi. Second, the seller
awards the good to the highest bidder. This achieves the efficient allocation if
we can be sure that players bid their true valuations—if bi = vi for every i.
To encourage players to bid truthfully, we must charge the winner a non-zero
price. (Otherwise, all players will bid gargantuan amounts in an effort to be the
highest.) On the other hand, if we charge the winning player its bid, it encour-
ages players to underbid. (Bidding your maximum willingness to pay ensures a
net gain of zero, win or lose.) Vickrey [34] suggested charging the winner the
value of the second-highest bid, and proved that this price transforms truthful
bidding into an optimal strategy for each bidder, independent of the bids of the
other players. In turn, the Vickrey auction is guaranteed to produce an efficient
allocation of the good, provided all players bid in the obvious, optimal way.

Cost-Sharing Mechanisms. Economic efficiency is not the only important ob-
jective in mechanism design. Revenue is a second obvious concern, especially in
settings where the mechanism designer incurs a non-trivial cost. This cost can
represent production costs, or more generally some revenue target.

A cost-sharing problem is defined by a set U of players vying to receive
some good or service, and a cost function C : 2U → R+ describing the cost
incurred by the mechanism as a function of the auction outcome—the set S
of winners. We assume that C(S) is nonnegative for every set S ⊆ U , that
C(∅) = 0, and that C is nondecreasing (S ⊆ T implies C(S) ≤ C(T)). Note
that there is no explicit limit on the number of auction winners, although a
large number of winners might result in extremely large costs. With outcome-
dependent costs, the efficient allocation is the one that maximizes the social

welfare W (S) =
∑

i∈S vi −C(S)—the outcome that trades offs the valuations of
the winners and the cost incurred in an optimal way. The problem of selling a
single good can be viewed as the special case in which C(S) = 0 if |S| ≤ 1 and
C(S) = +∞ otherwise.

In this paper, we focus on cost functions that are defined implicitly by an in-
stance of a combinatorial optimization problem. For example, U could represent
a set of potential clients, located in an undirected graph with fixed edge costs,
that want connectivity to a server r [7, 17]. In this application, C(S) denotes the
cost of connecting the terminals in S to r—the cost of the minimum-cost Steiner
tree that spans S ∪ {r}.

A cost-sharing mechanism, given a set U and a function C, is a protocol
that decides which players win the auction and at what prices. Typically, such
a mechanism is also (perhaps approximately) budget-balanced, meaning that the
cost incurred is passed on to the auction’s winners. Budget-balanced cost-sharing
mechanisms provide control over the revenue generated, relative to the cost in-
curred by the mechanism designer.

Summarizing, we have identified three natural goals in auction and mech-
anism design: (1) incentive-compatibility, meaning that every player’s optimal
strategy is to bid its true private value vi for receiving the service; (2) budget-
balance, meaning that the mechanism recovers its incurred cost with the prices
charged; and (3) efficiency, meaning that the cost and valuations are traded off
in an optimal way.

Unfortunately, properties (1)–(3) cannot be simultaneously achieved, even
in very simple settings [10, 30]. This impossibility result motivates relaxing at
least one of the these properties. Until recently, nearly all work in cost-sharing
mechanism design completely ignored either budget-balance or efficiency. If the
budget balance constraint is discarded, then there is an extremely powerful and
flexible mechanism that is incentive-compatible and efficient: the VCG mecha-
nism (see e.g. [26]). This mechanism specializes to the Vickrey auction in the
case of selling a single good, but is far more general. Since the VCG mechanism is
typically not approximately budget-balanced for any reasonable approximation
factor (see e.g. [6]), it is not suitable for many applications.

The second approach is to insist on incentive-compatibility and budget-
balance, while regarding efficiency as a secondary objective. The only general
technique for designing mechanisms of this type is due to Moulin [25]. Over
the past five years, researchers have developed approximately budget-balanced
Moulin mechanisms for cost-sharing problems arising from numerous different
combinatorial optimization problems, including fixed-tree multicast [1, 6, 7]; the
more general submodular cost-sharing problem [25, 26]; Steiner tree [17, 18, 20];
Steiner forest [21, 22]; facility location [23, 29]; rent-or-buy network design [14,
29], and various covering problems [5, 16]. Most of these mechanisms are based
on novel primal-dual approximation algorithms for the corresponding optimiza-
tion problem. With one exception discussed below, none of these works provided
any guarantees on the efficiency achieved by the proposed mechanisms.

Approximately Efficient Cost-Sharing Mechanisms. Impossibility results are,
of course, common in optimization. From conditional impossibility results like
Cook’s Theorem to information-theoretic lower bounds in restricted models of
computation, as with online and streaming algorithms, algorithm designers are
accustomed to devising heuristics and proving worst-case guarantees about them
using approximation measures. This approach can be applied equally well to
cost-sharing mechanism design, and allows us to quantify the inevitable effi-
ciency loss in incentive-compatible, budget-balanced cost-sharing mechanisms.
As worst-case approximation measures are rarely used in economics, this research
direction has only recently been pursued.

Moulin and Shenker [26] were the first to propose quantifying the efficiency
loss in budget-balanced Moulin mechanisms. They studied an additive notion of
efficiency loss for submodular cost functions. This notion is useful for ranking
different mechanisms according to their worst-case efficiency loss, but does not
imply bounds on the quality of a mechanism’s outcome relative to that of an
optimal outcome. A more recent paper [31] provides an analytical framework for
proving approximation guarantees on the efficiency attained by Moulin mecha-
nisms. The present paper builds on this framework. (See [4, 11] for other very
recent applications.)

Several definitions of approximate efficiency are possible, and the choice of
definition is important for quantifying the inefficiency of Moulin mechanisms.
Feigenbaum et al. [6] showed that, even for extremely simple cost functions,
budget-balance and social welfare cannot be simultaneously approximated to
within any non-trivial factor. This negative approximation result is characteristic
of mixed-sign objective functions such as welfare.

An alternative formulation of exact efficiency is to choose a subset mini-
mizing the social cost, where the social cost π(S) of a set S is the sum of
the incurred service cost and the excluded valuations: C(S) +

∑

i/∈S vi. Since
π(S) = −W (S)+

∑

i∈U vi for every set S, where U denotes the set of all players,
a subset maximizes the social welfare if and only if it minimizes the social cost.
The two functions are not, of course, equivalent from the viewpoint of approxi-
mation. Similar transformations have been used for “prize-collecting” problems
in combinatorial optimization (see e.g. [3]). We call a cost-sharing mechanism
α-approximate if it always produces an outcome with social cost at most an α
factor times that of an optimal outcome. Also, a mechanism is β-budget-balanced
if the sum of prices charged is always at most the cost incurred and at least a
1/β fraction of this cost.

Previous work [31] demonstrated that O(polylog(k))-approximate, O(1)-budget-
balanced Moulin mechanisms exist for two important types of cost-sharing prob-
lems: submodular cost functions, and Steiner tree cost functions. (Here k de-
notes the number of players.) This was the first evidence that properties (1)–(3)
above can be approximately simultaneously satisfied, and motivates the following
fundamental question: which cost-sharing problems admit incentive-compatible
mechanisms that are approximately budget-balanced and approximately efficient?

Our Results. This paper presents three contributions. We first consider metric
uncapacitated facility location (UFL) cost-sharing problems, where the input
is a UFL instance, the players U are the demands of this instance, and the
cost C(S) is defined as the cost of an optimal solution to the UFL sub-instance
induced by S. The only known O(1)-budget-balanced Moulin mechanism for this
problem is due to Pál and Tardos [29] (the PT mechanism). The PT mechanism
is 3-budget-balanced [29], and no Moulin mechanism for the problem has bet-
ter budget balance [16]. We provide the first efficiency guarantee for the PT
mechanism by proving that it is O(log k)-approximate, where k is the number of
players. Simple examples show that every O(1)-budget-balanced Moulin mecha-
nism for UFL is Ω(log k)-approximate. Thus the PT mechanism simultaneously
optimizes both budget balance and efficiency over the class of Moulin mecha-
nisms for UFL.

Second, we design and analyze Moulin mechanisms for rent-or-buy network
design cost-sharing problems. For example, the single-sink rent-or-buy (SSRoB)
problem is a generalization of the Steiner tree problem in which several source
vertices of a network (corresponding to the players U) want to simultaneously
send one unit of flow each to a common root vertex. For a subset S ⊆ U of
players, the cost C(S) is defined as the minimum-cost way of installing sufficient
capacity for the players of S to simultaneously send flow to the root. Capacity on
an edge can be rented on a per-unit basis, or an infinite amount of capacity can
be bought for M times the per-unit renting cost, where M ≥ 1 is a parameter.
(Steiner tree is the special case where M = 1.) Thus the SSRoB problem is a
simple model of capacity installation in which costs obey economies of scale. The
multicommodity rent-or-buy (MRoB) problem is the generalization of SSRoB in
which each player corresponds to a source-sink vertex pair, and different players
can have different sink vertices.

Gupta, Srinivasan, and Tardos [14] and Leonardi and Schäfer [23] indepen-
dently showed how to combine the SSRoB algorithm of [13] with the Jain-
Vazirani Steiner tree mechanism [17] to obtain an O(1)-budget-balanced SSRoB
mechanism. (Earlier, Pál and Tardos [29] designed an O(1)-budget-balanced SS-
RoB mechanism, but it was more complicated and its budget balance factor
was larger.) We note that the mechanism design ideas in [14, 23], in conjunction
with the recent 2-budget-balanced Steiner forest mechanism due to Könemann,
Leonardi, and Schäfer [21], lead to an O(1)-budget-balanced MRoB mechanism.
Much more importantly, we prove that this SSRoB mechanism and a variant
of this MRoB mechanism are O(log2 k)-approximate, the first efficiency guaran-
tees for any approximately budget-balanced mechanisms for these problems. Our
third result below implies that these are the best-achievable efficiency guarantees
for O(1)-budget-balanced Moulin mechanisms for these problems.

Third, we prove a new lower bound that exposes a non-trivial, latent hi-
erarchy among different cost-sharing problems. Specifically, we prove that ev-
ery O(1)-budget-balanced Moulin mechanism for Steiner tree cost functions is
Ω(log2 k)-approximate. This lower bound trivially also applies to Steiner forest,
SSRoB, and MRoB cost functions.

This lower bound establishes a previously unobservable separation between
submodular and facility location cost-sharing problems on the one hand, and
the above network design cost-sharing problems on the other. All admit O(1)-
budget-balanced Moulin mechanisms, but the worst-case efficiency loss of Moulin
mechanisms is provably larger in the second class of problems than in the first
one.

All previous lower bounds on the efficiency of Moulin mechanisms were de-
rived from either budget-balance lower bounds or, as for the problems considered
in this paper, from a trivial example equivalent to a cost-sharing problem in a
single-link network [31]. This type of example cannot prove a lower bound larger
than the kth Harmonic number Hk = Θ(log k) on the approximate efficiency of
a Moulin mechanism. We obtain the stronger bound of Ω(log2 k) by a signifi-
cantly more intricate construction that exploits the complexity of Steiner tree
cost functions.

2 Preliminaries

Cost-Sharing Mechanisms. We consider a cost function C that assigns a cost
C(S) to every subset S of a universe U of players. We assume that C is nonneg-
ative and nondecreasing (i.e., S ⊆ T implies C(S) ≤ C(T)). We sometimes refer
to C(S) as the service cost, to distinguish it from the social cost (defined below).
We also assume that every player i ∈ U has a private, nonnegative valuation vi.

A mechanism collects a nonnegative bid bi from each player i ∈ U , selects
a set S ⊆ U of players, and charges every player i a price pi. In this paper, we
focus on cost functions that are defined implicitly as the optimal solution of an
instance of a (NP-hard) combinatorial optimization problem. The mechanisms
we consider also produce a feasible solution to the optimization problem induced
by the served set S, which has cost C ′(S) that in general is larger than the
optimal cost C(S).

We also impose the following standard restrictions and assumptions. We only
allow mechanisms that are “individually rational” in the sense that pi = 0 for
players i /∈ S and pi ≤ bi for players i ∈ S. We require that all prices are nonneg-
ative (“no positive transfers”). Finally, we assume that players have quasilinear
utilities, meaning that each player i aims to maximize ui(S, pi) = vixi−pi, where
xi = 1 if i ∈ S and xi = 0 if i /∈ S.

Our incentive-compatibility constraint is the well-known strategyproofness
condition, which intuitively requires that a player cannot gain from misreporting
its bid. Formally, a mechanism is strategyproof (SP) if for every player i, every bid
vector b with bi = vi, and every bid vector b′ with bj = b′j for all j 6= i, ui(S, pi) ≥
ui(S

′, p′i), where (S, p) and (S′, p′) denote the outputs of the mechanism for the
bid vectors b and b′, respectively.

For a parameter β ≥ 1, a mechanism is β-budget balanced if C ′(S)/β ≤
∑

i∈S pi ≤ C(S) for every outcome (set S, prices p, feasible solution with service
cost C ′(S)) of the mechanism. In particular, this requirement implies that the
feasible solution produced by the mechanism has cost at most β times that of
optimal.

As discussed in the Introduction, a cost-sharing mechanism is α-approximate
if, assuming truthful bids, it always produces a solution with social cost at most
an α factor times that of an optimal solution. Here, the social cost incurred by
the mechanism is defined as the service cost C ′(S) of the feasible solution it pro-
duces for the instance corresponding to S, plus the sum

∑

i/∈S vi of the excluded
valuations. The optimal social cost is minS⊆U [C(S) +

∑

i/∈S vi]. A mechanism
thus has two sources of inefficiency: first, it might choose a suboptimal set S of
players to serve; second, it might produce a suboptimal solution to the optimiza-
tion problem induced by S.

Moulin Mechanisms and Cross-Monotonic Cost-Sharing Methods. Next we re-
view Moulin mechanisms, the preeminent class of SP, approximately budget-
balanced mechanisms. Such mechanisms are based on cost sharing methods, de-
fined next.

A cost-sharing method χ is a function that assigns a non-negative cost share
χ(i, S) for every subset S ⊆ U of players and every player i ∈ S. We consider
cost-sharing methods that, given a set S, produce both the cost shares χ(i, S) for
all i ∈ S and also a feasible solution for the optimization problem induced by S.
A cost-sharing method is β-budget balanced for a cost function C and a parameter
β ≥ 1 if it always recovers a 1/β fraction of the cost: C ′(S)/β ≤ ∑

i∈S χ(i, S) ≤
C(S), where C ′(S) is the cost of the produced feasible solution. A cost-sharing
method is cross-monotonic if the cost share of a player only increases as other
players are removed: for all S ⊆ T ⊆ U and i ∈ S, χ(i, S) ≥ χ(i, T).

A cost-sharing method χ for C defines the following Moulin mechanism Mχ

for C. First, collect a bid bi for each player i. Initialize the set S to all of U and
invoke the cost-sharing method χ to define a feasible solution to the optimization
problem induced by S and a price pi = χ(i, S) for each player i ∈ S. If pi ≤ bi

for all i ∈ S, then halt, output the set S, the corresponding feasible solution, and
charge prices p. If pi > bi for some player i ∈ S, then remove an arbitrary such
player from the set S and iterate. A Moulin mechanism based on a cost-sharing
method thus simulates an iterative auction, with the method χ suggesting prices
for the remaining players at each iteration. The cross-monotonicity constraint
ensures that the simulated auction is ascending, in the sense that the prices
that are compared to a player’s bid are only increasing with time. Note that if
χ produces a feasible solution in polynomial time, then so does Mχ. Also, Mχ

clearly inherits the budget-balance factor of χ. Finally, Moulin [25] proved the
following.

Theorem 1 ([25]). If χ is a cross-monotonic cost-sharing method, then the
corresponding Moulin mechanism Mχ is strategyproof.1

Theorem 1 reduces the problem of designing an SP, β-budget-balanced cost-
sharing mechanism to that of designing a cross-monotonic, β-budget-balanced
cost-sharing method.

1 Moulin mechanisms also satisfy a stronger notion of incentive compatibility called
groupstrategyproofness (GSP), which is a form of collusion resistance [26].

Summability and Approximate Efficiency. Roughgarden and Sundararajan [31]
showed that the approximate efficiency of a Moulin mechanism is completely
controlled by its budget-balance and one additional parameter of its underlying
cost-sharing method. We define this parameter and the precise guarantee next.

Definition 1 (Summability [31]). Let C and χ be a cost function and a cost-
sharing method, respectively, defined on a common universe U of players. The
method χ is α-summable for C if

|S|
∑

`=1

χ(i`, S`) ≤ α · C(S)

for every ordering σ of U and every set S ⊆ U , where S` and i` denote the set of
the first ` players of S and the `th player of S (with respect to σ), respectively.

Theorem 2 ([31]). Let U be a universe of players and C a nondecreasing cost
function on U with C(∅) = 0. Let M be a Moulin mechanism for C with un-
derlying cost-sharing method χ. Let α ≥ 0 and β ≥ 1 be the smallest numbers
such that χ is α-summable and β-budget-balanced. Then the mechanism M is
(α + β)-approximate and no better than max{α, β}-approximate.

In particular, an O(1)-budget-balanced Moulin mechanism is Θ(α)-approximate
if and only if the underlying cost-sharing method is Θ(α)-summable. Analyzing
the summability of a cost-sharing method, while non-trivial, is a tractable prob-
lem in many important cases. Because summability is defined as the accrued
cost over a worst-case “insertion order” of the players, summability bounds are
often reminiscent of performance analyses of online algorithms.

3 An Optimal Facility Location Cost-Sharing Mechanism

In this section we consider the metric uncapacitated facility location (UFL)
problem.2 The input is given by a set U of demands (the players), a set F of
facilities, an opening cost fq for each facility q ∈ F , and a metric c defined
on U ∪ F . The cost C(S) of a subset S ⊆ U of players is then defined as
the cost of an optimal solution to the UFL problem induced by S. In other
words, C(S) = min∅6=F∗⊆F [

∑

q∈F∗ fq +
∑

i∈S minq∈F∗ c(q, i)]. We seek an O(1)-
budget-balanced Moulin mechanism for UFL with the best-possible approximate
efficiency. Theorems 1 and 2 reduce this goal to the problem of designing an O(1)-
budget-balanced cross-monotonic cost-sharing method with the smallest-possible
summability.

We begin with a simple lower bound, similar to that given in [31] for sub-
modular cost-sharing problems.

Proposition 1 (Lower Bound on UFL Approximate Efficiency). For
every k ≥ 1, there is a k-player UFL cost function C with the following property:
for every β ≥ 1 and every β-budget-balanced Moulin mechanism M for C, M is
no better than Hk/β-approximate.

2 Due to space constraints, we omit all proofs. Details are in [32].

Pál and Tardos [29] showed that every UFL cost function admits a 3-budget-
balanced cross-monotonic cost-sharing method χPT . We call this the PT method,
and the induced Moulin mechanism the PT mechanism. (See [29] or [32] for
details.) Our main result in this section shows that the PT mechanism matches
the lower bound in Proposition 1, up to a constant factor.

Theorem 3 (Upper Bound on PT Summabilitity). Let C be a k-player
UFL cost function and χPT the corresponding PT method. Then χPT is Hk-
summable for C.

Applying Theorem 2 yields an efficiency guarantee for the PT mechanism.

Corollary 1 (Upper Bound on PT Approximate Efficiency). Let C be a
k-player UFL cost function and MPT the corresponding PT mechanism. Then
MPT is (Hk + 3)-approximate.

Theorem 3 follows from two lemmas. The first states that single-facility in-
stances supply worst-case examples for the summability of the PT method.

Lemma 1. For every k ≥ 1, the summability of PT methods for k-player UFL
cost functions is maximized by the cost functions that correspond to single-facility
instances.

Lemma 1 is based on a monotonicity property that we prove for the PT
method: increasing the distance between a demand and a facility can only in-
crease cost shares. This monotonicity property allows us to argue that in worst-
case UFL instances, players are partitioned into non-interacting groups, each
clustered around one facility. We complete the proof of Lemma 1 by arguing
that the summability of the PT method for one of these single-facility clusters
in at least that in the original facility location instance.

Our second lemma bounds the summability of PT methods in single-facility
instances.

Lemma 2. Let C be a k-player UFL cost function corresponding to a single-
facility instance. If χPT is the corresponding PT method, then χPT is Hk-
summable for C.

4 Optimal Rent-or-Buy Cost-Sharing Mechanisms

Single-Sink Rent-or-Buy: Next we consider single-sink rent-or-buy (SSRoB)
cost-sharing problems. The input is given by a graph G = (V, E) with edge
costs that satisfy the Triangle Inequality, a root vertex t, a set U of demands
(the players), each of which is located at a vertex of G, and a parameter M ≥ 1.
A feasible solution to the SSRoB problem induced by S is a way of installing
sufficient capacity on the edges of G so that every player in S can simultane-
ously route one unit of flow to t. Installing x units of capacity on an edge e costs
ce ·min{x, M}; the parameter M can be interpreted as the ratio between the cost

of “buying” infinite capacity for a flat fee and the cost of “renting” a single unit
of capacity. The cost C(S) of a subset S ⊆ U of players is then defined as the
cost of an optimal solution to the SSRoB problem induced by S. We sometimes
abuse notation and use i ∈ U to denote both a player and the vertex of G that
hosts the player.

Gupta, Srinivasan, and Tardos [14] and Leonardi and Schäfer [23] inde-
pendently designed the following O(1)-budget-balanced cross-monotonic cost-
sharing method for SSRoB, which we call the GST method. Given an SSRoB
cost function and a set S ⊆ U of players, we use the randomized algorithm
of [13] to produce a feasible solution. This algorithm first chooses a random sub-
set D ⊆ S by adding each player i ∈ S to D independently with probability
1/M . Second, it computes an approximate Steiner tree spanning D ∪ {t} using,
for example, the 2-approximate MST heuristic [33], and buys infinite capacity
on all of the edges of this tree. Third, for each player i /∈ D, it rents one unit of
capacity for exclusive use by i on a shortest path from its vertex to the closest
vertex in D ∪ {t}. This defines a feasible solution with probability 1, and the
expected cost of this solution at most 4 times that of an optimal solution to the
SSRoB instance induced by S [13].

The GST cost share χGST (i, S) is defined as the expectation of the following
random variable Xi, over the random choice of the set D in the above algorithm:
if i /∈ D, then Xi equals one quarter of the length of the shortest path used to
connect i to a vertex in D ∪ {t}; if i ∈ D, then Xi equals M/2 times the Jain-
Vazirani cost share χJV (i, D) of i with respect to the Steiner tree instance defined
by G, c, t, and the players D (see [17] for the details of χJV). These cost shares
are 4-budget-balanced with respect to the optimal cost of the SSRoB instance
induced by S, as well as the expected cost of the above randomized algorithm
that produces a feasible solution to this instance. We prove the following result.

Theorem 4. For every k-player SSRoB cost function, the corresponding GST
mechanism is O(log2 k)-approximate.

Theorem 6 below implies that this is the best efficiency guarantee possible for
an O(1)-budget-balanced SSRoB Moulin mechanism.

With an eye toward extending Theorem 4 to the MRoB problem, we sum-
marize very briefly the main steps in the proof (details are in [32]). First, we
decompose each GST cost share χGST (i, S) into two terms, a term χbuy(i, S)
for the contributions of samples D ⊆ S in which i ∈ D, and a term χrent(i, S)
for the contributions of the remaining samples. Proving Theorem 4 reduces to
proving that both χbuy and χrent are O(log2 k)-summable. Second, we use the
O(log2 k)-summability of χJV [31] together with a counting argument inspired
by [13, 19] to prove that χbuy is O(log2 k)-summable. Third, we prove that the
cost-sharing method χJV is O(1)-strict in the sense of [12]. This roughly means
that whenever a player i is included in the random sample D, then the cost
share χJV (i, D) is at least a constant factor times the cost share it would have

received had it not been included.3 We leverage the strictness of χJV to prove
that the summability of χrent is at most a constant times that of χbuy.

Multicommodity Rent-or-Buy: We next extend Theorem 4 to the MRoB prob-
lem, where each player i corresponds to a vertex pair (si, ti). (All other aspects
of the problem are the same.) The high-level approach is similar, but the tech-
nical challenges are much more formidable. In the proof of Theorem 4, the Jain-
Vazirani cost-sharing method χJV played a heroic role: it is cross-monotonic,
which is necessary for the GST cost-sharing method to be cross-monotonic; it is
O(log2 k)-summable, which is necessary for χbuy to be O(log2 k)-summable; and
it is O(1)-strict in the sense of [12] with respect to the MST heuristic for Steiner
tree, which is necessary for χrent to be O(log2 k)-summable. Is there a compara-
bly all-purpose cost-sharing method for the Steiner Forest problem—the problem
of finding the min-cost subgraph of a given graph that includes a path between
every given vertex pair (si, ti)? The only known cross-monotonic cost-sharing
method χKLS for Steiner Forest cost-sharing problems was recently given by
Könemann, Leonardi, and Schäfer [21]. This method is defined by a primal-dual
algorithm; the cost shares are a natural byproduct of a dual growth process,
and the primal is a 2-approximate feasible solution to the given Steiner Forest
instance. Using the ideas in [9, 12, 14, 23], these facts suffice to define an O(1)-
budget-balanced Moulin mechanism for MRoB cost-sharing problems. Moreover,
the KLS method was very recently shown to be O(log2 k)-summable [4]; thus, the
corresponding cost-sharing method χbuy is O(log2 k)-summable. Unfortunately,
the KLS cost-sharing method is Ω(k)-strict with respect to the corresponding
primal solution [12], which precludes bounding the summability of χrent in terms
of χbuy. While several strict cost-sharing methods are known for different Steiner
Forest approximation algorithms [2, 9, 12, 28], none of these are cross-monotonic
methods.

Our high-level approach is to modify the above composition of the KLS
method with the mechanism design techniques of [14, 23] in a way that achieves
O(1)-strictness while sacrificing only a small constant factor in the budget bal-
ance. Similar ideas have been used previously to obtain strictness guarantees for
other Steiner forest algorithms [2, 12, 28].

Theorem 5. Every k-player MRoB cost function admits an O(1)-budget-balanced,
O(log2 k)-approximate Moulin mechanism.

5 An Ω(log2
k) Lower Bound for Steiner Tree Problems

An instance of the Steiner tree cost-sharing problem [17] is given by an undirected
graph G = (V, E) with a root vertex t and nonnegative edge costs, with each
player of U located at some vertex of G. For a subset S ⊆ U , the cost C(S) is
defined as that of a minimum-cost subgraph of G that spans all of the players of

3 Formally, strictness of a cost-sharing method is defined with respect to some primal
algorithm; see [12] for a precise definition.

S as well as the root t. There are O(1)-budget-balanced, O(log2 k)-approximate
Moulin mechanisms for such problems [4, 17, 21, 31]. The main result of this
section is a matching lower bound on the approximate efficiency of every O(1)-
budget-balanced Moulin mechanism.

Theorem 6. There is a constant c > 0 such that for every constant β ≥ 1, every
β-budget-balanced Moulin mechanism for Steiner tree cost-sharing problems is at
least (β−1c log2 k)-approximate, where k is the number of players served in an
optimal outcome.

Theorem 6 implies that Steiner tree cost-sharing problems and their general-
izations are fundamentally more difficult for Moulin mechanisms than facility
location (Theorem 3) and submodular cost-sharing problems (see [31]).

We now outline the proof of Theorem 6. Fix values for the parameters k ≥ 2
and β ≥ 1. We construct a sequence of networks, culminating in G. The network
G0 consists of a set V0 of two nodes connected by an edge of cost 1. One of these
is the root t. The player set U0 is

√
k players that are co-located at the non-root

node. (Assume for simplicity that k is a power of 4.) For j > 0, we obtain the
network Gj from Gj−1 by replacing each edge (v, w) of Gj−1 with m internally
disjoint two-hop paths between v and w, where m is a sufficiently large function

of k of β. (We will choose m ≥ 8β
√

k · (2β)
√

k.) See Figure 1. The cost of each
of these 2m edges is half of the cost of the edge (v, w). Thus every edge in Gj

has cost 2−j .

root t

Fig. 1. Network G2 in the proof of Theorem 6, with m = 3. All edges have length 1/4.

Let Vj denote the vertices of Gj that are not also present in Gj−1. We

augment the universe by placing
√

k new co-located players at each vertex of
Vj ; denote these new players by Uj . The final network G is then Gp, where
p = (log k)/2. Let V = V0∪· · ·∪Vp and U = U0∪· · ·∪Up denote the corresponding
vertex and player sets. Let C denote the corresponding Steiner tree cost function.

Now fix β ≥ 1 and an arbitrary cross-monotonic, β-budget balanced Steiner
tree cost-sharing method χ. By Theorem 2, we can prove Theorem 6 by exhibit-
ing a subset S ⊆ U of size k and an ordering σ of the players of S such that
∑k

`=1 χ(i`, S`) ≥ (c log2 k/β) · C(S), where i` and S` denote the `th player and
the first ` players with respect to σ.

We construct the set S iteratively. For j = 0, 1, . . . , p, we will identify a subset
Sj ⊆ Uj of players; the set S will then be S0 ∪ · · · ∪ Sp. Recall that Uj consists

of groups of
√

k players, each co-located at a vertex of Vj , with m such groups

for each edge of Gj−1. The set Sj will consist of zero or one such group of
√

k
players for each edge of Gj−1.

The set S0 is defined to be U0. For j > 0, suppose that we have already
defined S0, . . . , Sj−1. Call a vertex v ∈ V0 ∪ · · · ∪ Vj−1 active if v is the root t

or if the
√

k players co-located at v were included in the set S0 ∪ · · · ∪ Sj−1.
Call an edge (v, w) of Gj−1 active if both of its endpoints are active and inactive
otherwise.

To define Sj , we consider each edge (v, w) of Gj−1 in an arbitrary order.

Each such edge gives rise to m groups of
√

k co-located players in Gj . If (v, w)

is inactive in Gj−1, then none of these m
√

k players are included in Sj . If (v, w)
is active in Gj−1, then we will choose precisely one of the m groups of players,

and will include these
√

k co-located players in Sj . We first state two lemmas
that hold independently of how this choice is made; we then elaborate on our
criteria for choosing groups of players.

Lemma 3. For every j ∈ 1, 2, . . . , p, |Sj | = 2j−1
√

k. Also, |S0| =
√

k.

Lemma 3 implies that |S| =
√

k(1 +
∑p−1

j=0 2j) = k. The next lemma states that
our construction maintains the invariant that the players selected in the first j
iterations lie “on a straight line” in G.

Lemma 4. For every j ∈ 0, 1, . . . , p, C(S0 ∪ · · · ∪ Sj) = 1.

Lemmas 3 and 4 both follow from straightforward inductions on j.
We now explain how to choose one out of the m groups of co-located players

that arise from an active edge. Fix an iteration j > 0 and let Ŝ denote the set
of players selected in previous iterations (S0, . . . , Sj−1) and previously in the
current iteration. Let (v, w) be the active edge of Gj−1 under consideration and
A1, . . . , Am ⊆ Uj the corresponding groups of co-located players. We call the

group Ar good if the
√

k players of Ar can be ordered i1, i2, . . . , i√k so that

χ(i`, Ŝ ∪ {i1, . . . , i`}) ≥
1

4β
· 2−j

`
(1)

for every ` ∈ {1, 2, . . . ,
√

k}. We then include an arbitrary good group Ar in the
set Sj . See [32] for a proof of the following lemma.

Lemma 5. Provided m is a sufficiently large function of k and β, for every
j ∈ {1, . . . , p}, every ordering of the active edges of Gj−1, and every edge (v, w)
in this ordering, at least one of the m groups of players of Uj that corresponds
to (v, w) is good. Also, the group S0 is good.

We conclude by using the lemma to finish the proof of Theorem 6.
We have already defined the subset S ⊆ U of players. We define the ordering

σ of the players in S as follows. First, for all j ∈ {1, . . . , p}, all players of Sj−1

precede all players of Sj in σ. Second, for each j ∈ {1, . . . , p}, the players of

Sj are ordered according to groups, with the
√

k players of a group appearing
consecutively in σ. The ordering of the different groups of players of Sj is the
same as the corresponding ordering of the active edges of Gj−1 that was used to

define these groups. Third, each (good) group of
√

k co-located players is ordered
so that (1) holds.

Now consider the sum
∑k

`=1 χ(i`, S`), where i` and S` denote the `th player
and the first ` players of S with respect to σ, respectively. Since (1) holds for
every group of players, for every j ∈ {0, 1, . . . , p}, every group of players in Sj

contributes at least √
k

∑

`=1

1

4β
· 2−j

`
=

2−jH√
k

4β

to this sum. By Lemma 3, for each j ∈ {1, . . . , p}, there are 2j−1 such groups.

There is also the group S0. Thus the sum
∑k

`=1 χ(i`, S`) is at least

H√
k

4β

1 +

(log k)/2
∑

j=1

2j−1 · 2−j

 ≥ c

β
log2 k =

(

c

β
log2 k

)

· C(S)

for some constant c > 0 that is independent of k and β. This completes the proof
of Theorem 6.

References

1. A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approx-
imation and collusion in multicast cost sharing. Games and Economic Behavior,
47(1):36–71, 2004.

2. L. Becchetti, J. Könemann, S. Leonardi, and M. Pál. Sharing the cost more effi-
ciently: Improved approximation for multicommodity rent-or-buy. In SODA ’05,
pages 375–384.

3. D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A note
on the prize-collecting traveling salesman problem. Mathematical Programming,
59(3):413–420, 1993.

4. S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal cost-sharing mecha-
nisms for network design. In WINE ’06.

5. N. R. Devanur, M. Mihail, and V. V. Vazirani. Strategyproof cost-sharing mecha-
nisms for set cover and facility location games. In EC ’03, pages 108–114.

6. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for
multicast cost sharing. Theoretical Computer Science, 304:215–236, 2003.

7. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63(1):21–41, 2001.

8. J. Feigenbaum and S. J. Shenker. Distributed algorithmic mechanism design: Re-
cent results and future directions. In DIAL M ’02, pages 1–13.

9. L. Fleischer, J. Könemann, S. Leonardi, and G. Schäfer. Simple cost-sharing
schemes for multicommodity rent-or-buy and stochastic Steiner tree. In STOC

’06, pages 663–670.

10. J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free
rider problem. Journal of Public Economics, 6:375–394, 1976.

11. A. Gupta, J. Könemann, S. Leonardi, R. Ravi, and G. Schäfer. An efficient cost-
sharing mechanism for the prize-collecting Steiner forest problem. In SODA ’07.

12. A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approximation via cost-
sharing: A simple approximation algorithm for the multicommodity rent-or-buy
problem. In FOCS ’03, pages 606–615.

13. A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation
algorithms for network design. In STOC ’03, pages 365–372.

14. A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network
design. In APPROX ’04, pages 139–150.

15. J. D. Hartline. Optimization in the Private Value Model: Competitive Analysis

Applied to Auction Design. PhD thesis, University of Washington, 2003.
16. N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic

cost-sharing schemes. In SODA ’05, pages 602–611.
17. K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative

games. In STOC ’01, pages 364–372.
18. K. Jain and V. Vazirani. Equitable cost allocations via primal-dual-type algo-

rithms. In STOC ’02, pages 313–321.
19. D. R. Karger and M. Minkoff. Building Steiner trees with incomplete global knowl-

edge. In FOCS ’00, pages 613–623.
20. K. Kent and D. Skorin-Kapov. Population monotonic cost allocation on MST’s.

In Operational Research Proceedings KOI, pages 43–48, 1996.
21. J. Könemann, S. Leonardi, and G. Schäfer. A group-strategyproof mechanism for

Steiner forests. In SODA ’05, pages 612–619.
22. J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to

cost shares and back: A stronger LP relaxation for the steiner forest problem. In
ICALP ’05, pages 1051–1063.

23. S. Leonardi and G. Schäfer. Cross-monotonic cost-sharing methods for connected
facility location. In EC ’04, pages 242–243.

24. A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford
University Press, 1995.

25. H. Moulin. Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare, 16:279–320, 1999.

26. H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: Budget
balance versus efficiency. Economic Theory, 18:511–533, 2001.

27. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
28. M. Pál. Cost Sharing and Approximation. PhD thesis, Cornell University, 2005.
29. M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algo-

rithms. In FOCS ’03, pages 584–593.
30. K. Roberts. The characterization of implementable choice rules. In J. J. Laffont,

editor, Aggregation and Revelation of Preferences. North-Holland, 1979.
31. T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mechanisms.

In STOC ’06, pages 79–88.
32. T. Roughgarden and M. Sundararajan. Approximately efficient cost-sharing mech-

anisms. Technical Report cs.GT/0606127, arXiv, 2006.
33. V. V. Vazirani. Approximation Algorithms. Springer, 2001.
34. W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal

of Finance, 16(1):8–37, 1961.

