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Abstract

Computational complexity is the subfield of computer science that rigorously studies the
intrinsic difficulty of computational problems. This survey explains how complexity theory
defines “hard problems”; applies these concepts to several equilibrium computation problems;
and discusses implications for computation, games, and behavior. We assume minimal prior
background in computer science.

1 Introduction

1.1 “Easy” and “Hard” Computational Problems

Consider two problems about grouping individuals together in a harmonious way.

1. You have a database with the rankings of 1000 medical school graduates over 1000 hospitals,
and of these hospitals over these new doctors. Your task is to find a matching of doctors to
hospitals that is stable: there should be no doctor-hospital pair who would rather be matched
to each other than to their assigned partners.

2. You work for a company with 150 employees, many of whom do not get along with each
other. Your task is to form a committee of fifteen people, no two of whom are incompatible,
or to show that this is impossible.

Is one of these problems “computationally more difficult” than the other? If you had to solve only
one of them — by the day’s end, say — which would you choose?

The first problem is, of course, the stable marriage problem, and can be solved automatically via
the Gale-Shapley deferred acceptance algorithm [46]. A byproduct of this algorithm is a constructive
proof of a fundamental existence result: no matter what the preferences of the agents are, there is at
least one stable marriage (with every agent in some pairing). The algorithm is also computationally
efficient; indeed, a variant of it had been deployed in practice several years prior to the analysis
of Gale and Shapley (see Roth [110] and Stalnaker [126]). Despite the astronomical number of
possibilities — n! distinct matchings among two groups of size n, which is more than the estimated
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(a) Growth of 100n2 vs. n!

n 2 4 6 7 8 10 25 70

100n2 400 1,600 3,600 4,900 6,400 10,000 62,500 490,000
n! 2 24 720 5,040 40,320 3,628,800 > 1025 > 10100

(b) Growth of 100n2 vs. n!

Figure 1: The factorial function n! grows exponentially faster with n than the function 100n2.
In (a), the solid curve is the function f(x) = 100x2; the dotted curve is Stirling’s approximation
of n!, extended to the positive reals x.

number of atoms in the known universe when n = 1000 — the amount of work performed by the
algorithm scales only as a constant times n2, enabling the quick and automated solution of very
large problems.1 Figure 1 shows just how differently these two functions grow with n.

What about the second problem? It cannot be solved efficiently by enumerating all of the
possibilities — there are

(150
15

)

> 1015 of them, too many to check in a reasonable amount of time
on today’s computers. Is there a more clever general-purpose solution to this seemingly innocuous
problem? The answer is believed to be “no”. This belief is rigorously translated into mathematics
by proving that the problem is “NP -complete”, a concept that we define and interpret in Section 2.

Similarly, some equilibrium computation problems are apparently harder than others. Problems
like computing a stable marriage, and computing a Nash equilibrium of a two-player zero-sum game,
admit computationally efficient general-purpose solutions (the latter via linear programming [29]).
No such solutions have been discovered for many other equilibrium computation problems, such as
computing a Nash equilibrium in a general game. Could there be something intrinsically difficult,
in a precise sense, about these problems? Computational complexity is the subfield of computer
science concerned with such questions; its basic definitions and its consequences for equilibrium
computation are the subjects of this survey.

What do we learn by proving that an equilibrium computation problem is “difficult” in a
complexity-theoretic sense? First, assuming widely believed mathematical conjectures, it implies

1For implementation details, see Kleinberg and Tardos [75, §2.3].
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that there will never be a fast, general-purpose computational method for solving the problem.
Second, it rules out many structural results, such as convexity or duality, that are often used to
understand and justify economic models. Finally, as we explain in the next section, a complexity-
theoretic hardness result can diminish the predictive interpretation of an equilibrium concept and
suggests more tractable alternatives.

1.2 Who Cares About Computing Equilibria?

Many interpretations of an equilibrium concept involve someone — the participants or a designer
— determining an equilibrium. For example, the idea that markets implicitly compute a solution
to a significant computational problem goes back at least to Adam Smith’s notion of the invisible
hand [125]. If all parties are boundedly rational, then an equilibrium can be interpreted as a credible
prediction only if it can be computed with reasonable effort. Rigorous intractability results thus
cast doubt on the predictive power of equilibrium concepts.2 In a practical design context, it is
obvious that a mechanism that is actually implemented had better be computationally tractable
to run, like the deferred acceptance algorithm, and also easy to play, in the sense that participants
should not need to perform difficult computations.3

Equilibrium computation also has a number of well-known applications in economic analysis:
predicting the outcome and estimating suitable parameter values of a model, comparing exper-
imental results with model predictions, testing the design of a mechanism, automatically gen-
erating conjectures and counterexamples, and so on. These topics are discussed in detail else-
where [13, 36, 38, 65, 84].

Computer scientists also care about computing equilibria. The original motivating application
was the design of automated game-playing programs, such as for chess; a sample of modern appli-
cations is reviewed by Koller and Pfeffer [78]. For example, automated agents — anything from a
physical robot to an automated bidding strategy in an Internet auction — are often programmed
to optimize some payoff function while participating in a competitive or cooperative environment
(see e.g. Shoham and Leyton-Brown [120]). Computationally efficient algorithms for computing
equilibria are valuable tools for automating the decision-making of such agents.

Finally, complexity theorists are interested equilibrium computation problems because they in-
clude several of the most natural problems believed to be of “intermediate difficulty”, between
“easy” (solvable by a polynomial-time algorithm, see Section 2.1) and “hard” (NP -hard, see Sec-
tion 2.2). Their study has led to some recent advances in complexity theory.

1.3 Overview

Section 2 formally defines the standard paradigm for proving that a problem is “hard” and develops
the theory of “NP -hardness”. The key tool is a reduction, a precise way of deeming one problem at
least as hard as another. A problem is then “hard for some problem class” if it is at least as hard as
every problem in the class. The problem class NP denotes the (very large) set of problems for which
purported solutions can be verified quickly for correctness. Informally, we interpret an NP -hard
problem as one that admits no general-purpose computational solution that is significantly faster
than brute-force search (i.e., systematically enumerating all possible solutions). As an example, we
prove that determining whether or not a given two-player normal-form game has a Nash equilibrium

2This type of critique dates back at least to Rabin [106].
3See Milgrom [89] for a recent example of these principles.
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in which both players obtain an expected payoff of at least a given amount is an NP -hard problem.
The section also includes a careful discussion of the assumptions and implications of NP -hardness
results.

Different equilibrium computation problems require different notions of “hardness”, and Sec-
tion 3 explains why. This section focuses on congestion games, where a potential function argument
guarantees the convergence of better-response dynamics to a pure-strategy Nash equilibrium. We
show that the problem of computing a pure-strategy Nash equilibrium of a congestion game is
PLS-hard, where PLS is a general class of local search problems. A consequence of this result is
that better-response dynamics can require an exorbitant number of iterations to converge in con-
gestion games. The section concludes by explaining the behavioral implications of these negative
results.

Section 4 studies another, more fundamental equilibrium computation problem where the ex-
istence of a solution is guaranteed: computing a (mixed-strategy) Nash equilibrium of a bimatrix
game. Again, NP -hardness is not the right concept of difficulty for this problem; we instead in-
troduce the class PPAD, a relative of PLS that is motivated by the Lemke-Howson algorithm,
for this purpose. We briefly discuss very recent and deep research showing that computing a Nash
equilibrium of a bimatrix game is a PPAD-hard problem, and provide economic interpretations.
The computational complexity perspective echoes a number of previous results suggesting that, for
predictive purposes, the correlated equilibrium can be a more appropriate solution concept than
the Nash equilibrium.

1.4 Omitted Topics

Each of the next three sections concentrates on one problem concerning Nash equilibrium computa-
tion, to illustrate a particular type of intractability result. Dozens of other equilibrium computation
problems have been studied from a complexity-theoretic viewpoint. The most prominent topics
omitted from this survey include:

• equilibrium computation in extensive-form games (e.g. [9, 24, 54, 77, 137]), normal-form
games with three or more players [41], compactly represented games (e.g. [31, 72, 102, 118]),
stochastic games (surveyed by Johnson [63, §2] and Yannakakis [140, §2]), and cooperative
games (e.g. [35, 68]);

• computing equilibrium refinements (e.g. [40, 90, 135]);

• the computational complexity of playing a repeated game, from the perspective of a boundedly
rational player (surveyed by Kalai [67], see also Section 2.6) or of a designer or mediator [14,
83];

• equilibrium computation in markets, initiated by Scarf [116] and recently surveyed by Vazi-
rani [132] and Codenotti and Varadarajan [25];

• and complexity results in mechanism design, such as the winner determination problem in
combinatorial auctions (surveyed by Blumrosen and Nisan [11] and Lehmann, Müller, and
Sandholm [79]).

We also omit discussion of non-trivial algorithms for computing equilibria, with the exception of
the Lemke-Howson algorithm (Section 4.2). As the other papers in this special issue attest, there
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are a number of such algorithms that are practically useful for problems that are sufficiently small
or well-structured.

2 Algorithms, Reductions, and Hardness

This section formalizes the notions of “good algorithms” (Section 2.1) and “hard problems” (Sec-
tions 2.2 and 2.3). Sections 2.4 and 2.5 illustrate the theory of NP -hardness by showing that
determining whether or not a bimatrix game has a high-payoff Nash equilibrium is an NP -hard
problem. Section 2.6 offers interpretations of NP -hardness results, addresses the frequently voiced
objections to worst-case analysis and the definition of polynomial time, and discusses alternatives
to time complexity analysis, such as space-bounded models of bounded rationality. Our treatment
is largely self-contained, though perhaps too brisk for the reader with absolutely no prior exposure
to the material. Several good textbooks cover these topics in depth [53, 62, 75, 100, 123].

2.1 Computationally Efficient Algorithms

A compelling definition of a “hard problem” is one that admits no good algorithm. But what is a
“good algorithm”, or even just an “algorithm”? Numerous essentially equivalent definitions of an
algorithm are possible, all of which describe a procedure for transforming an input to an output
according to a predetermined and finite sequence of “basic instructions”; in addition, arbitrary
internal state can be maintained throughout the procedure’s execution.4 Conceptually, an algo-
rithm is a single program (in any programming language) that runs on a modern computer with
unbounded memory. The most common formalism is a Turing machine [130], but all of the most
common models of time-efficient computation are equivalent for our purposes.

Before suggesting what makes an algorithm “good”, we must be precise about what it means
to “solve a problem”. A problem is a (generally infinite) collection of instances, each representing
a possible input; and, for each instance, a collection of solutions. Instances and solutions should
both be encoded in some canonical way. Consider, for example, a problem concerning a graph G,
with vertices V and edges E (Figure 2). A graph can be specified by two integers (for |V | and
|E|), followed by a list of |E| pairs of distinct integers in {1, 2, . . . , |V |}, which are interpreted as
unordered pairs denoting the endpoints of the edges. Representing each of these numbers in binary
(say), we can canonically encode every graph as a sequence of zeroes and ones. An algorithm then
solves a problem if, for every instance, it either terminates with a correct solution or correctly
determines that no solution exists. A concrete example is to compute a large clique of a graph —
a subset of mutually connected vertices — if one exists.5 This is, of course, the same as the second
problem in Section 1.1, with vertices corresponding to employees and edges to pairs of compatible
employees.

4For simplicity, we disallow “randomized algorithms” — algorithms that can have different executions on the
same input (depending, for example, on the value of a “random seed” derived from a computer’s internal clock).
Complexity theory has studied such algorithms deeply, however, and all evidence suggests that they cannot overcome
the negative results we discuss.

5Complexity theory often focuses on decision problems, such as “correctly determine whether or not a given graph
has a large clique”, where only a “yes/no” answer is required. Equilibrium computation problems are more naturally
phrased as search problems, in which a bona fide solution should be computed, if possible. We focus on search
problems in this survey.
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Figure 2: A graph with vertices V = {1, 2, 3, 4} and edges E = {(1, 2), (1, 3), (2, 3), (3, 4)}. The
graph contains a 3-clique but no 4-clique.

Problem 2.1 (Maximum Clique Problem) Given (canonical encodings of) a graph G = (V,E)
and an integer target k:

(a) if there is a set K ⊆ V with |K| = k and with (i, j) ∈ E for every distinct i, j ∈ K, then
output such a set;

(b) otherwise, indicate that G has no such “k-clique”.

Formally, an algorithm that solves Problem 2.1 should encode its output in a canonical way (e.g.,
by responding “0” in case (b)). If the algorithm is given an input that is not a valid encoding of a
Maximum Clique instance, then the algorithm should recognize this and proceed as in case (b).

There is certainly an algorithm that solves the Maximum Clique problem, namely brute-force
search. The brute-force search algorithm systematically enumerates each subset of k vertices, and
checks whether or not the subset forms a k-clique. Should this algorithm be deemed “good”?

Intuitively, no. The primary reason is it scales poorly with the problem size. To see this,
consider a sequence of graphs in which the nth graph has n vertices and the target k is set to n/2.
The lengths of the natural encodings of these Maximum Clique instances grow polynomially in n,
since there are at most

(

n
2

)

≈ n2/2 edges in a graph with n vertices, and a number between 1
and n can be encoded using ≈ log2 n zeroes and ones. The running time of brute-force search
grows exponentially faster, almost as fast as the function 2n; qualitatively, the contrast shown in
Figure 1(a) also applies to these two different functions. This brute-force search algorithm would
be computationally feasible (would halt within a week, say) using today’s technology for values
of n up to around 30, when 2n is roughly a billion.

Some interesting problems are small enough to be solvable via exponential-time brute-force
search. But many are not, and as the last 50 years of computational work across science and
engineering has shown, our appetite for solving larger and larger problems is insatiable — as
computers become more powerful, our ambitions grow. We should therefore judge a general-purpose
algorithm not only by its performance on today’s problems, but also by how well it scales to
problems of moderate and large sizes — to tomorrow’s problems. Thinking ahead to equilibrium
computation problems, who wouldn’t be interested in an exact equilibrium analysis of chess, or
the poker game Texas Hold ’Em, or numerous less recreational large-scale applications, within our
lifetimes?
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Perhaps the paucity of insight in brute-force search can be overcome by tomorrow’s lightning-
fast processors? Moore’s law, asserting that computing speeds double every 1-2 years [92], actually
argues the opposite point: brute-force search will never be useful for large problems. Every time
computing speeds double, an exponential-time algorithm will be able to handle problem sizes that
are only one more than before, and thus will never be able to solve problems of even moderate size.
This motivates an informal definition of a “good algorithm”:

an algorithm is “good” if the input sizes that it can solve in a fixed amount of time scales
multiplicatively with increasing computational power.

This is equivalent to insisting that the running time of the algorithm scales polynomially with the
problem size; for example, with a quadratic-time algorithm, a doubling in computing power yields
a
√

2 factor growth in the solvable problem size. Here “running time” counts the number of “basic
operations” — conceptually, one line of a program in some fixed programming language — that
the algorithm executes before halting. This is the usual formal definition of a “good algorithm” in
complexity theory.

Definition 2.2 (Polynomial-Time Algorithm) An algorithm is polynomial time if there are
constants c, k > 0 such that, for every n ≥ 1 and every input of length n, the algorithm halts after
executing at most cnk basic operations.

For example, the Gale-Shapley deferred acceptance algorithm is polynomial time; the brute-force
search algorithm for the Maximum Clique problem is not.

Definition 2.2 requires several comments. First, the definition is robust in the sense that, for any
two reasonable formal models of algorithms (e.g., different choices of “basic operations”), a problem
is solvable by a polynomial-time algorithm in one model if and only if it is similarly solvable in the
other, possibly with a different choice of the constants c and k [131].6 Second, when designing an
algorithm to solve a problem, minimizing the constants c and k in Definition 2.2 is important. For
example, a linear-time algorithm (k = 1) is typically far preferable to a quadratic-time one (k = 2).
Since this survey emphasizes negative results — evidence that for some equilibrium computation
problems, there is no algorithm that solves it polynomial time, for any choice of c and k — we will
not worry unduly about precise values of c and k. Finally, Definition 2.2 concerns “worst-case”
performance, in that a polynomial-time algorithm is guaranteed to solve every instance quickly.
Section 2.6 discusses the reasons for this assumption as well as potential alternatives.

There is also an intellectual reason why we should classify brute-force search as a “bad algo-
rithm” and a polynomial-time algorithm as a “good algorithm”: for a problem like stable marriage
and a polynomial-time solution like the Gale-Shapley algorithm, the algorithm necessarily solves
the problem while examining a vanishingly small fraction of the exponentially large solution space.
In contrast to brute-force search, a polynomial-time algorithm necessarily exploits the structure of
the problem — and implicitly provides a “proof” that such structure exists.

2.2 Verifiable Solutions and NP

We have already identified a candidate definition of a “hard problem”:

6An exception is the Blum-Shub-Smale model of computation over the real numbers [10]. This model appears to
be more powerful than the classical ones (see [4, 140]) but its connection to practical computation remains under
debate (e.g. [16]).
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a problem is “hard” if there is no “good” (i.e., polynomial-time) algorithm that solves it.

In other words, no significant improvement over brute-force search is possible. Determining whether
or not the problems studied in this survey are hard in this sense is a deep, open question; see
Section 2.6.

In lieu of establishing problem hardness in the above strong sense, we settle for the following:

(*) a problem is “hard” if it is as difficult as every problem in a broad class.

Put differently, if any problem in the class cannot be solved by a polynomial-time algorithm, then
the “hard” problems cannot either. This and the next section provide the two definitions needed
to formalize condition (*) — one for the appropriate “broad problem class”, and one to anoint one
problem “at least as hard as” another.

Suppose we wanted to apply the paradigm (*) to a problem like Maximum Clique, and prove
that it is as hard as every problem in some class C. The strength of such a result depends on how
big the class C is. Why not choose C to be the class of all problems? This is too ambitious — a
simple counting argument shows that many computational problems cannot be solved correctly by
any algorithm, polynomial-time or otherwise.7 We know that the Maximum Clique problem can be
solved by an algorithm, namely brute-force search. We can therefore maximize our ambitions by,
intuitively, choosing C to be the set of all problems that are solvable by an analogous brute-force
search algorithm. This motivates the class NP , which we define next.8

Informally, a problem is in NP if a purported solution to an instance can be verified for cor-
rectness in polynomial time. For example, in an instance of the Maximum Clique problem with
graph G and target k, a purported solution is a subset K of k vertices, and it is easy to check
whether or not K is a k-clique of G in time polynomial in the input size. Formally, recall that a
problem Π consists of a collection of (canonically encoded) instances and, for each instance x ∈ Π,
a set S(x) of solutions.

Definition 2.3 (NP ) A problem Π is in NP if there is an algorithm V that, given an instance
x ∈ Π and a purported solution y as input, correctly determines whether or not y is in S(x) in time
polynomial in the size of x.

We often call the algorithm V the verifier. Since the verifier can only read one input bit per basic
operation, we can assume that the length of a purported solution y is at most the running time of
the verifier, and hence polynomial in the length of the instance x.

Every problem in NP can solved in exponential time by brute-force search. To see this, consider
an NP problem Π; by definition, it has a polynomial-time verifier V . Let the running time of V
be bounded by cnk whenever its first input x ∈ Π has length n. There are “only” 2cnk

possibilities
for a string y that could convince V to accept the input (x, y). Each of these possibilities can
be checked by V in time polynomial in the size of x. Checking all possibilities and outputting a

7An algorithm is specified by a finite list of instructions, so there are only countably many. A problem is a set

of finite sequences, so there are uncountably many. Remarkably, there are also concrete and important problems
unsolvable by any algorithm — undecidable is the technical term — such as the “Halting Problem”, which asks
whether or not a given program halts on a given input [130].

8The class NP is traditionally defined in terms of decision problems; we work with the search problem analog,
which is sometimes called FNP , or “functional NP”. The letters NP stand for “nondeterministic polynomial”,
reflecting the class’s origin story via nondeterministic Turing machines. See Knuth [76] for an amusing terminological
discussion.
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solution (if one exists) solves the problem Π in exponential time. A polynomial-time algorithm for
an NP problem represents an exponential improvement over this brute-force search algorithm.

2.3 Reductions and Hard Problems

Relative difficulty between two different problems is rigorously established via a reduction, possibly
the most fundamental notion in all of complexity theory. The definition is engineered so that if one
NP problem Π1 reduces to another Π2, then a polynomial-time algorithm solving Π2 immediately
yields one solving Π1.

Definition 2.4 (Reduction) A reduction from an NP problem Π1 to an NP problem Π2 is a
pair R1, R2 of polynomial-time algorithms such that:

(a) given an instance x ∈ Π1 as input, algorithm R1 produces an instance R1(x) ∈ Π2 such that
R1(x) has a solution if and only if x does;

(b) given an instance x ∈ Π1 and a solution y ∈ S(R1(x)) to the corresponding instance of Π2 as
input, algorithm R2 produces a solution R2(y) ∈ S(x) to the original problem.

In words, a reduction is one computationally efficient procedure that maps instances of problem Π1

to instances of problem Π2, and a complementary such procedure for translating solutions to the
latter instances to solutions to the former ones. Moreover, even though the first procedure is
unaware of whether or not the given instance has any solutions, precisely the instances of Π1 with
at least one solution are mapped to instances of Π2 with at least one solution.9 Reductions are a
natural mathematical concept and many “non-computational” proofs implicitly contain one. Early
game-theoretic examples include the reductions of Brown and von Neumann [17] and of Gale, Kuhn,
and Tucker [45], from computing a Nash equilibrium of a general bimatrix game to computing a
symmetric Nash equilibrium of a two-player symmetric game.

The definition of a reduction ensures that the next proposition holds.

Proposition 2.5 Suppose the problem Π1 reduces to the problem Π2. Then Π2 is solvable by a
polynomial-time algorithm only if Π1 is.

Proof: The proof is by composition and is illustrated in Figure 3. Let (R1, R2) denote a reduction
from Π1 to Π2 and A a polynomial-time algorithm solving Π2. Suppose the running times of R1,
R2, and A (as a function of the input size n) are bounded by c1n

k1, c2n
k2 , and c3n

k3, respectively.
Let B denote the algorithm that, given an instance x of Π1, invokes the reduction R1 to obtain
an instance R1(x) of Π2; uses the algorithm A to compute a solution y ∈ S(R1(x)), or correctly
determine that none exist; and uses the algorithm R2 to obtain from y a solution R2(y) ∈ S(x), or
reports “no solution”, if no such y exists. By Definition 2.4, the algorithm B solves the problem Π1.

We complete the proof by bounding the running time of algorithm B. If it begins with an
instance x of length n, it first spends at most c1n

k1 time producing R1(x); the length of R1(x)
is necessarily at most c1n

k1. Using algorithm A as a subroutine to produce y ∈ S(R1(x)), or
determine that no such y exists, requires at most c3c

k3

1 nk1+k3 time. This expression also bounds
the size of y. Invoking algorithm R2, if necessary, to recover a solution to x from y then requires

9What we are calling a reduction is often called a polynomial-time reduction or a Karp reduction (for search
problems), to distinguish it from other types of reductions in complexity theory.
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AlgorithmA

solution y to R (x)1

R 1

Instance x
of Π 1

BAlgorithm    for Π 1

solution R   (y) to x2

of Π 2

Instance R (x)1

"no solution"

R 2
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Figure 3: Proof of Proposition 2.5. If there is a reduction (R1, R2) from the problem Π1 to
the problem Π2, then a polynomial-time algorithm A that solves Π2 induces a polynomial-time
algorithm B that solves Π1.

at most c2c
k2

3 ck2+k3

1 nk1+k2+k3 time. The overall running time of algorithm B is thus polynomial in
the original input size n, as desired. �

Proposition 2.5 implies that if one problem reduces to another, then the latter is as hard as the
former with respect to polynomial-time solvability. The next definition broadens the scope of this
idea by considering classes of problems.

Definition 2.6 (C-Hard and C-Complete Problems) Let Π be an NP problem and C a set of
NP problems.

(a) The problem Π is C-hard if for every problem Π′ ∈ C, there is a reduction from Π′ to Π.

(b) The problem Π is C-complete if it is C-hard and is also a member of C.

Proposition 2.5 implies that a C-hard problem is solvable by a polynomial-time algorithm only if
the same is true for every problem in C.

2.4 Existence of NP -Complete Problems

Proving that a problem is NP -hard in the sense of Definitions 2.3 and 2.6 is intimidating evidence
of its intrinsic difficulty. The reason is that the class NP is big: it contains every problem for
which we can recognize, in a computationally efficient way, a correct solution. It comprises literally
tens of thousands of important problems spanning dozens of application areas, from mathematics
to biology, operations research to computer science, chemistry to economics. By Proposition 2.5,
NP -hard problems are solvable by a polynomial-time algorithm only if all problems in NP are.
Put differently, if P 6= NP — if there are any problems in NP not solvable in polynomial time —
then NP -hard problems admit no polynomial-time algorithm. We do not know that P 6= NP —
resolving this statement is one of the deepest open research problems in all of mathematics — but
it is a widely adopted working hypothesis; see also Section 2.6.

But do NP -hard problems even exist? The answer is yes, in abundance — the Maximum Clique
problem is one example, and the next section shows that computing high-payoff Nash equilibria in
bimatrix games is another.
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Complexity-theoretic hardness results for important problems typically require several steps.
The first step is to identify a hard, possibly “unnatural” problem. Reductions are then composed
to identify successively more natural hard problems, culminating with the target problem.

Toward this end, we begin with a “generic” problem Π0 that will be NP -complete — both NP -
hard and in NP — almost by definition. Instances x ∈ Π0 are described by four binary sequences:
an encoding of a polynomial-time verifier V ;10 two positive integers c and k; and a sequence z. By
definition, the solutions S(x) to such an instance x are the proofs y for which the verifier V accepts
the input (z, y) within cnk elementary operations, where n is the length of z. Thus, an instance
of Π0 poses the following task: find a solution to the instance z of the NP problem implicitly
defined by the verifier V .

The problem Π0 is in NP , as proved by the following polynomial-time verifier V0. Given an
instance of Π0 as above and a proposed solution y, the algorithm V0 simulates the verifier V on
the input (z, y); this is tedious but easy to do in polynomial time given an encoding of V . The
verifier V0 accepts the purported proof y (for the instance specified by V, z, c, k) if and only if V
accepts y (for the instance specified by z) within the allotted time bound of cnk operations, where n
is the length of z.

The problem Π0 is also NP -hard. Let Π be an NP problem with verifier V with running time
bounded by cnk on inputs of length n. The first algorithm R1 of the reduction from Π to Π0

is trivial: each instance z of Π is mapped to an instance x of Π0 by prepending to z encodings
of V , c, and k. The second algorithm R2 is simply the identity map. All of the requirements of
Definition 2.4 are easily checked.

The generic problem Π0 is remarkable as a proof of concept: there really is a “universal” problem
that simultaneously encodes countless important and seemingly disparate problems. The problem
is obviously artificial, but it serves as a launching pad for proving that thousands of more natural
problems are also NP -complete. Specifically, the composition of two reductions is again a reduction.
(The formal proof is similar to that of Proposition 2.5.) Thus, if an NP -hard problem reduces to
the problem Π, then Π is also NP -hard. We can therefore prove that a “natural” problem is NP -
hard by reducing a known NP -hard problem, such as the generic problem Π0, to it. Then, as the
arsenal of NP -hard problems to reduce from grows, it becomes ever-easier to prove that additional
problems are NP -hard. The earliest result of this type is the Cook-Levin Theorem [28, 81], which
shows that conceptually simple and practically relevant problems in Boolean logic — for example,
computing a truth assignment for the variables of a given Boolean formula so that it evaluates
to “true” — are NP -complete.11 Karp [71] quickly built on the Cook-Levin Theorem to show
that numerous fundamental combinatorial problems, including the Maximum Clique problem, are
NP -complete; and this in turn opened the floodgates for thousands of further reductions.12

10As with a graph, an algorithm — meaning its code in some programming language — can be canonically encoded
as a sequence of zeroes and ones.

11The proof is via reduction from the generic problem Π0. Given an instance of Π0 — an encoding of a verifier V ,
constants c and k, and an instance z of length n — the basic idea is to use cnk Boolean variables to represent the
bits of a potential solution y for z (as judged by V ) and roughly c2n2k auxiliary variables to represent the internal
state of V throughout its execution on the input (z, y). Logical constraints between different variables can be added
to enforce the accurate simulation of the evolution of V ’s internal state and that V accepts the purported proof y

within cnk elementary steps. Solutions y of S(z) are then in bijective correspondence with variable assignments that
meet all of these logical constraints. Details are in any of the complexity theory textbooks cited at the beginning of
this section.

12See Garey and Johnson [47] for an outdated but terrifically useful list.
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Theorem 2.7 ([71]) The Maximum Clique problem is NP -complete.

The proof of Theorem 2.7 is not overly long (see e.g. Dasgupta, Papadimitriou, and Vazirani [30,
pp. 249–250] or Kleinberg and Tardos [75, pp. 460–462]), but we skip it and instead leverage
Theorem 2.7 to prove that a natural equilibrium computation problem is NP -complete.

2.5 Application: Computing a High-Payoff Nash Equilibrium is NP -Complete

This section proves that a natural equilibrium computation problem is NP -hard, by reducing
the Maximum Clique problem to it. Recall that a bimatrix (i.e., two-player normal-form) game
is specified by two m × n payoff matrices, with the rows and columns indicating the players’
respective strategy sets. For bimatrix games with rational payoffs, a natural encoding specifies
m, n, and the 2mn payoffs, listed in a canonical order. (A rational number can be specified by
encoding its numerator, denominator, and sign separately.) Recall that a Nash equilibrium is a
probability distribution for each player — mixed strategies — so that each player is maximizing its
expected payoff, given the mixed strategy employed by the other player.

Problem 2.8 (Computing High-Payoff Nash Equilibria of Bimatrix Games)
Given (canonical encodings of) a bimatrix game G with rational payoffs and a rational number r:

(a) if G has a Nash equilibrium in which both players have expected payoff at least r, compute
one;

(b) otherwise, indicate that G has no such Nash equilibrium.

As a technical aside, we note that Problem 2.8 is an NP problem. This is not immediately
obvious, since there appear to be an infinite number of candidate solutions (all mixed strategy
profiles). In Section 4 we outline an argument implying that, if an instance of Problem 2.8 has a
solution, then it has a solution consisting of mixed-strategy profiles x and y for the two players made
up of rational numbers whose binary encodings have length polynomial in the input size. Given
such an x and y, the Nash equilibrium and payoff requirements can be verified in time polynomial in
the input size, by explicitly computing expected payoffs and checking each pure-strategy deviation
by each player. This proves membership of Problem 2.8 in NP , and implies that it can be solved in
exponential time via brute-force search. The next result gives evidence that no substantially faster
algorithm exists.

Theorem 2.9 ([51]) Problem 2.8 is NP -complete.

Proof: We give a reduction from the Maximum Clique problem to Problem 2.8. The first algo-
rithm R1 takes as input an encoding of a graph H = (V,E) and a target k, and constructs an
instance of Problem 2.8 as follows (see also Table 1). Each player has the same set of 2n strategies,
where n = |V |. Each strategy consists of picking a vertex, and of choosing whether to be “nice” or
“mean”. We emphasize that the game has only one stage, and players make both of these decisions
simultaneously. For strategy profiles in which both players play nice, the payoffs to both players
are:

• 1 + ǫ if the players choose the same vertex, where ǫ = 1/2k;

• 1 if the players choose distinct vertices that are adjacent in H (i.e., connected by an edge);
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1N 2N 3N 4N 1M 2M 3M 4M
1N 1 + ǫ, 1 + ǫ 1, 1 1, 1 0, 0 −k, k 0, 0 0, 0 0, 0
2N 1, 1 1 + ǫ, 1 + ǫ 1, 1 0, 0 0, 0 −k, k 0, 0 0, 0
3N 1, 1 1, 1 1 + ǫ, 1 + ǫ 1, 1 0, 0 0, 0 −k, k 0, 0
4N 0, 0 0, 0 1, 1 1 + ǫ, 1 + ǫ 0, 0 0, 0 0, 0 −k, k
1M k,−k 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
2M 0, 0 k,−k 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0
3M 0, 0 0, 0 k,−k 0, 0 0, 0 0, 0 0, 0 0, 0
4M 0, 0 0, 0 0, 0 k,−k 0, 0 0, 0 0, 0 0, 0

Table 1: Proof of Theorem 2.9: the bimatrix game produced by the algorithm R1 given the graph
in Figure 2 as input. Each strategy is annotated with the vertex it corresponds to (1, 2, 3, or 4)
and whether the player plays “nice” (N) or “mean” (M).

• 0 if the players choose distinct vertices that are not adjacent in H.

If both players choose the same vertex and exactly one of them plays nice, then the mean player
obtains payoff k and the nice player obtains payoff −k. In all other cases, both players receive zero
payoff. This defines the game G; the target payoff r is set to 1+ ǫ

k
. This algorithm R1 runs in time

polynomial in the size of the given Maximum Clique instance.
Call a (symmetric) mixed strategy profile of G good if both players always play nice and ran-

domize uniformly over the vertices of the same k-clique of H. Our key claim is that the Nash
equilibria of G in which both players obtain expected payoff at least r = 1 + ǫ

k
are precisely the

good strategy profiles (if any). Given this claim, we can easily complete the reduction: the second
algorithm R2 takes a solution to the constructed instance of Problem 2.8, which we now know is
a good strategy profile, and returns the corresponding k-clique of H. Assuming the claim is true,
the algorithms R1 and R2 constitute a reduction in the sense of Definition 2.4.

One direction of the claim is easy. Consider a good strategy profile, with both players playing
nice and randomizing uniformly over the vertices of a k-clique K. The expected payoff of each
player is 1

k
· (1 + ǫ) + k−1

k
· 1 = r. To check that this is a Nash equilibrium, we only need to check

the 2n pure-strategy deviations of one of the players. Unilaterally deviating and playing nice yields
expected payoff at most r. Deviating and playing mean yields expected payoff either 1

k
· k = 1 < r

(if a vertex of K is played) or 0 (otherwise). Thus every good strategy profile is a Nash equilibrium
with the desired payoffs.

To prove the converse, we establish four facts about the game G.

(1) For every Nash equilibrium, for each player p and vertex i ∈ V , the probability that player p
plays nice and chooses strategy i is at most (1 + ǫ)/k.

(2) For every mixed-strategy profile in which both players obtain expected payoff at least r, each
player plays nice with probability at least 1 − ǫ.

(3) For every Nash equilibrium in which both players obtain expected payoff at least r, each
player randomizes over at least k different vertices when playing nice.

(4) For every Nash equilibrium in which both players obtain expected payoff at least r, for every
vertex i that is played with positive probability by a player p when playing nice, the other
player q plays nice and chooses vertex i with probability at least 1/k.
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The non-trivial direction of the key claim follows easily from facts (3) and (4). By (3), in a Nash
equilibrium with the desired payoffs, there are k distinct vertices K that the row player sometimes
selects when playing nice; fact (4) then implies that the column player must always play nice and
randomize uniformly over the vertices of K; invoking (4) again, the row player plays exactly the
same way, yielding a good mixed-strategy profile.

To show the contrapositive of (1), assume that p plays nice and selects strategy i with probability
more than (1 + ǫ)/k. If the other player q deterministically plays mean and chooses strategy i,
its expected payoff is more than 1 + ǫ. Every best response by q thus randomizes only over mean
strategies. But then every best response by p would also randomize only over mean strategies, so we
did not start with a Nash equilibrium. For (2), note that whenever at least one player is mean, the
sum of the payoffs to the players is 0; when both are nice, the sum of the payoffs is at most 2(1+ ǫ).
Thus, in a mixed-strategy profile in which both players obtain expected payoff at least r, both
players are (and hence each player is) nice with probability at least 2r/2(1+ ǫ) > 1/(1+ ǫ) > 1− ǫ.
Assertion (3) follows immediately from (1) and (2) and our choice of k: under the stated hypothesis,
each player must be nice with probability at least 1−ǫ but can allocate at most (1+ǫ)/k probability
to each of the ℓ nice strategies that it employs; since ǫ = 1/2k, rearranging terms yields ℓ > k − 1.
To establish (4) and complete the proof of the theorem, the hypothesis implies that the expected
payoff of p when deterministically playing nice and selecting vertex i is at least r = 1 + ǫ

k
, and this

is true only when the other player q plays nice and selects vertex i with probability at least 1/k. �

Theorem 2.9 is due to Gilboa and Zemel [51]. See McLennan and Tourky [85] and Hazan
and Krauthgamer [60] for variants of the above reduction, and Conitzer and Sandholm [27] for an
alternative proof of Theorem 2.9.

2.6 Discussion

Theorem 2.9 implies that, unless P = NP , there is no polynomial-time algorithm for deciding
whether or not a bimatrix game has a high-payoff Nash equilibrium. We next discuss the most
common questions about and objections to negative complexity results such as this. This section
focuses on general issues common to all NP -hardness results. Sections 3.5 and 4.5 address points
particular to equilibrium computation applications, including the economic and behavioral signifi-
cance of computational hardness results such as Theorem 2.9. We also touch on some alternatives
to time complexity analysis, such as space complexity.

Who Cares About Worst-Case Analysis? Perhaps the most common objection to the theory
of NP -completeness is that the definition of a “good algorithm”, as an algorithm that runs in
polynomial time for every possible input, is too strong. If a problem is NP -complete and P 6= NP ,
then it has no computationally efficient general purpose solution (unlike, say, linear programming)
— but surely the running time of an algorithm only matters on inputs that we actually care about?
This objection is legitimate; how can we formalize it?

One option is to consider random inputs under some probability distribution; see Bárány, Vem-
pala, and Vetta [7] and Porter, Nudelman, and Shoham [104] for results along these lines in equilib-
rium computation problems.13 Modeling random inputs in a meaningful yet analytically tractable

13There is also a complexity theory of “hard-on-average problems”, although it is less mature than that of worst-case
hardness. See Bogdanov and Trevisan [12] for a recent survey.
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way is difficult, however. For example, for the most popular definitions of random games and nu-
merous well-studied classes of “structured” (and presumably “interesting”) games, a random game
is structured with probability zero [97]. Thus positive results for random games are not always
meaningful for the types of games that we typically want to study.

A second approach — and usually a better one, in our opinion — is to formalize the structural
constraints inherent in a class of applications. The “congestion games” of the next section are one
case study of this idea. Hard problems can become easy when additional structure is imposed. For
example, Problem 2.8 is polynomial-time solvable using linear programming if the bimatrix game
is zero-sum. We believe that this approach should be pursued rigorously and systematically, using
complexity-theoretic tools to map the tractability frontier between solvable and unsolvable special
cases of a problem. We should strive for polynomial-time algorithms for “relevant” special cases,
and for reductions that reach beyond contrived examples and apply to such special cases.

Who Cares About Polynomial Time? Even after accepting worst-case running time as a
useful performance statistic, identifying “computationally efficient” with “polynomial running time”
can initially seem rather arbitrary. Surely we should differentiate between higher- and lower-order
polynomials? And why is an algorithm with running time n100 “fast” and an algorithm with
running time nlog2 n “slow”?

Initially, the definition of polynomial time was motivated primarily by its mathematical elegance
and robustness (e.g. in Edmonds [39]): it ensures that the class P of computationally tractable
problems is independent of the details of the computational model, that polynomial-time reductions
are closed under composition (cf., the proof of Proposition 2.5), and so on. With decades of
hindsight, we can now say that polynomial time has served as a remarkably effective and accurate
classification tool. Problems in P almost always admit general-purpose algorithmic solutions that
are fast in practice. Often a slow, polynomial-time algorithm comes first, and further work produces
practical algorithms with very good worst-case running times. Problems that seem to lie outside
P , such an NP -hard problems, are not necessarily “unsolvable” in practice, but in almost all cases
solving even moderate problem sizes requires significant human and computational effort. A case
in point is the NP -hard Traveling Salesman Problem [5].

There is also remarkable correlation between the class P and problems that have “nice math-
ematical structure”, such as a succinct characterization of feasibility or optimality. For example,
classes of mathematical programs that have a strong duality theory (such as linear and convex pro-
gramming) are almost always polynomial-time solvable, while those that do not (such as general
integer or nonlinear programming) are typically NP -hard. There are also examples in game theory,
such as the close correspondence between uniqueness and tractable computational complexity for
the sequential elimination of strategies under different dominance relations [50]. We revisit this
point when comparing Nash and correlated equilibria of bimatrix games in Section 4.5.

What if P = NP? Most computer scientists believe that P 6= NP , but that the P vs. NP
question will not be resolved soon; see Gasarch [48] for a straw poll and Aaronson [1] and Sipser [122]
for much more on the issue. This is, however, only a conjecture. Indeed, the evidence for believing
that P 6= NP is largely psychological rather than mathematical: tens of thousands of important
problems, across numerous scientific fields, are now known to be NP -complete. For decades, many
have searched far and wide for a computationally efficient solution to at least one of these. And
crucially, if even one of these problems admits a polynomial-time algorithm, then all of them do.
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Most computer scientists do not believe that P = NP because, frankly, it seems too remarkable
to be true. And if one day P = NP is proved, equilibrium computation will not be the problem
to dominate the mainstream news headlines — that would be the NP problem of factoring large
integers, the presumed difficulty of which underlies the RSA cryptosystem [108] and most of modern
electronic commerce.

Philosophically, P = NP would suggest that all creativity can be automated [138]. For example,
for every true proposition with an efficiently verifiable proof, such as Fermat’s Last Theorem,
there would be an automated way of quickly generating such a proof. As Wigderson [138] writes,
“we would similarly revolt against the possibility of a monkey spewing out a perfect Shakespeare
tragedy.” At the very least, P 6= NP seems to be a safe working hypothesis for the foreseeable
future.

Bounded Rationality and Other Complexity Notions. We often adopt polynomial-time al-
gorithms as surrogates for boundedly rational participants and designers (Sections 1.2, 3.5, and 4.5).
Space complexity, which counts the maximum amount of memory required by an algorithm, is an
alternative complexity measure that has informed much economic research on the bounded ratio-
nality program of Simon [121] in repeated games. The idea is to limit the strategies in a repeated
game — each a function from a history-so-far to an action — to those implementable by a space-
bounded algorithm. Restricting the complexity of strategies yields a modified game, which gen-
erally has a different set of equilibria than the original repeated game. For example, cooperative
equilibria emerge in the repeated Prisoner’s Dilemma; see Neyman [96] and Papadimitriou and
Yannakakis [103] for details.

Space complexity was developed for automata [92, 107] — a highly restrictive type of algorithm
— prior to the study of general time and space complexity [58, 59].14 Automata are far easier to
work with than general algorithms, as exemplified by the Myhill-Nerode Theorem [95] that charac-
terizes the minimum space required to implement a particular strategy, and they form the basis of
most works on this topic.15 See Kalai [66] for a survey of this line of research and Rubinstein [112]
for a broader discussion of bounded rationality.

These two notions of bounded rationality — polynomial-time algorithms and automata with
polynomially many states — are not directly comparable. Automata appear relevant only in re-
peated games, while time complexity analysis is useful whenever the game can be described in a
succinct way (as in both single-shot games, as studied here, and repeated games [14, 83]). Also,
participants in a repeated game face two types of complexity: that of formulating a strategy, and
that of executing a strategy. Permitting only strategies representable as polynomial-size automata
limits the latter type of complexity without addressing the former problem, which can be NP -hard
in some natural contexts [49, 98]. Modeling a participant as a polynomial-time algorithm, with
the game description provided as input, constrains simultaneously the effort it can invest in both
planning and playing the game.

There are additional useful complexity measures. To mention one more, communication com-
plexity counts only the amount of information exchanged between participants and a designer, and

14The relationship between the time and space complexity of many problems is not completely understood, but
there are some obvious connections: since an algorithm can only write one thing to memory each time step, the
space it requires is no more than its running time; and since an algorithm that does not go into an infinite loop
cannot return to a previously visited state (i.e., the same position in the program code with the same contents in its
memory), its running time is at most exponential in its space requirement.

15An exception is Megiddo and Wigderson [87].
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ignores computation completely. This relatively simple measure is useful for establishing negative
results, in the form of lower bounds on the number of bits of communication needed to solve a prob-
lem. Game-theoretic applications include equilibrium computation in games with a large number n
of players, where the worst-case amount of payoff information that must be exchanged between
players to reach a Nash equilibrium is exponential in n [56]; and combinatorial auctions, where a
mechanism for obtaining an approximately welfare-maximizing allocation must elicit an amount of
preference information that is exponential in the number of goods [119].

3 Pure Nash Equilibria in Congestion Games

This section studies the problem of computing pure-strategy Nash equilibria in congestion games,
where such equilibria are guaranteed to exist [109]. After reviewing the definition and properties of
congestion games (Section 3.1), Section 3.2 defines a notion of hardness, weaker than NP -hardness,
suitable for computational problems in which a solution is guaranteed to exist. Section 3.3 shows
that computing a pure Nash equilibrium of a congestion game is hard in this sense, and Section 3.4
derives negative consequences for the convergence time of best-response dynamics in such games.
Section 3.5 discusses economic and behavioral interpretations of these intractability results.

3.1 Congestion Games

A congestion game is an n-player finite game with a particularly nice payoff structure (Figure 4).
There is a ground set R of resources, and each resource r ∈ R has a cost function cr : {1, 2, . . . , n} →
R. To minimize technical details, we assume that all costs are integers. Each player i has a
strategy set Si, and each strategy Si ∈ Si is a non-empty subset of resources. In a strategy profile
(S1, . . . , Sn), the cost (negative payoff) to player i is defined by

Ci(S1, . . . , Sn) =
∑

r∈Si

cr(nr),

where nr = |{j : r ∈ Sj}| denotes the corresponding number of players that select a strategy
containing the resource r.

Congestion games are remarkable in that they model diverse applications — including traffic
routing (e.g. [111]), network formation (e.g. [127]), firms competing for production processes [109],
and the migration of animals between different habitats [88, 105] — yet always possess pure Nash
equilibria. We recall the proof.

Theorem 3.1 (Rosenthal’s Theorem [109]) Every congestion game has at least one pure Nash
equilibrium.

Proof: Given a congestion game, define a potential function Φ on its strategy profiles by

Φ(S1, . . . , Sn) =
∑

r∈R

nr
∑

i=1

cr(i). (1)

For every strategy profile (S1, . . . , Sn) and deviation S̃i by a player i, the definition of Φ ensures
that

Ci(S̃i, S−i) − Ci(Si, S−i) =
∑

r∈S̃i\Si

cr(nr + 1) −
∑

r∈Si\S̃i

cr(nr) = Φ(S̃i, S−i) − Φ(Si, S−i). (2)
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Figure 4: Example of a congestion game. Two players choose from three strategies, the directed
paths from s to t. Each edge is labeled with its cost function. In the unique pure Nash equilibrium,
both players select the path s → w → v → t and incur cost 10.

At a global minimum (S1, . . . , Sn) of Φ — which exists, since the game is finite — the right-hand
side of (2) is non-negative for every player i and deviation S̃i. This profile is therefore a pure Nash
equilibrium. �

Our goal is to understand the computational complexity of the following basic problem.

Problem 3.2 (Computing Pure Nash Equilibria of Congestion Games)
Given a congestion game with integer costs, compute a pure Nash equilibrium.16

In Problem 3.2, we assume that a congestion game is described as a list of strategies for each player
(and each strategy as a list of resources), followed by a binary encoding of the n|R| integers that
define the cost structure. The number of strategy profiles of a congestion game — and hence the size
of its normal-form representation — can be exponentially larger than the size of this description.17

Even congestion games with an extremely large number of players — the common case in network
applications — can be represented practically in this way.

Given a congestion game and a purported solution to Problem 3.2 — a strategy profile —
its correctness can be checked in time polynomial in the game’s (natural) description, simply by
examining each of the |Si| − 1 possible deviations of each player i in turn. Problem 3.2 is therefore
an NP problem. Unlike the search for high-payoff equilibria in bimatrix games (Problem 2.8),
where an algorithm was required to recognize instances without a solution, Rosenthal’s Theorem
guarantees that every instance of Problem 3.2 has at least one solution.18

16Finding all pure Nash equilibria of a congestion game is only harder than finding one. Negative results are more
compelling for the easier problem of computing a single equilibrium.

17Consider n players and n + 1 resources, where player i can use either resource 0 or resource i. Resource 0 always
has cost 0, while resource i has cost i if used. This game has 2n (non-isomorphic) strategy profiles yet its natural
description has size near-linear in n.

18The subclass of NP problems with this “guaranteed existence of solutions” property is called TFNP , for “total
functional NP” [86].
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3.2 Better-Response Dynamics and PLS

As an NP problem, Problem 3.2 can be solved via brute-force search: given a congestion game,
systematically enumerate its finitely many strategy profiles, and return the first one that is a
pure Nash equilibrium. There is another obvious algorithm for Problem 3.2, a form of guided
search: better-response dynamics. Recall that in better-response dynamics, as long as the current
strategy profile is not a pure Nash equilibrium, we allow an arbitrary player to deviate to an
arbitrary strategy that strictly decreases its cost. As emphasized by Monderer and Shapley [91],
equation (2) implies that every iteration of better-response dynamics in a congestion game strictly
decreases Rosenthal’s potential function. Better-response dynamics is thus guaranteed to terminate,
necessarily at a pure Nash equilibrium of the game. Does better-response dynamics provide a
polynomial-time algorithm for Problem 3.2? A byproduct of our complexity-theoretic study of this
problem is a negative answer to this question.19

Empirically, almost all NP problems are either polynomial-time solvable or NP -complete. So
which is Problem 3.2? Our next goal is to give evidence that the answer is neither: Problem 3.2
belongs to the rare species of problems that seem to possess “intermediate complexity”.20

There is a simple but subtle reason why complexity theorists do not expect problems like
computing a pure Nash equilibrium of a congestion game to be NP -hard. Recall the Maximum
Clique problem (Problem 2.1), and the reason for its membership in NP : a purported solution (a
potential k-clique) can be succinctly described and quickly checked for correctness. But what if
you wanted to convince someone that a graph did not have a k-clique? Could you write down a
polynomial-size proof of this fact that could be verified in polynomial time?21 Intuitively, it seems
impossible to be sure that a graph has no k-clique without checking all or at least most of the
exponentially many potential solutions. In complexity theory parlance, this is equivalent to the
“NP 6= coNP” conjecture; it is mathematically stronger than the P 6= NP conjecture, but it is
believed with equal fervor.

Consider an attempt to prove that Problem 3.2 is NP -hard in the following sense: if it admits
a polynomial-time algorithm, then all NP problems do. The obvious proof approach is illustrated
in Figure 5: use a reduction R1 to map instances of an NP -hard problem like Maximum Clique to
congestion games; employ a hypothetical polynomial-time algorithm A for Problem 3.2 to compute
a pure Nash equilibrium; and use a polynomial-time algorithm R2 to infer a solution (or the non-
existence thereof) to the original instance of Maximum Clique. If the reduction (R1, R2) exists,
then we obtain the desired conclusion: the polynomial-time algorithm A for computing pure Nash
equilibria in congestion games exists only if P = NP .

We claim that the existence of the reduction (R1, R2) would resolve, negatively, the “NP 6=
coNP” conjecture! To see this, assume that (R1, R2) exists and consider an encoding x of a graph
with no k-clique. A pure Nash equilibrium S of the congestion game R1(x) has size polynomial in x,
and we claim that it constitutes a polynomial-time verifiable proof that x has no solution; crucially,
such an equilibrium exists by Rosenthal’s theorem. Given S, we simply execute R1 on x to obtain
a congestion game R1(x) and confirm that S is a pure Nash equilibrium for it, and execute R2

19Better-response dynamics is a polynomial-time algorithm in the special case of congestion games in which the
potential function Φ takes on only polynomially many distinct values. This occurs when, for example, the cost of
every resource is always a nonnegative integer that is bounded above by a polynomial in the number of players.

20The two best-known such problems are factoring large integers and determining whether or not two unlabeled
graphs are isomorphic.

21For example, Farkas’s Lemma provides such certificates for infeasible systems of linear inequalities
(e.g. Vohra [134]).
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Figure 5: A reduction from the Maximum Clique problem to that of computing pure Nash equilibria
in congestion games would yield short and efficiently verifiable proofs that graphs contain no large
cliques, refuting the “NP 6= coNP” conjecture.

on R1(x) and S to confirm that R2’s output is “no solution”. All of this can be accomplished in
polynomial time, and the correctness of R1 and R2 imply irrefutably that the graph encoded by x
has no k-clique.

Theorem 3.3 ([64, 86]) Problem 3.2 is NP -hard only if the “NP 6= coNP” conjecture is false.

The moral of Theorem 3.3 is that, if we aim to show that computing pure Nash equilibria
of congestion games is C-hard for some class C, then C needs to be a subclass of NP . Recall
that the intent of the definition of NP was to capture all problems solvable by brute-force search.
Problem 3.2 is apparently not among the most difficult problems in NP because it also admits a
guided-search algorithm, namely better-response dynamics. Could it be as hard as any problem
solvable by an analogous guided search algorithm?

To answer this question formally, we define the problem class PLS, for “polynomial local
search”.22 Recall that the definition of an NP problem — a verifier for candidate solutions and
an explicit polynomial bound on its worst-case running time — was motivated by the minimal
information required to run brute-force search. What are the minimal ingredients for executing a
local search procedure analogous to better-response dynamics? We define a PLS problem in terms
of encodings of three algorithms A,B,C and explicit polynomial bounds on their running times.23

• Algorithm A accepts an instance (e.g., an encoding of a congestion game) and outputs an
initial candidate solution (e.g., the profile in which each player selects its first strategy).

• Algorithm B accepts an instance and a candidate solution for it and returns the objective
function value of the candidate solution according to some objective (e.g., the Rosenthal
potential value).

22This class was originally defined to study local search problems, not equilibrium computation problems [64].
The connection between local search algorithms and better-response dynamics was made explicit by Fabrikant,
Papadimitriou, and Talwar [42].

23We focus on minimization problems, though maximization problems can analogously be members of PLS (see
Yannakakis [139]).
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• Algorithm C accepts an instance and a candidate solution for it and either outputs a candidate
solution with strictly smaller objective function value or reports that the provided solution
is locally optimal (e.g., executes a better response for some player starting from the input
strategy profile, if possible).

As in Section 2, if one of the algorithms fails to halt within the specified time bound or otherwise
misbehaves, we interpret its output in some canonical way. For example, we can interpret the
output of B as +∞ in this case. Similarly, if algorithm C produces a solution no better than
the one it was provided (which can be checked using algorithm B), we can interpret its output
as a declaration of local optimality. We say that an algorithm solves a PLS problem if, for every
instance, it returns a locally optimal solution.

By the definitions and the proof of Rosenthal’s theorem, Problem 3.2 is a PLS problem. A
different PLS problem is linear programming with a given simplex pivot rule: an instance is a linear
program, candidate solutions are basic feasible solutions, and the algorithm C executes an improving
pivot step, if possible. Every problem in PLS admits a guided search algorithm for computing a
locally optimal solution: given an instance, use algorithm A to obtain a start state, and iteratively
apply algorithm C until a locally optimal solution is reached. Since the objective function values
of the candidate solutions strictly decrease until a locally optimal solution is found, and since there
are only finitely many distinct candidate solutions, this procedure eventually terminates. As the
number of candidate solutions can be exponential in their encoding length — just as the number of
strategy profiles can be exponential in the description length of a congestion game — this guided
search procedure need not run in polynomial time.

We emphasize that solving a PLS problem simply means computing, by whatever means, some
locally optimal solution. An algorithm is not constrained to follow the guided search paradigm.
For example, one can optimally solve a linear programming problem — yielding a global optimum,
which is locally optimal with respect to every pivot rule — in polynomial time using the ellipsoid
method [73] or interior-point methods [70]. An algorithm is not even required to return the same
locally optimal solution that would be computed by guided search. In Problem 3.2, every pure
Nash equilibrium of the given congestion game, whether or not it is reached by better-response
dynamics from a canonical initial state, is a legitimate output.

3.3 Example: Computing a Pure Nash Equilibrium of a Congestion Game is

PLS-Complete

This section shows that computing a pure Nash equilibrium of a congestion game (Problem 3.2) is
PLS-hard (and hence PLS-complete).

Theorem 3.4 ([42]) Problem 3.2 is PLS-complete.

Thus, Problem 3.2 is solvable by a polynomial-time algorithm if and only if all problems in PLS
are.

Our proof that Problem 2.8 — computing high-payoff Nash equilibria in bimatrix games —
is NP -hard (Theorem 2.9) implicitly required several steps. We established a “generic” NP -hard
problem; used the Cook-Levin Theorem [28, 81] to reduce it to a problem in Boolean logic (proving
the latter NP -hard); relied on Karp’s reduction from the Cook-Levin problem to the Maximum
Clique problem [71]; and finally reduced the Maximum Clique problem to Problem 2.8. We outline
a similar approach to proving Theorem 3.4.
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PLS also has a “generic” complete problem; the argument is similar to but slightly more tech-
nical than that in Section 2.4, and is left to the reader. The analog of the Cook-Levin Theorem,
proved by Johnson, Papadimitriou, and Yannakakis [64], states that a particular local search prob-
lem for Boolean circuits called “Circuit Flip” is PLS-hard. Circuit Flip has been reduced to a
number of other local search problems, proving them PLS-hard as well.

We make use of the following Minimum Agreement problem. An instance of Minimum Agree-
ment consists of n variables x1, x2, . . . , xn and m unordered triples, each consisting of three distinct
variables. Each triple also has a positive integral cost. An assignment gives each variable the value 0
or 1. The cost of an assignment is the sum of the costs of the triples in which all three variables
are assigned the same value. For example, an assignment has cost 0 if and only if each triple has
at least one variable assigned to each of “0” and “1”. The local optima of a Minimum Agreement
instance are defined as the assignments whose cost cannot be decreased by changing the value of
a single variable. In PLS terms, the first algorithm A outputs the all-zero assignment (say) of a
given Minimum Agreement instance; the second B returns the cost of the proposed assignment;
and the third C flips the value of exactly one variable to obtain a new assignment with smaller
cost. If the third algorithm finds no such improved assignment, it declares local optimality; if there
are several, it chooses one arbitrarily. Schäffer and Yannakakis [117] proved, by a sophisticated
sequence of reductions, that the Minimum Agreement problem is PLS-hard.24

Proof of Theorem 3.4: We reduce the Minimum Agreement problem to Problem 3.2. The first
algorithm R1 of the reduction accepts a Minimum Agreement instance, with variables x1, . . . , xn,
triples A1, . . . , Am, and costs a1, . . . , am, and constructs the following congestion game. There are
2m resources, with two resources sj, tj per triple Aj . There are n players, and each player i has
two strategies: Si = {sj |xi ∈ Aj} and Ti = {tj |xi ∈ Aj}. Finally, the cost functions cj of the
resources sj and tj are both defined as cj(1) = cj(2) = 0 and cj(3) = aj . (Each resource belongs to
the strategies of only three different players.) This construction can be implemented in polynomial
time.

The second algorithm R2 of the reduction should accept a pure Nash equilibrium of the con-
gestion game constructed by R1 and recover, in polynomial time, a locally optimal solution of the
original Minimum Agreement instance. There is a natural bijection between assignments for a Min-
imum Agreement instance and strategy profiles in the corresponding congestion game, where we
identify strategies Si and Ti with the assignments xi = 1 and xi = 0, respectively. The Rosenthal
potential function value of a strategy profile equals the cost of the assignment it corresponds to.
The mapping thus induces a bijection between improving unilateral deviations in the congestion
game and cost-decreasing variable flips in the Minimum Agreement instance. The algorithm R2

can easily recover a locally optimal assignment from a pure Nash equilibrium via this mapping. �

Section 2.6 discussed the value of extending the reach of a hardness result to important special
cases. In that spirit, we consider Problem 3.2 restricted to symmetric congestion games, in which
all players have the same strategy set.

Problem 3.5 (Computing Pure Nash Equilibria of Symmetric Congestion Games)
Given a symmetric congestion game with integer costs, compute a pure Nash equilibrium.

A second reduction shows that even this special case is a PLS-hard problem.

24The Minimum Agreement problem is an equivalent minimization version of the “POS NAE 3SAT” problem
studied in Schäffer and Yannakakis [117].
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Theorem 3.6 ([42]) Problem 3.5 is PLS-complete.

Proof Sketch: Via a reduction from the more general Problem 3.2. Given a congestion game with n
players and arbitrary strategy sets S1, . . . ,Sn, the reduction constructs the following “symmetrized
version”. The player set remains the same. The old resource set is augmented by n additional
resources r1, . . . , rn. The cost function of each of these is defined to be zero if used by only one
player, and extremely large if used by two or more. Each strategy of Si is supplemented by the
resource ri, and any player can adopt any one of these augmented strategies. The key insight is
that at a pure Nash equilibrium of the constructed symmetric game, each player will adopt the
identity of exactly one player from the original (asymmetric) game. This follows from the large
penalty incurred by two players that choose strategies that share one of the new resources. Such a
pure Nash equilibrium is then easily mapped to one of the original asymmetric game. �

3.4 Consequences for Better-Response Dynamics

If PLS 6⊆ P , then no polynomial-time algorithm is guaranteed to compute a pure Nash equilibrium
of a congestion game. In particular, this would imply that better-response dynamics cannot always
converge in polynomial time.

Something much stronger is true: hardness results for PLS problems imply strong lower
bounds on the worst-case running time of local search algorithms. For example, Schäffer and
Yannakakis [117] proved that the standard guided search algorithm can require exponential time
in a Minimum Agreement instance, visiting nearly all possible assignments. Precisely, they showed
that there is a constant c > 0 such that, for infinitely many n, there is an instance of Minimum
Agreement with n variables such that guided search requires at least 2cn iterations to reach a locally
optimal assignment. This lower bound applies to every method of breaking ties between competing
improving variable flips.

The proof of Theorem 3.4 constructs a bijection between the possible trajectories of better-
response dynamics in certain congestion games and guided search in instances of Minimum Agree-
ment. This yields an immediate lower bound on the convergence time of better-response dynamics
in congestion games.

Corollary 3.7 There is a constant c > 0 such that for arbitrarily large n, there is an n-player
congestion game with binary strategy sets and an initial strategy profile from which better-response
dynamics requires 2cn iterations to converge to a pure Nash equilibrium, no matter how players are
selected in each step.

We emphasize that Corollary 3.7 holds even in the (arguably unlikely) event that PLS ⊆ P . In
exploring the limits of arbitrary polynomial-time algorithms, complexity theory thus provided a
concrete answer to a natural game-theoretic question: whether or not better-response dynamics is
guaranteed to find a pure Nash equilibrium faster than unguided enumeration in congestion games.
For further results on computing pure Nash equilibria and the convergence of better-response
dynamics in congestion games, Vöcking [133] and Dunkel and Schulz [37].

3.5 Discussion

This section considers the implications of Theorems 3.4 and 3.6 and Corollary 3.7. Naturally,
the discussion in Section 2.6 about worst-case analysis and polynomial-time algorithms is equally
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relevant here. We next focus on possible behavioral interpretations of these results and the common
objections to such interpretations.

Behavioral Implications. Rosenthal’s Theorem — the rare existence proof that comes equipped
with a convergence result — suggests that pure Nash equilibria could form a credible prediction
of the outcome of rational behavior in congestion games. Theorem 3.4 and Corollary 3.7 cast
doubt on this interpretation. Certainly, under the strong assumption that players act according to
better-response dynamics, Corollary 3.7 implies that they need not reach an equilibrium in their
lifetimes, assuming at least a moderate number of players. More generally, no matter what kind of
dynamics are adopted, Theorem 3.4 implies that reaching a pure Nash equilibrium requires solving
a PLS-hard problem, and evidence suggests that this cannot always be done in polynomial time.

So is the pure Nash equilibrium a “bad” solution concept for congestion games? In the author’s
experience, economists can be reticent to accept complexity-theoretic critiques of equilibrium con-
cepts. Many (but not all) of the reasons for this skepticism are well founded. The first rebuttal of
such a critique is that “interesting” congestion games possess structure beyond those produced in
the proofs of Theorems 3.4 and 3.6. As we argued in Section 2.6, this is often a legitimate objection
and deserves to be made formal by defining interesting special cases and rigorously proving posi-
tive complexity results — polynomial-time convergence of better-response dynamics, or at least a
polynomial-time algorithm for computing pure Nash equilibria. For example, Ackermann, Röglin,
and Vöcking [3] show that better-response dynamics converges quickly provided players’ strategy
sets are “well-structured” in a precise sense. The second potential escape is to argue that players
can quickly reach outcomes that are “as good as an equilibrium”, and exponential convergence is
required only for reaching an exact pure Nash equilibrium. A third tack would be to question the
assumption that PLS 6⊆ P . These two reasonable objections are addressed below. We also discuss
another common complaint that elicits little sympathy from theoretical computer scientists: the
possibility that the collective behavior of players in a game cannot be efficiently simulated by a
computer.

Alternative Dynamics and Approximate Equilibria. Players in “real-life games” may play
only an approximation of an equilibrium. Could “approximate pure Nash equilibria” be easier to
compute than exact equilibria in congestion games? There has been a lively back and forth on this
question in the recent theoretical computer science literature, which we briefly survey next.

For concreteness, we restrict attention to congestion games with nonnegative, nondecreasing
cost functions. We define an ǫ-pure Nash equilibrium to be a strategy profile such that no player
can decrease its cost by more than a multiplicative factor of 1 + ǫ via a unilateral deviation. In
ǫ-better-response dynamics, as long as the current strategy profile is not an ǫ-pure Nash equilibrium,
an arbitrary player deviates to a strategy that reduces its cost by at least a factor of 1 + ǫ. On
the positive side, Chien and Sinclair [23] proved that in every symmetric congestion game (cf.,
Problem 3.5) with cost functions that satisfy a weak Lipschitz condition, ǫ-better-response dynamics
converges to an ǫ-pure Nash equilibrium in time polynomial in the size of the description of the game
and in 1/ǫ. This result makes a compelling argument for the approximate pure Nash equilibrium
as a credible solution concept in symmetric congestion games.25 On the negative side, Skopalik and
Vöcking [124] prove that computing even an ǫ-pure Nash equilibrium is PLS-hard in asymmetric

25Even stronger convergence results, which assume little about the precise form of the dynamics, are possible with
a continuum of players; see Sandholm [113] for details.
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congestion games, and that ǫ-better-response dynamics can require an exponential number of steps
to converge in such games. This PLS-hardness result implies that any dynamics for reaching an
approximate equilibrium that requires only polynomial-time computation per iteration does not
always converge in a polynomial number of iterations, unless PLS ⊆ P . All of these positive and
negative results are robust and hold for several notions of approximate pure Nash equilibria and
variations on ǫ-better-response dynamics.

What if PLS ⊆ P? The consequences of P = NP would be revolutionary; those of PLS ⊆ P
only unexpected and very surprising. In addition, since less effort has been expended on solving
PLS-hard problems than NP -hard ones, it is more conceivable that P ⊇ PLS than P = NP .
That said, a proof that PLS ⊆ P would be remarkable: it would essentially imply that, given
only an abstract description of a PLS problem in terms of three algorithms (recall Section 3.2),
there is a generic, problem-independent way of finding a “shortcut” to a locally optimal solution,
exponentially faster than rote traversal of the path suggested by the guided search algorithm.
In particular, it would give a fundamentally new polynomial-time algorithm for solving linear
programs. Even if PLS ⊆ P , the scientific community seems far from a proof of this; and such a
proof would have to be novel in a specific technical sense.26

Simulating “The Invisible Hand”. Perhaps humans are qualitatively better at computing
equilibria than polynomial-time algorithms? There is no empirical evidence of this, and a possible
explanation is provided by the following simulation argument. First consider a single individual and
their (computationally efficient) decision to adopt a certain strategy in a game. We may not under-
stand this process scientifically (yet), but there is no reason to suspect that it cannot in principle
be efficiently simulated, or at least approximated for the purposes of equilibrium computation, by a
computer program. Given this assumption, a much smaller leap of faith implies that the collective
decisions of a group of individuals can also be efficiently simulated. Group behavior amounts to
a sequence of interactions between and local decisions by the participants. If the decision-making
process of each individual can be simulated in polynomial time, then so can every group interac-
tion of polynomial length between a polynomial number of individuals (with a larger polynomial
bound).

4 Mixed Nash Equilibria in Bimatrix Games

Is there a computationally efficient version of Nash’s Theorem? This section surveys recent hardness
results that suggest a negative answer, even in the special case of two-player games. After casting
equilibrium computation in bimatrix games as a finite problem (Section 4.1), we briefly review the
structure of the Lemke-Howson algorithm in Section 4.2. This form of “guided search” motivates
the complexity class PPAD, which we define in Section 4.3. Section 4.4 touches on the recent proofs
that computing a Nash equilibrium of a bimatrix game is a PPAD-complete problem. Section 4.5
provides interpretations, discusses positive and negative results for special cases, and contrasts
the intractability of computing Nash equilibria with the tractability results known for computing
approximate Nash and correlated equilibria.

26The formal term is non-relativizing; see Beame et al. [8] and Fortnow [43] for details.
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4.1 Preliminaries

We consider bimatrix games described by two m × n matrices A,B with rational payoffs, as in
Section 2.5. Nash’s Theorem [93] guarantees that every such game admits a (mixed-strategy) Nash
equilibrium — a pair x ∈ R

m, y ∈ R
n of probability distributions that each maximize the expected

payoff of the respective player given the strategy adopted by the other player. Mathematically,
xT Ay ≥ x̂T Ay and xT By ≥ xT Bŷ for all alternative mixed strategies x̂ ∈ R

m, ŷ ∈ R
n.

We study the following fundamental problem.

Problem 4.1 (Computing Mixed Nash Equilibria of Bimatrix Games)
Given a bimatrix game with rational payoffs, compute a Nash equilibrium.

We obtain the most interesting and compelling results by asking for only one of the possibly many
Nash equilibria of a game; the general problem of finding all equilibria is only harder [27, 51]. The
problem also appears to be significantly harder in finite games with three or more players [41].

Despite its seemingly infinite solution space, Problem 4.1 admits a finite brute-force search algo-
rithm. This fact is a consequence of the following claim: given the supports of a Nash equilibrium
— the rows R and columns C that are played with non-zero probability — an equilibrium can be
recovered in polynomial time.

To prove this claim, consider the problem of computing a mixed strategy for the column player,
mixing only over the given set C of columns, so that all of the rows of R are best responses by
the row player. This amounts to finding non-negative real numbers {pj}j∈C , summing to 1, and
a real number λ such that the expected payoff (with respect to the pj’s) of playing each row of R
equals λ, and also the expected payoff of playing each row outside R is at most λ. This system
of equations and inequalities is linear in the pj’s and λ, and can be solved in polynomial time
— via linear programming or more direct methods [136] — and the computed solution (if any)
necessarily has size polynomial in that of the system. An analogous linear system can be used to
efficiently compute a mixed strategy for the row player, mixing only over the rows of R, such that
all of the columns of C are best responses of the column player. If R and C are the supports of a
Nash equilibrium, then the two corresponding mixed strategies provide feasible solutions to the two
linear systems (in a Nash equilibrium, players mix only over pure best responses). Conversely, if
both linear systems have feasible solutions, then the constraints ensure that the two solutions form
a Nash equilibrium of the game, as every mixture of pure best responses is also a best response.

This claim implies that Problem 4.1 is an NP problem and admits a brute-force search algo-
rithm: systematically enumerate all (exponentially many) pairs (R,C) of possible supports until
the two corresponding linear systems both have feasible solutions, and return this pair of solutions.
Nash’s Theorem [93] implies that at least one choice of supports is that of a Nash equilibrium, and
at this point the algorithm will recover a Nash equilibrium and terminate.27

4.2 Guided Search via the Lemke-Howson Algorithm

Since instances of Problem 4.1 are guaranteed to possess a solution that can be verified in polynomial
time, the proof of Theorem 3.3 shows that this problem is NP -hard only if the “NP 6= coNP”
conjecture is false. To show that computing a Nash equilibrium of a bimatrix game is a hard problem

27A similar argument, which supplements each of the two linear systems above with an extra constraint lower
bounding the expected payoff λ, fulfills the promise in Section 2.5 that computing high-payoff Nash equilibria in
bimatrix games (Problem 2.8) is an NP problem.

26



in some sense, we need to identify a suitable problem class that is a subset of NP . We addressed
this same issue for computing pure Nash equilibria in congestion games by noting that Rosenthal’s
potential yields a guided search algorithm, and by adopting the class PLS of all problems solvable
by a similar algorithm. But the existence of solutions to instances of Problem 4.1 is guaranteed by
a fixed-point theorem, not a potential argument — where is the guided search algorithm?

An alternative proof of Nash’s Theorem in the special case of bimatrix games is evidently a form
of guided search: the Lemke-Howson algorithm [80].28 We next briefly recall the essential combi-
natorial structure of the Lemke-Howson algorithm; details are in, for example, von Stengel [135].
Consider a bimatrix game described by m×n payoff matrices A and B; we assume that all payoffs
are positive, shifting them if necessary. We use the names {1, 2, . . . ,m} and {m+1,m+2, . . . ,m+n}
for the strategies of the row and column player, respectively. The Lemke-Howson algorithm boils
down to traversing a path in a graph G. To define the graph we make use of two polytopes,
P = {x ∈ R

m : x ≥ 0, BT x ≤ 1} and Q = {y ∈ R
n : Ay ≤ 1, y ≥ 0}, where 0 and 1 denote the

all-zero and all-ones vectors (of the appropriate dimensions). These polytopes are non-empty and,
since all payoffs are positive, they are bounded. Vertices will always refer to “corners” of these
polytopes; the graph G will consist of nodes (and edges).

Each node of G corresponds to a certain type of pair of vertices of P and Q. Each of P and Q
is defined by m + n inequalities, which are naturally associated with the strategies of both players.
Associate each vertex of P and Q with the inequalities that are binding at that point (a subset of
{1, 2, . . . ,m + n}, called labels). For example, the vertex 0 of P receives the labels {1, 2, . . . ,m},
the vertex 0 of Q the labels {m + 1,m + 2, . . . ,m + n}. Now consider vertices x ∈ P and y ∈ Q
that are completely labeled in the sense that the union of their label sets is {1, 2, . . . ,m + n}. This
occurs if x = 0 and y = 0, but suppose that at least one (and hence both) are nonzero. We can
scale x and y by λ, µ > 0 such that λx, µy are mixed strategies for the row and column player,
respectively. Consider, for example, pure strategy i of player 1. If y received the label i, then
strategy i is a best response to µy with expected payoff µ. If x received the label i, then xi = 0
and strategy i is not employed by the mixed strategy λx. More generally, since x, y are completely
labeled, every strategy that is played with non-zero probability in (λx, µy) is a best response to the
other player’s strategy. The converse argument also holds, so a non-zero pair (x, y) of vertices is a
Nash equilibrium if and only if it is completely labeled.

The nodes of G are the pairs (x, y) of vertices of P × Q that are either completely labeled or
almost completely labeled in the sense that every label but the first is present at x or y. There is
an edge between two nodes (x1, y1) and (x2, y2) if and only if they are the same in one component
and differ by a “pivot step”, in the sense of the Simplex algorithm [29], in the other. Traversing
an edge in G can be thought of as traversing an edge (a one-dimensional face) in either P or Q,
or as exchanging one binding inequality (i.e., one label) for another. An almost completely labeled
pair of vertices must have a duplicate label (since x and y are vertices, they have at least m + n
labels between them), and a duplicate label suggests a corresponding pivot step to another almost
or completely labeled pair of vertices. If A and B are “nondegenerate” in a precise sense, then
completely labeled nodes of G have one incident edge (corresponding to the first label) while almost
completely labeled nodes have two incident edges (corresponding to a unique duplicate label).29

28For the problem of computing an approximate Nash equilibrium, as defined in Section 4.5, guided search algo-
rithms follow from the path-following proofs of Sperner’s Lemma (as by Cohen [26] or Scarf [115]) that can be used
to prove Brouwer’s fixed-point theorem. This approach also extends to the problem of computing an approximate
Nash equilibrium in a game with more than two players [32, 99].

29Precisely, each vertex of P and Q should have no more than m and n labels, respectively. This condition is
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standard source

solutions

Figure 6: The structure of the Lemke-Howson graph, and more generally of the guided search paths
and cycles in a PPAD problem.

The graph G is thus a collection of (finite) paths and cycles (Figure 6). The completely labeled
node (0,0) is at one end of such a path, and the Lemke-Howson algorithm simply traverses this
path to reach the Nash equilibrium given by the completely labeled node at the other end.

4.3 The Class PPAD

We are finally in a position to define the appropriate class of problems to characterize the compu-
tational complexity of computing a Nash equilibrium of a bimatrix game (Problem 4.1). To review,
the class NP of problems with polynomial-time verifiable solutions seems too big, because the
Lemke-Howson algorithm shows that every instance of Problem 4.1 has at least one solution (cf.,
Theorem 3.3). The class P of polynomial-time solvable problems seems too small, because all of
the known algorithms for Problem 4.1, including the Lemke-Howson algorithm, require exponential
time in the worst case [114]. The class PLS does not appear relevant for Problem 4.1 because
the form of guided search in the Lemke-Howson algorithm differs from better-response dynamics
in congestion games (Theorem 3.1) — it is not guided by an objective function akin to Rosenthal’s
potential, and might cycle if initialized at a non-standard starting point. We therefore need to in-
troduce a problem class called PPAD; the letters stand for “polynomial parity argument, directed
version” [99]. See Figure 7 for a review of the complexity classes discussed in this survey, of which
PPAD is the final one.

Analogous to our definition of PLS in Section 3.2, the point of the class PPAD is to formalize
the class of all problems solvable by a path-following algorithm like the Lemke-Howson algorithm.
The “directed” qualifier in PPAD is motivated by a non-obvious fact: the graph G searched by the
Lemke-Howson algorithm is naturally directed. This is intuitively clear for the path traversed by the
Lemke-Howson algorithm (which is directed away from (0,0)); using the signs of subdeterminants
of the payoff matrices as a guide, the other paths and cycles of the graph can also be oriented in a
consistent fashion (see Todd [128]). In other words, even an amnesiac variant of the Lemke-Howson
algorithm, which cannot recall the nodes already seen, always has a unique “next node” to visit.30

enforceable by suitable tie-breaking in determining the “leaving variable” in a pivot step.
30There are also problems — the possibly larger class called PPA [99] — that are solvable by path-following
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Class Informal Definition Complete Problem

P Polynomial-time solvable Not discussed in this survey
NP Solutions are polynomial-time verifiable High-Payoff NE in Bimatrix Games

TFNP Solutions are guaranteed to exist None known to exist
PLS Solvable by local search Pure NE in Congestion Games

PPAD Solvable by directed path-following Mixed NE in Bimatrix Games
(a) Recap of Complexity Classes

P

TFNP

PPADPLS

NP

(b) Suspected Relationships

Figure 7: Complexity classes studied in this survey. In (a), NE stands for “Nash equilibria”.
In (b), the inclusions PLS ∪ PPAD ⊆ TFNP ⊆ NP follow from the definitions. The inclusion
P ⊆ PLS ∩PPAD can be proved by representing a problem in P as a degenerate type of PLS or
PPAD problem, and by interpreting the claim “no solution” as an (efficiently verifiable!) solution
to the problem. No other relationships between the five classes are known.

What are the minimal ingredients to execute a Lemke-Howson-like path-following procedure?
We define a PPAD problem via encodings of three algorithms A,B,C and explicit polynomial
bounds on their running times.

• Algorithm A accepts an instance (e.g., an encoding of a bimatrix game) and outputs an initial
candidate solution, called the standard source (e.g., the (0,0) node of the Lemke-Howson
graph).

• Algorithms B and C each accept a candidate solution and return another, the predecessor
and successor solutions, respectively (e.g., the nodes of the Lemke-Howson graph obtainable
from the given one via a pivot step, oriented appropriately).

Such a trio of algorithms defines a directed graph for every possible instance. The nodes are all
candidate solutions, and the directed edge (u, v) is present if and only if u claims v as its successor

algorithms but do not seem to possess this additional orientation property. In general, our current understanding
of the computational complexity of problems with guaranteed solutions, including several equilibrium computation
problems, lacks the clarity of the “P vs. NP -hard” dichotomy that classifies almost all natural problems in many
application domains. See Johnson [63] and Papadimitriou [99] for further discussion.
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(C(u) = v) and v claims u as its predecessor (B(v) = u). We ignore the output of B on the
standard source s to ensure that it has no incoming arc, and insist that B(C(s)) = s, so that s
has an outgoing arc. This graph is then a collection of paths and cycles, with at least one path
(with the standard source at one end); see Figure 6. In the spirit of the Lemke-Howson graph,
the solutions of an instance of a PPAD problem are all of the sinks of this graph (nodes without
outgoing arcs), as well as all of the sources (nodes without incoming arcs) other than the standard
one. We say that an algorithm solves a PPAD problem if, for every instance of the problem, it
computes a solution. Every PPAD problem can be solved, in particular, by the corresponding
guided search procedure: given an instance, use the algorithm A to obtain the standard source;
traverse the path it initiates using algorithms B and C, halting when a sink vertex is reached.
By definition, computing Nash equilibria in bimatrix games (Problem 4.1) is a PPAD problem —
the three algorithms A,B,C are instantiated as outlined above. The corresponding guided search
algorithm in this case is precisely the Lemke-Howson algorithm. The length of the path traversed
by guided search can be exponential in the size of the instance, even in the specific case of the
Lemke-Howson algorithm [114], so the guided search procedure that solves a PPAD problem is
not generally a polynomial-time algorithm.

4.4 Example: Computing a Nash Equilibrium of a Bimatrix Game is PPAD-

Complete

Since a Nash equilibrium of a bimatrix game can be computed by a directed path-following algo-
rithm (the Lemke-Howson algorithm), it is a PPAD problem. A sequence of recent papers proved
that Problem 4.1 is in fact a universal such problem, in that every PPAD problem reduces to it.

Theorem 4.2 ([22, 33]) Problem 4.1 is PPAD-complete.

Thus, Problem 4.1 is solvable by a polynomial-time algorithm only if all problems in PPAD
are. But is PPAD an interesting problem class? After all, its definition might appear so stylized
as to contain Problem 4.1 and nothing else. Papadimitriou [99] showed that it also contains several
problems related to combinatorial topology, including the problem of computing approximate fixed
points of Brouwer functions, where membership in PPAD follows from path-following arguments as
in Cohen [26] and Scarf [115]. Computing approximate fixed points is a hard problem in a particular
precise sense (Section 4.5), and a PPAD-hard problem inherits this evidence of intractability.

The overall proof approach to Theorem 4.2, outlined below, was developed by Daskalakis,
Goldberg, and Papadimitriou [32, 52] and used to prove that the problem of computing approximate
Nash equilibria in games with four or more players is PPAD-hard. This approach was quickly
refined [18, 34], culminating in the proof of Chen and Deng [19] that Problem 4.1 is PPAD-hard
(and hence, PPAD-complete). See Johnson [63] and Papadimitriou [101] for more detailed accounts
of this development.

Theorem 4.2 effectively encodes a completely abstract path-following problem, where the (pos-
sibly exponential-length) path is only implicitly described via three supplied algorithms, as Nash
equilibrium computation in bimatrix games. Any such encoding argument is necessarily techni-
cal. By contrast, our proof of Theorem 2.9 stood on the shoulders of the Cook-Levin Theorem
and a reduction of Karp, which replaced the generic NP -complete problem with the conceptually
much simpler Maximum Clique problem. Similarly, Theorem 3.4 did not need to work directly
with a generic PLS-complete problem, because the heavy lifting was done by Schäffer and Yan-
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nakakis [117], who proved that the far more concrete Minimum Agreement problem is also PLS-
complete. Problem 4.1 is the first known PPAD-complete problem that does not explicitly supply
a description of an arbitrary polynomial-time algorithm as part of the input; thus Theorem 4.2 is
also remarkable from a purely complexity-theoretic perspective.

It is not clear how to encode directly a generic path-following problem as Nash equilibrium
computation in bimatrix games, so the proof of Theorem 4.2 relies on a long sequence of reductions.
The proof begins with a “generic PPAD-complete problem” (cf., Section 2.4): given a description
of an abstract PPAD problem, in terms of encodings of the three defining algorithms and bounds
on their running times, and an instance of this problem, compute a solution — a sink or non-
standard source in the directed graph implicitly defined by the three algorithms for the supplied
instance.

We now outline, at a very high level, the sequence of reductions; details are in Daskalakis,
Goldberg, and Papadimitriou [33] and Chen, Deng, and Teng [22]. The first step is a standard
(e.g. [100, Theorem 8.1]), if tedious, transformation of the polynomial-time algorithms described
in an instance of the generic problem into polynomial-size Boolean circuits.31 This transformation
reduces the generic PPAD-complete problem to a more convenient version called the “End-of-the-
Line” problem [33]: given encodings of three circuits X,Y,Z, which play exactly the same roles
as the three algorithms A,B,C of a PPAD problem, and a problem instance, compute a sink or
non-standard source of the corresponding implicitly described directed graph.32

The second reduction involves a restricted type of fixed-point computation problem called Cu-
bical Brouwer. An instance of this problem is defined by a single Boolean circuit W , with 3n 0-1
inputs and two 0-1 outputs. Such a circuit can be interpreted as a function from the unit cube to
itself in the following way. The inputs specify a point x ∈ {0, 1/(2n −1), 2/(2n −1), . . . , 1}3, and we
interpret f(x) as x plus one of four possible displacements, as encoded by the two corresponding
outputs: δ0 = (−ǫ,−ǫ,−ǫ), δ1 = (ǫ, 0, 0), δ2 = (0, ǫ, 0), or δ3 = (0, 0, ǫ). Here ǫ is strictly smaller
than 1/(2n − 1), and we assume that displacements are defined on boundary points so that f maps
all points back to the unit cube. (We can canonically interpret circuit outputs to enforce this
condition.) We can interpret f as a function defined on the entire unit cube by linearly extending
its explicitly defined values within each “cubelet”. Then, a cubelet contains a fixed point of f if
and only if all four possible displacements are represented amongst its eight corners. The Cubical
Brouwer problem is, given a description of a circuit that implicitly defines such a function, compute
the coordinates of a fixed-point-containing cubelet; one exists, by Brouwer’s fixed-point theorem.

Daskalakis, Goldberg, and Papadimitriou [32] modified an earlier construction of Papadim-
itriou [99, Theorem 14] to reduce the End-of-the-Line problem to the Cubical Brouwer problem.
While technical, this reduction is conceptually quite direct. It starts from an arbitrary End-of-
the-Line instance: three Boolean circuits and a corresponding instance, which induce a directed
graph G. It constructs, in polynomial time, an instance of Cubical Brouwer (a new Boolean cir-
cuit W ) that has a “Sperner graph” — very roughly, with edges connecting neighboring cubelets

31Formally, a Boolean circuit is a directed acyclic graph in which every node is either an “input” with no incoming
arc; a NOT node with one incoming arc; or an AND or OR node with two incoming arcs. Interpreting 0 and 1 as
“false” and “true”, respectively, every assignment of the inputs to {0, 1} extends uniquely to the rest of the nodes
via their respective logical operations. The induced labeling of the terminal nodes — nodes without outgoing arcs —
can be regarded as the “output” of the circuit.

32The End-of-the-Line problem can be simplified further by partially instantiating the circuits X, Y, Z on the
supplied problem instance, effectively “hard-wiring” it into the circuits. An End-of-the-Line instance can then be
specified solely via these three circuits [33].
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at which the displacements δ1, δ2, δ3 are all present — that is isomorphic to G.33 This construction
effectively “embeds” G into the unit cube in a non-crossing way — hence the need for three dimen-
sions — and appropriately surrounds the edges of G with the displacements δ1, δ2, δ3 to ensure that
all four displacements are simultaneously present only at the cubelets where the paths of G end
(excluding the standard source of G, which is mapped to the corner of the unit cube at which δ0

is absent). In particular, this construction puts the solutions to the End-of-the-Line instance in
bijective correspondence with those of the constructed Cubical Brouwer instance, and one of the
former can be recovered from one of the latter in polynomial time.

The last reduction is from the Cubical Brouwer problem to the problem of computing a Nash
equilibrium of a bimatrix game — in a sense, reversing the reduction in the standard proof of Nash’s
Theorem [94] — and it is by far the most elaborate one in the sequence. Papadimitriou [101, §2.6]
gives an accessible high-level overview of this reduction, both in its original form [33] and with
the subsequent refinements [22], so we furnish only a few sentences here. Given an instance of
Cubical Brouwer in the form of a Boolean circuit W , the first step is to encode the fixed points
of the corresponding function as the Nash equilibria of a finite game with a very large number of
players. A Nash equilibrium of the constructed game must, in particular, simulate the computation
performed by W . This simulation is done node-by-node. For example, a node of W that performs
a logical AND operation — or, more generally, multiplication — on its two inputs can represented
as a game with four players, each of which has two strategies.34 Other operations can be similarly
simulated, and the games corresponding to all of the nodes of W can be glued together into a single
game (with many players) that implicitly performs, at a Nash equilibrium, the entire computation
of W . Augmenting this construction to discard the Nash equilibria that do not correspond to fixed
points of the function defined by W requires several additional ideas [33]. The payoff of each player
in the resulting game turns out to depend on the strategies of only a few others, so the size of the
game remains polynomial in the size of W . The final step in the proof of Theorem 4.2 is to reduce
the number of players in this game from a polynomial number to two. The following naive idea,
implemented with enough care [22, 33], turns out to work. The players of the game are partitioned
into two appropriate sets, and each set is replaced by a “super-player” that simultaneously plays
the roles of all players in the set. By adding matching pennies-type payoffs, super-players can be
forced to adopt the role of each player in its set with positive probability in a Nash equilibrium.
Moreover, because of the special structure of the game, there are no problems with inadvertent
collusion among players that are grouped in the same set — the best responses of a super-player
correspond to uncoordinated best responses by each of its constituent original players. A Nash
equilibrium of the induced two-player game can thus be naturally and efficiently mapped to one of
the game with many players, which in turn can be efficiently mapped to a fixed-point-containing
cubelet of the function defined by W .

33This is the same type of graph in which path-following proves Sperner’s Lemma [26].
34Consider players a, b, c, d, each with strategies 0 and 1. Ignore the payoffs of players a and b. If player c plays

strategy 0 then it receives payoff 1 if both a and b play 1, and payoff 0 otherwise. If player c plays strategy 1, then
its payoff is independent of the strategies of players a and b. Instead, it effectively plays a coordination game with
player d, receiving payoff 0 (1) if player d plays strategy 0 (1). Player d effectively plays a game of matching pennies
with player c, receiving payoff 0 (1) if its strategy is the same as (is different than) that of player c. At a Nash
equilibrium in which players a and b play strategy 1 with probabilities pa and pb, respectively, player d must play its
strategy 1 with probability precisely pa · pb.
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4.5 Discussion

Behavioral Implications. Theorem 4.2 implies that there is no polynomial-time algorithm for
computing Nash equilibria in bimatrix games, unless all problems in PPAD are solvable in poly-
nomial time. This raises the strong possibility (equivalent to PPAD 6⊆ P ) that there is no com-
putationally efficient, general-purpose algorithm for this problem. In turn, this casts doubt on
any interpretation of the Nash equilibrium concept that requires its computation — for example,
if PPAD 6⊆ P then there is no general and tractable procedure for learning Nash equilibria in a
reasonable amount of time, even with only two players and publicly known payoff matrices. Of
course, all of the caveats from Sections 2.6 and 3.5 also apply here.

Nash vs. Correlated Equilibrium. Does the fact the computing a Nash equilibrium is PPAD-
hard indicate that we should discard the concept? Of course not. But it does suggest that more
tractable solutions concepts are likely to be more appropriate in some contexts. Indeed, complexity
results can argue both for and against the predictive power of an equilibrium concept. Gilboa
and Zemel [51] were the first to cite computational complexity as a possible reason to prefer the
correlated equilibrium [6] over the Nash equilibrium as a solution concept. They studied a num-
ber of computational problems about equilibria in bimatrix games (Problem 2.8 and others) and
showed that all of them are NP -hard for Nash equilibria but polynomial-time solvable for correlated
equilibria.

Subsequent results reinforced the dichotomy between Nash and correlated equilibria from a
learning perspective. Foster and Vohra [44] and Hart and Mas-Colell [55, 57] showed senses in
which correlated equilibria are “quickly learnable”, even via “uncoupled dynamics” in which play-
ers are informed only of their own payoffs, and not of the game being played. In contrast, Hart
and Mansour [56] proved that every type of uncoupled dynamics, no matter how complex, requires
time exponential in the number of players to reach a Nash equilibrium. Theorem 4.2 echoes these
developments from a computational complexity viewpoint. Finally, Papadimitriou and Roughgar-
den [102] showed that computing correlated equilibria remains computationally tractable even for
most “succinctly described games”, including the congestion games of Section 3.1.

Approximate vs. Exact Nash Equilibrium. The approximate Nash equilibrium appears to be
another more computationally tractable solution concept than the exact Nash equilibrium, although
the picture is currently much murkier than for correlated equilibria. Many notions of approximate
Nash equilibria are possible. To fix the discussion, consider bimatrix games with payoffs that are
rational numbers in [0, 1], and define an ǫ-Nash equilibrium as a pair of mixed strategies such that
neither player can increase their expected payoff more than ǫ by switching strategies.

Computing an ǫ-Nash equilibrium of a bimatrix game appears to be a strictly easier problem
than computing an exact Nash equilibrium, at least when ǫ is a constant independent of the size of
the game. For example, since every bimatrix game in which each player has at most n strategies
possesses an ǫ-Nash equilibrium in which both players mix over only ≈ (ln n)/ǫ2 strategies [82],
restricting the support enumeration algorithm of Section 4.1 to supports bounded by this size com-
putes an ǫ-Nash equilibrium in nO(ǫ−2 log n) time, which is sub-exponential (but super-polynomial) in
the size of the game. No equally fast algorithm is known for computing an exact Nash equilibrium.
There are also polynomial-time algorithms for computing an ǫ-Nash equilibrium with relatively
large ǫ (around 1/3) [15, 129]. On the negative side, Theorem 4.2 can be strengthened to rule
out polynomial-time algorithms that compute an ǫ-Nash equilibrium with ǫ going to zero inverse
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polynomially (or faster) with the size of the game’s description (assuming PPAD 6⊆ P ) [22]. A
major open research question is whether or not there is an algorithm that, for arbitrarily small
ǫ > 0, computes an ǫ-Nash equilibrium in time polynomial in the game’s description (and possibly
exponential in 1/ǫ). A related open question is whether or not ǫ-Nash equilibria are “easy to learn”,
for example by uncoupled dynamics [56].

Tractable and Intractable Special Cases. Problem 4.1 can be solved efficiently in special
cases such as constant-sum games (see e.g. Dantzig [29]) and certain generalizations [69, 82], and
also in some models of random games [7]. On the other hand, Theorem 4.2 can be extended to games
that have only 0-1 payoffs [2], including those with only a small number of non-zeros in each row
and column [21]. That said, the games constructed via these reductions have an elaborate structure
that seems unlikely to occur in “real” games. We look forward to a long-running mathematical
debate over whether or not games encountered “in practice” are hard in a complexity-theoretic
sense.

What if PPAD ⊆ P? An interesting and important research question is whether or not PPAD ⊆
P . There is reason to believe that PPAD 6⊆ P , or at least that a proof of PPAD ⊆ P is
nowhere in sight: as with PLS ⊆ P (Section 3.5), a proof that PPAD ⊆ P would have to be
“non-relativizing” [8, 43] and would yield a generic method of “shortcutting” the (exponential-
time) guided search procedure in every PPAD problem. A concrete negative result was given by
Hirsch, Papadimitriou, and Vavasis [61] for computing approximate Brouwer fixed points, which
applies even to the special case of the Cubical Brouwer problem (Section 4.4): every algorithm that
computes an approximate fixed point and merely queries the supplied Brouwer function as a “black
box”, as opposed to examining the details of its description, requires exponential time in the worst
case. However, such lower bounds do not guarantee that a problem like Cubical Brouwer cannot
be solved in polynomial time. For example, the Simplex algorithm requires exponential time in the
worst case [74], but other algorithmic methods show that linear programming is a polynomial-time
solvable problem [70, 73].

5 Conclusions

Computation implicitly underlies many central concepts in economics and game theory — from
a player determining a best response, to a market discovering equilibrium prices, to a designer
striving for an efficient allocation of scarce resources. It has been widely noted that these concepts
reflect reality only if the amount of computation required is “reasonable” in some sense. As we
have seen, computational complexity theory offers a flexible paradigm for rigorously differentiating
between computational problems that are “easy” — those requiring polynomial-time (or “reason-
able”) computation — and those that are “intrinsically hard”. Originally inspired by engineering
applications, this paradigm is increasingly used to inform basic research across the natural and
social sciences.

For equilibrium computation problems, polynomial-time solvability correlates well with efficient
learnability and has an appealing interpretation in terms of boundedly rational participants. While
the exact definition of “hard” varies with the nature of the problem (cf., Theorems 2.9, 3.4, and 4.2),
all such hardness results suggest that no fast and general algorithm will be discovered, motivating
the study of heuristics, distributional analyses, domain-specific special cases, and alternative, more
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tractable equilibrium concepts. We hope that the fundamental nature of these insights inspires the
reader to supplement their analytic toolbox with complexity-theoretic techniques; there are surely
ample unexplored opportunities for their application.
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[127] É. Tardos and T. Wexler. Network formation games and the potential function method. In N. Nisan,
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[133] B. Vöcking. Congestion games: Optimization in competition. In Proceedings of the Second Workshop
on Algorithms and Complexity in Durham (ACiD), pages 9–20, 2006.

[134] R. Vohra. Advanced Mathematical Economics. Routledge, 2005.

[135] B. von Stengel. Computing equilibria for two-person games. In R. J. Aumann and S. Hart, editors,
Handbook of Game Theory with Economic Applications, volume 3, chapter 45, pages 1723–1759. North-
Holland, 2002.

[136] B. von Stengel. Equilibrium computation for two-player games in strategic and extensive form. In
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