Simultaneous Single-Item Auctions

Kshipra Bhawalkar* and Tim Roughgarden**

Stanford University, Stanford, CA, USA, {kshipra,tim}@cs.stanford.edu

Abstract. In a combinatorial auction (CA) with item bidding, several
goods are sold simultaneously via single-item auctions. We study how the
equilibrium performance of such an auction depends on the choice of the
underlying single-item auction. We provide a thorough understanding of
the price of anarchy, as a function of the single-item auction payment
rule.

When the payment rule depends on the winner’s bid, as in a first-price
auction, we characterize the worst-case price of anarchy in the corre-
sponding CAs with item bidding in terms of a sensitivity measure of the
payment rule. As a corollary, we show that equilibrium existence guar-
antees broader than that of the first-price rule can only be achieved by
sacrificing its property of having only fully efficient (pure) Nash equilib-
ria.

For payment rules that are independent of the winner’s bid, we prove a
strong optimality result for the canonical second-price auction. First, its
set of pure Nash equilibria is always a superset of that of every other
payment rule. Despite this, its worst-case POA is no worse than that of
any other payment rule that is independent of the winner’s bid.

1 Introduction

The problem of allocating multiple heterogeneous goods to a number of compet-
ing buyers is well motivated, notoriously difficult in practice, and, when buyers’
preferences are private (i.e., unknown to the seller), central to the study of al-
gorithmic mechanism design. More precisely, suppose there are m goods and
each buyer 7 has a private valuation v; that assigns a value v;(S) to each bun-
dle (i.e., subset) S of goods. For example, each good could represent a license
for exclusive use of a given frequency range in a given geographic area, buyers
could correspond to mobile telecommunication companies, and valuations then
describe a company’s willingness to pay for a given collection of licenses [6]. One
natural objective function, for example when the seller is the government, is wel-
fare maximization: partition the goods into bundles Sy, ..., S,, with S; denoting
the goods given to buyer i, to maximize the welfare Y ", v;(S;).

* Supported by a Stanford Graduate Fellowship and NSF grant CCF-1016885.
** Supported in part by NSF grants CCF-1016885 and CCF-1215965, an ONR
PECASE Award, and an AFOSR MURI grant.



A combinatorial auction is a protocol that elicits information from buyers
about their private valuations, computes an allocation of the goods, and deter-
mines who pays what. There are at least three different types of obstacles to de-
signing good combinatorial auctions. The first problem is information-theoretic:
players’ valuations have size exponential in m, so eliciting full valuations is not
feasible unless m is small. The second problem is computational: the welfare-
maximization problem is generally N P-hard, even to approximate, even when
players’ valuations have succinct representations. The third problem is game-
theoretic: a player is happy to misreport its preferences to manipulate a poorly-
designed auction to produce an outcome that favors the player. Thus designing
combinatorial auctions requires compromises — on the welfare of the computed
solution, the complexity of the mechanism, or the strength of the incentive-
compatibility guarantee.

Most previous work on combinatorial auctions in the theoretical computer
science literature focuses on truthful approzimation mechanisms [3]. Such mech-
anisms run in time polynomial in n and m (with oracle access to players’ val-
uations) and satisfy a very strong incentive-compatibility guarantee: for every
player, reporting its true preferences in the auction is a dominant strategy (i.e.,
maximizes its utility, no matter what the other players do). The benefits of such
mechanisms are clear: they require minimal work from and make minimal behav-
ioral assumptions on the players, and are computationally tractable. They suffer
from two major drawbacks, however. The first is that the strong requirement of
a dominant-strategy implementation severely restricts what is possible: even for
the relatively well-behaved class of submodular valuations,! no truthful approx-
imation mechanism achieves a sub-polynomial approximation factor [7,9]. The
second is that, even for settings where good truthful approximation mechanisms
exist, these mechanisms are often quite complicated (see e.g. [8]).

The complexity and provable limitations of dominant-strategy implementa-
tions motivate the design of combinatorial auctions that have weaker incentive
guarantees, in exchange for simpler formats or better approximation factors.
One natural and practical auction format that has been studied recently is com-
binatorial auctions (CA) with item bidding. In a CA with item bidding, each
player submits a single bid for each item, and each item is sold independently
via a single-item auction. They were first studied in [5] and [4] with second-
price single-item auctions. CAs with item bidding and first-price auctions were
recently studied in [12].

Combinatorial auctions with item bidding are interesting for many reasons.
First, they are one of the simplest auction formats that could conceivably admit
performance guarantees for non-trivial combinatorial auction problems. By con-
struction, they do not suffer from the informational problems of most combina-
torial auctions — each player is forced to summarize its entire (exponential-size)
valuation for the mechanism in the form of m bids — nor from the compu-
tational problems, since the auction outcome is as trivial to compute as in a

L' A valuation v is submodular if, for every pair S C T of goods and good j ¢ T,
(T U{j}) —v(T) < v(SU{j}) —v(9).



single-item auction. Of course, there is no hope for a“truthful” implementation
— players are not even granted the vocabulary to express fully their preferences
— and the incentive properties of CAs with item bidding will be weaker than in
dominant-strategy implementations. Second, CAs with item bidding naturally
arise “in the wild”. They were first studied in the AT literature [4] because trad-
ing agents are often forced to participate in them — imagine, for example, an
automated travel agent responsible for acquiring a vacation package by negoti-
ating simultaneously with hotels, airlines, and tour guides. Similarly, single-item
auction sites like eBay are presumably used by some buyers to acquire several
goods in parallel, even when there are non-trivial substitutes or complements
among the goods [5]. Third, the recent strong lower bounds on the performance
of dominant-strategy CAs [7, 9] imply that further progress in algorithmic mech-
anism design requires the systematic study of mechanisms with weaker incentive
guarantees. CAs with item bidding are a natural and well-motivated starting
point for this exploration. Fourth, as discussed in [12], equilibria in CAs with
item bidding can be thought of as generalizations of price equilibria in settings
with indivisible goods, where a conventional (i.e., Walrasian) price equilibrium
need not exist.

The properties of a CA with item bidding depend on the format choice for
the underlying single-item auctions. For example, CAs with item bidding and
first-price auctions have Nash equilibria (in pure strategies) in strictly fewer
settings than with second-price auctions; but Nash equilibria with first-price
auctions are always welfare-maximizing, while those with second-price auctions
are not [5, 12].

The goal of this paper is to understand how the equilibrium set of a CA
with item bidding depends on the format choice for its constituent single-item
auctions.

(Q1) How does the equilibrium performance of a combinatorial auction depend on
the choice of the underlying single-item auction?

(Q2) Is there an "optimal” single-item auction for CAs with item bidding? Is there
a single-item auction that shares the benefits of both the first- and second-
price auctions?

1.1 Owur Results

We provide a thorough understanding of the price of anarchy of pure Nash
equilibria, when such equilibria exist, in CAs with item bidding, as a function
of the single-item auction payment rule. When the payment rule depends on
the winner’s bid (like in a first-price auction), we characterize the worst-case
price of anarchy in the corresponding CAs with item bidding in terms of a
“sensitivity measure” of the payment rule. As a corollary, we derive the following
“undominated” property of the first-price payment rule: the only way to have
broader equilibrium existence guarantees is to sacrifice the property of having
only fully efficient equilibria.

For payment rules that are independent of the winner’s bid, we prove a
strong optimality result for the canonical second-price auction. First, its set of



pure Nash equilibria is always a superset of that of every other payment rule.
Despite this, its worst-case POA is no worse than that of any other payment
rule that is independent of the winner’s bid.

1.2 Related Work

The literature on combinatorial auctions is too big to survey here; see the book [6]
and book chapter [3] for general information on the topic. Related work on
combinatorial auctions with item bidding, also mentioned above, are [2,5,21]
for second-price auctions and [12] for first-price auctions. An alternative simple
auction format is sequential (rather than simultaneous) single-item auctions;
the price of anarchy in such auctions was studied recently in [16, 20]. Most other
work in theoretical computer science on combinatorial auctions has focused on
truthful, dominant-strategy implementations (see [3]), with [1] being a notable
exception.

A less obviously related paper is by Fu et al. [10]. This paper introduces
the concept of a conditional equilibrium. Lavi (personal communication) showed
that a conditional equilibrium exists for a valuation profile if and only if a “con-
servative” equilibrium (defined below) exists in the corresponding CA with item
bidding with the second-price payment rule. The paper shows that, for every
valuation profile, every conditional equilibrium has welfare at least 1/2 times
that of an optimal allocation.

Finally, several previous works [13,18,19] consider the independent private
values model and study how the Bayes-Nash equilibrium of a single-item auction
varies with the choice of payment rule.

2 Preliminaries

Combinatorial Auctions In a combinatorial auction (CA), there is a set of
n players and a set M of m goods (or items). Each player ¢ has a valuation
v; : 2M — RT that describes its value for each subset of the goods. We always
assume that v;(0) = 0 and v;(S) < v;(T) for all S C T. The social welfare
SW(X) of an allocation X := {X7, Xs,..., X} of the goods to the players is
> i1 Vil X5).

For a valuation profile v = {vy, v, ..., v, }, we denote the welfare-maximizing
allocation by OPT(v).

Item Bidding. In a CA with item bidding, each player ¢ submits m bids, one
for each good. Each good is allocated to the highest bidder at a price given by
a payment rule p. We denote such a mechanism by M,,.

For a fixed mechanism, we use X;(b) to denote the goods allocated to player ¢
in the bid profile b and SW(b) = > ", v;(X;(b)) the social welfare of the
resulting allocation. Player #’s utility in a bid profile b = (b1, b2, ...b,) is

ui(b) = vi(Xi(b)) = > pi(b1(4), b2(4), - - bu(4))-

JEXi(b)



Payment Rules We consider payment rules that meet the following natural
conditions. We assume that the payment rule is anonymous. For such a pay-
ment rule p, the winner’s payment when the bids are z1 > a3 > ... > x, is
denoted by p(x1,xa,...,x,). We further assume that the payment function is
non-decreasing: raising bids can only increase the price charged to the winner.
Finally, we assume that the payment function is continuous in every bid. For
example, every payment rule given by a convex combination of the bids satisfies
all of these assumptions.

For convenience, we also assume that the payment rule is not bounded or
constant, and that the minimum price p(0,0,...0) is 0. As we show in the full
version, payment rules that do not meet these assumptions are uninteresting
— either there are never any equilibria, or such equilibria can be arbitrarily
inefficient.

Auctions as Games Players generally have no dominant strategies in a CA
with item bidding, and we study the performance of an auction via the equilibria
of the corresponding bidding game. In this paper, we focus on a full-information
model, where players’ valuations are publicly known, and on pure Nash equi-
libria. Recall that for a fixed valuation profile v = (v, va,...v,), a bid profile
b = (b1,be,...by) is a (pure) Nash equilibrium if u;(b) > u;(b;,b_;) for every
player i and (feasible) deviation b, where (b},b_;) denotes the bid profile in
which player ¢ bids b and all other players bid according to b.

The price of anarchy (POA) is the ratio of the social welfare of an optimal
allocation and that of the worst Nash equilibrium:

SW(OPT(v))

POA = b: a pL},rI}salif(ash eq. SW(b) ' (1)

The POA is undefined when no equilibria exist.

3 Winner-Dependent Payment Rules

3.1 Overview

This section considers winner-dependent payment rules, such as the first-price
rule, where the winner’s payment is strictly increasing in its bid. The key prop-
erty shared by such rules is that, in an equilibrium, the winner must bid the
minimum amount required to win.

Are there winner-dependent payment rules that are “better” than the first-
price rule? A drawback with CAs with item bidding and the first-price rule is that
equilibria often fail to exist. Precisely, recall that a Walrasian equilibrium for a
valuation profile is a set of prices p1, ..., p;, on the goods and a feasible allocation
(S1,52,...5,) of the goods to the players so that each player obtains a bundle
that maximizes its utility (i.e., value minus price). We say that a valuation profile
is Walrasian if it admits a Walrasian equilibrium and non- Walrasian otherwise.
Walrasian equilibria always exist when valuations meet the gross substitutes



property, but not generally otherwise (see [11,14]). The pure Nash equilibria
of a CA with item bidding and the first-price payment rule correspond to the
Walrasian equilibria (if any) in a natural way, and are fully efficient when they
exist [12].

Other winner-dependent payment rules can yield CAs with item bidding that
possess equilibria even in non- Walrasian instances. We give an explicit example
in the full version, for the payment rule that averages the highest and third-
highest bids. This observation motivates the question: is there a payment rule
that strictly dominates the first-price rule? That is, is there a payment rule that
induces an equilibrium in at least one non-Walrasian instance and has worst-case
POA equal to 17

We answer this question negatively in the following theorem (proved in Sec-
tion 3.3).

Theorem 1. If the worst-case POA for the mechanism M, is 1, then pure Nash
equilibria exists under this mechanism only in Walrasian instances.

Thus, for every winner-dependent payment rule p, either there is an instance
in which some pure Nash equilibrium of the mechanism M, is not efficient, or
every instance in which a pure Nash equilibrium exists is a Walrasian instance.

The main step in our proof of Theorem 1 is a characterization of the worst-
case POA in CAs with item bidding and winner-dependent payment rules. For
a payment rule p, we define a sensitivity measure ¢ by

p(b17 b—"‘b)
_ . _—n/ 2
(p) b:blzzil;.zbn p(b) ( )

where we interpret 0/0 as 1.

The denominator in (2) is the winner’s payment with the bid vector b. The
numerator is the payment of the lowest bidder in b, after it switches to bidding
the minimum amount necessary to win (namely, b;). We restrict attention to
bid vectors b with b; = by because this property is satisfied in every equilibrium
under a winner-dependent rule. Because p is monotone, p(by,b_,) > p(b) and
hence ((p) > 1. Similarly, if a bidder other the lowest in b changes its bid to by,
then its payment is at most the numerator in (2).

For a concrete example, consider the payment rule (first-price +2-third-price) /3.
The numerator is (by + 2b2)/3 = (by + 2b1)/3 = by, while the denominator is
(b1 + 2b3)/3 > b1/3. In the worst case this ratio is 3, and hence ((p) = 3.

We show in Theorem 2 that the parameter ((p) is exactly the worst-case
POA in CAs with item bidding and the payment rule p. It follows that the POA
is exactly 1 only when ¢(p) = 1. We use this fact to prove Theorem 1, that a pure
Nash equilibrium exists for such a payment rule only in Walrasian instances.

3.2 Characterization of Worst-Case POA

We now prove that for every winner-dependent payment rule p, the worst case
POA of CAs with item bidding and rule p is exactly {(p). The upper bound



applies to every valuation profile for which an equilibrium exists. The lower
bound already applies to bidders with submodular (or even “budgeted additive”)
valuations.

Theorem 2. For every winner-dependent payment rule p with {(p) finite, the
worst-case POA of CAs with item bidding and payment rule p is precisely ((p).
For winner-dependent payment rules with ((p) = 400, there are CAs with item
bidding with arbitrarily high POA.

Proof. We first prove an upper bound of {(p) on the POA. Fix a valuation profile
v = (v1,v2,...0,). Let b = (b1, ba, ..., by) denote an equilibrium bid profile and
X(b) = {X1(b), Xa(b),..., X,(b)} the corresponding allocation. For each good
J, we use bj1, bj2,...,bj, to denote the sorted set of bids on that good and use
b; _; to denote the same set with the ¢th bid removed. Since the payment rule is
winner dependent, the winner of each good bids the minimum amount required
to win, and thus b;; = bjo for each good j. We use p; to denote the payment
p(bj1,b52,...,b;,) of the winner of good j.

We first relate equilibrium payments to equilibrium welfare. Since the utility
of every player in an equilibrium is non-negative, Zjex,-(b) p; < vi(X;(b)) for
every player i. Summing over the players gives Zj p; < SW(X(b)).

Next we relate the optimal welfare to the equilibrium utilities. Let O =
(01,04, ...0,) denote an optimal allocation. For each player i, define the bid
vector a} as equal to bj; + € on each good j € O; and zero otherwise. If player ¢
bids a}, it wins at least the set O; and pays p(bj1 + €,b;_;) on each good j € O;.
Since b is an equilibrium bid profile, u;(b) > u;(a;, b—;) > vi(0;) =" c0, P(bj1+
€,b; _;). Since this inequality holds for every € > 0 and the payment rule is
continuous, u;(b) > v;i(0;) — 3,0, P(bj1,bj,—;). By the definition of ¢ in (2),
p(bj1,bj,—;) < ((p) - p; for every j € O;. Thus

ui(b) > v:(0:) = ¢(p) - Y _ py-
JEO;

Next, since v;(Xi(b)) — >y, pj = ui(b) for every player i, we can derive
SW(X(b)) = > pj =) uib)
j i=1
> 0i(0) = <) D> Y b

i jEO;

= SW(0) = ((p) )_p;-

Since ((p) > 1,and ), p; < SW(X(b)), rearranging terms gives ((p)-SW (X (b))
> SW(O). This shows that the POA is at most {(p).

To establish the lower bound, fix e > 0 and set ¢’ = {(p) —e. If {(p) = +00 we
can set ¢’ to an arbitrarily large number. There must exist a bid vector b with
by = by > ... > by, such that ¢’ < p(by,b_p)/p(b). Let py = p(b1,b_,,) and let



p2 = p(b). Clearly p; > ps. We construct an instance with n players where the
equilibrium welfare is at most pa/p; < 1/{’ times that of the optimal allocation.

Consider an instance with n players and 2 goods denoted A, B. Player 1
values good A for pi, good B for ps; and both goods for p;. Player 2 values good
A for po, good B for py, and the two together for p;. All other players value every
subset of goods at 0. We show that the following bid profile is an equilibrium:
player 1 bids (b,,b1), player 2 bids (b1,b,), and player i for 3 < i < n bids
(bi—1,bi-1)-

Fix a tie-breaking rule to favor player 2 over player 3 on good A and player
1 over player 3 on good B. (Note that the upper bound above is independent
of the tie-breaking rule). In this bid profile, player 2 wins good A and player 1
wins good B. They both pay ps for the goods they win. If either of them tries
to deviate to win the other good they have to pay p;. Since their values for the
good they currently win is ps and their value for the other good is p;, these
deviations are not profitable. No other player has an incentive to deviate.

The optimal allocation in this instance is to allocate good A to player 1
and good B to player 2. This allocation has welfare 2p; while the equilibrium
allocation has welfare 2p,. Thus the POA is at least py/py > ¢'. a

3.3 Proof of Theorem 1

Consider a winner-dependent payment rule p with worst-case POA equal to 1.
We show that every instance for which the mechanism M, has an equilibrium
is a Walrasian instance.

Fix a valuation profile and an equilibrium bid profile b for the mechanism M,
with some deterministic tie-breaking rule. Let (57,52, ....5,) denote an equilib-
rium allocation and pi,pa,...,pm the prices paid by the winner on each good.
We argue by contradiction that the S;’s and p;’s form a Walrasian equilibrium.

Suppose the equilibrium allocation with prices pi,p2,...pm is not a Wal-
rasian equilibrium. Then there must exist a player ¢ and a set X of goods such
that u;(Si,p) < ui(X, p), where u;(S,p) denotes the utility v;(S) — > ;cqp; of
player ¢ when receiving bundle S at prices p. Let ¢ satisfy 0 < § < u; (X, p)— u;(S;, p).

Let bj1 > bja > bj3... > bj, denote the nondecreasing set of equilibrium
bids on a good j. Since the payment rule is winner-dependent, b;; = bjp for
every good j. Since the payment rule p is assumed to induce only CAs with item
bidding with fully efficient equilibria, Theorem 2 implies that {(p) = 1. This
fact and the monotonicity of p imply that p(bj1,bj;—;) = p; for every j. By the
continuity of p, we can identify an e such that ZjeX p(bj1 +¢,bj ;) —p; <4.
Then,

vil(Si) = D py <vilX) = Y pbjn + e,y ).

JES; jeX

Player ¢ can win set X by bidding b;1 + € on each element j € X and bidding
zero on the rest, and this deviation increases its utility. This contradicts the
assumption that b is an equilibrium bid profile and completes the proof. ad



We can sharpen Theorem 1 when there are only two players. Every winner-
dependent payment rule p that depends only on the two highest bids satis-
fies ((p) = 1. This holds, in particular, for every winner-dependent rule in a
two-player setting. From the proof of Theorem 1, we conclude the following
corollary.

Corollary 1. For every winner-dependent payment rule p and two-player in-
stance, My, has an equilibrium only if it is a Walrasian instance.

It is easy to construct non-Walrasian two-player instances. We conclude that
no winner-dependent payment rule guarantees existence in all two-player in-
stances.

4 Winner-Independent Payment Rules

This section focuses on winner-independent payment rules, for which the winner’s
payment does not depend on its bid. We prove that among all payment rules in
this class, the second-price rule has the best worst-case POA while guaranteeing
equilibrium existence most often.

First, we prove that there are more pure Nash equilibria under the second-
price payment rule than under any other rule. This “maximal existence: guar-
antee has a possible drawback, however, in the form of a larger worst-case POA
bound. We show that this drawback does not materialize: the second-price rule,
despite the relative profusion of equilibria, leads to a worst-case POA that is as
good as with any other winner-independent rule.

4.1 ~-Conservative Equilibria

To make meaningful statements about equilibrium efficiency in CAs with item
bidding and winner-independent payment rules, we need to parameterize the
equilibria in some way. The reason is that every winner-independent payment
rule suffers from arbitrarily bad equilibria.?

We consider equilibria where the players’ bids satisfy a certain “conserva-
tiveness” condition. This assumption is fairly standard in the POA of auctions
literature [2,5,15,17]. The conservativeness condition assumes that the equilib-
rium bids guarantee each player positive utility on the set it wins, even when
all other players bid the same as this player. More generally, we relax this idea
in two ways: parameterizing it with a parameter v > 1, and applying it only to
the bundles that players win in the equilibrium (rather than to all bundles they
might hypothetically win). Players have the freedom to bid as high as they want
on the goods they lose and can contemplate arbitrary deviations.

2 Let y > 0 satisfy p(y,y) > 0 and consider an instance with two players and one
good. Player 1 values the good at 0 and player 2 values it at p(y,y). Then player 1
bidding y and player 2 bidding zero is an equilibrium and this equilibrium is clearly
very inefficient.



Definition 1 (v-conservative). Suppose a player bidding (by,bs,...by) wins
a set S in the equilibrium. We say that the bid is y-conservative if it satisfies

Zp(bj,bj7 b)) < v w(S).

jes

An equilibrium allocation is y-conservative if every player uses a y-conservative
bid in the equilibrium.

4.2 The Second-Price Rule Has the Most Equilibria

Next we show that every ~y-conservative equilibrium allocation for a payment
rule p can also be realized as a 7y-conservative equilibrium for the second-price
rule. This transformation does not change the prices that the winners pay on the
goods that they win. We use X7 to denote the set of y-conservative equilibrium
allocations of the mechanism M. In particular, X7 denotes the set of -
conservative equilibrium allocations of the item bidding mechanism with the
second-price payment rule.

Theorem 3. For every payment rule p, Xy C X7 .

Proof. We start with an equilibrium of the mechanism M,,. Let (S1, S2,...Sy)
denote the allocation. Focus on a good j, and let bj; > bja > ... > bj, be the
ordered bids on the good. While reasoning about individual goods we refer to
the players by their rank in this ordering. The payment the winner (player 1)
makes in this case is p(bjl, bj2,...bjn). Denote this as pj1.

Let pjo = p(bj1,bj1,...bj1). If any player ¢ deviates, it will have to bid at
least b;1 and pay at least p(b;1,b;,—;). Here b; _; denotes the bids on good j by all
players other than player 7. Since the payment rule is monotone, this payment is
at most that p(b;1,bj1,...bj1) = pj2 when all players bid b;;. By monotonicity,
Pj2 = Pj1-

Construct an equilibrium under the second-price rule as follows. Fix a player
i. On good j € S;, player i bids p;o, one other player bids p;i, and all other
players bid zero. Note that bidding p;2 is feasible for player ¢. This is because in
the given equilibrium instance for payment rule p, the players’ bids on the sets
they win are -y-conservative. Hence for every player i, »_ jesi b2 < - v; (S;).
This is the same as the ~y-conservativeness condition for the second price rule,
as for the second price rule when all players bid pjo the payment is p;o as well.

In this construction the winner’s payment on a good is the same as that in
the equilibrium for payment rule p. Any player currently not winning a good
has to pay at least p;o if it deviates to win that good. Deviations are then not
profitable, as in the equilibrium for payment rule p players do not find them
profitable at even lower prices. The constructed bid profile is an equilibrium
for the second-price rule. The equilibrium allocation and the prices paid by the
winners remain the the same. a



Theorem 3 shows that the second-price payment rule has at least as large a
set of «-conservative equilibrium allocations as any other payment rule p. We
include in the full version an example showing that this inclusion can be strict.

Theorem 3 has immediate implications, both positive and negative, for all
winner-independent payment rules. On the negative side, it allows us to port
equilibrium non-existence results for CAs with item bidding and the second-
price rule — like the fact that with subadditive valuations (where v;(SUT) <
v;(S) +v;(T) for every player i and bundles S, T), y-conservative equilibria need
not exist (see [2] and the full version) — to those with an arbitrary winner-
independent rule. On the positive side, Theorem 3 implies that POA bounds
for CAs with item bidding and the second-price rule carry over to all winner-
independent rules. For example, we show in the full version, by modifying a result
in [2], that the POA of y-conservative equilibria with the second-price rule is at
most v + 1 (in instances where such an equilibrium exists). Using Theorem 3,
this bound holds more generally for all winner-independent rules.

4.3 POA Lower Bounds

The results of the previous section imply that, for every v > 1, the POA of
~y-conservative equilibria of CAs with item bidding is as bad with the second-
price rule as with any other winner-independent rule. This section proves the
converse, for every v > 1.

Theorem 4. For every winner-independent payment rule p, the worst-case POA
of y-conservative equilibria of M, is at least v+ 1.

We prove this theorem by establishing a stronger result: when there are only
two players, the set of y-conservative equilibrium allocations is the same for all
winner-independent payment rules. The POA lower bound then follows from a
lower bound construction for the second-price rule that uses only two players.

Lemma 1. In a two-player CA with item bidding, every equilibrium of the
second-price payment rule is an equilibrium of every winner-independent pay-
ment rule p.

Proof. Consider an equilibrium under the second-price payment rule. Let 57, S5
denote the equilibrium allocation. Fix a player ¢, and suppose that on good
j € S; the player i bids b; and pays p;. Clearly b; > p;. The other player
would have to bid at least b; to win this good and would then pay b;. The
conservativeness condition for the second-price payment rule implies that for
each player 4, » . g bj <7 - vi(S;).

Since the given payment rule p is winner-independent and there are only two
players, the payment only depends on the non-winning player’s bid. To mimic
the second-price equilibrium allocation with the mechanism M,,, we first identify
for each good a bid vector such that p(bij,b1;) = p;. This exists because the
payment rule p is continuous and has full range. Similarly, we can identify a
bid z; such that p(z;,z;) = b;. Since b; > p;, x; > by; Since the payment is



independent of the highest bid it doesn’t change if we raise the winner’s bid to
Zj. Hence, pj(Ij,ij) =Pj-

Focus on a player ¢ and set S;. Set player 4’s bid on good j in S; to z;.
Since x; satisfies p(z;,2;) = bj and > 5 bj < - v;(5;), these bids form a -
conservative strategy for player ¢. The other player bids b; on each good j € S;.
In case of a tie, we employ the same tie-breaking rule used in the second-price
equilibrium, resulting in the tie being broken in favor of player 3.

If the other player wishes to deviate to win good j it must bid at least x;.
By the choice of z;, it would have to pay at least b;. Since in the second-price
equilibrium neither player wants to deviate when faced with the price b;, no
player wants to deviate in this constructed bid profile either. This bid profile is
an equilibrium with the same allocation and payments as the given equilibrium
under the second-price rule.

To complete the proof that the second-price rule has the best-possible worst-
case POA of v-conservative equilibria (for every fixed v > 1), we give a two-player
example with POA equal to v + 1.

Example 1. There are two goods denoted A, B and two players. Player 1 values
A for 1, B at v+ 1, and both for «v+ 1. Player 2 values A for v+ 1, B for 1, and
both for v + 1.

The bid profile where player 1 bids (v, 0) and player 2 bids (0, ) is an equilib-
rium of the the CA with item bidding and the second-price payment rule. These
bids are y-conservative. The welfare of this equilibrium allocation is 2 while the
optimal welfare is 2(y 4+ 1).

5 Conclusions

There are a number of opportunities for interesting further work. One important
direction is to extend our study of CAs with item bidding to mixed-strategy
Nash equilibria of the full-information model and to Bayes-Nash equilibria in
incomplete information models. These more general equilibrium concepts are
not well understood even for the second- and first-price payment rules [2,12].
A second topic is allocation rules different from the one studied here, where
the highest bidder always wins. For example, can reserve prices improve the
performance of CAs with item bidding in any sense? A third direction is to study
systematically different single-item payment rules in sequential auctions, thereby
extending the recent work in [16,20]. Finally, it would be very interesting to
analyze restricted auction formats that extend simultaneous or sequential single-
item auctions, such as combinatorial auctions with restricted package bidding.
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