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ABSTRACT
We study the simultaneous optimization of efficiency and
revenue in pay-per-click keyword auctions in a Bayesian set-
ting. Our main result is that the efficient keyword auction
yields near-optimal revenue even under modest competition.
In the process, we build on classical results in auction theory
to prove that increasing the number of bidders by the num-
ber of slots outweighs the benefit of employing the optimal
reserve price.

1. INTRODUCTION
What objective should a keyword auction optimize? As

most search engines are controlled by public companies,
their primary responsibility is to maximize revenue and cre-
ate value for their stockholders. On the other hand, from
a social standpoint, we prefer an auction that optimizes so-
cial efficiency—that is, an auction that maximizes the total
value to its participants. Can both objectives be optimized
simultaneously?

Consider the following motivating example. Suppose Al-
ice has an object, such as a cell phone, for which she has
no value. There is one potential customer, Bob, with a
non-negative value vb for the cell phone. For Alice to opti-
mize social efficiency, she must allocate the cellphone to Bob
whenever Bob’s value is positive. If Alice does not know vb,
the only incentive-compatible efficient auction offers the cell
phone to Bob for free. Of course, Alice makes no revenue
from such an auction.

This example suggests that optimizing efficiency may lead
to sacrificing revenue completely. Is the friction between
these objectives typically so severe? In this paper we study
the tension between revenue and efficiency in keyword auc-
tions. Call the revenue extracted by the revenue-maximizing
auction the optimal revenue. We ask:

What fraction of the optimal revenue does an efficient
search auction extract?
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We adopt the efficient auction as our protagonist (over the
optimal one) for two reasons. First, an optimal auctions typ-
ically sets a reserve price based on prior information about
the distribution of bidder valuations. Such information is
not always available, and even when it is, collecting and
processing it involves non-trivial effort. Efficient auctions
require no such prior information and are simpler to run.
Second, optimal auctions only make sense in monopoly set-
tings. This assumption does not hold, for instance, in the
search market. On the flip side, the obvious case against an
efficient keyword auction is that it does not optimize rev-
enue. This paper shows that, besides their other laudable
properties, efficient keyword auctions often guarantee near-
optimal revenue.

1.1 Results and Techniques
We assume that the bidders’ values are drawn i.i.d from a

known distribution D. The value represents the maximum
amount that a bidder is willing to pay for a click on its ad-
vertisement. Suppose that the auction has n bidders and k
slots. (The slots are not identical and are parameterized by
click-through-rates; see Section 2.1). Under fairly general as-
sumptions on the distribution D, we give two guarantees on
the expected revenue achieved by an efficient auction, rela-
tive to the revenue-maximizing (or optimal) auction. First,
we show that the revenue earned by an efficient auction with
k additional bidders exceeds the revenue from the optimal
auction. This shows that modest extra competition is as
valuable as precisely learning the distribution D and em-
ploying the optimal reserve price. We also give an explicit
comparison between the revenue the two auctions—we prove
that the efficient auction gives a (1 − k

n
)-approximation of

the optimal revenue.
The first result builds on techniques from Bulow and Klem-

perer [2], who studied single and multi-item auctions. Our
second result hinges on quantitative bounds on the increase
in the revenue of efficient keyword auctions as the number of
bidders increases. This, in turn, leads us to study the behav-
ior of order statistics of the distribution D. The challenging
aspect is to prove bounds that are meaningful for a modest
number of bidders and also do not make strong assump-
tions about the distribution D. Qualitatively, our analysis
shows that among distributions that satisfy the well-known
monotone hazard condition, exponential distributions ex-
hibit worst-case behavior.

1.2 Related Work
There have been several previous theoretical analyses study-

ing various aspects of keyword auctions. Much of this work



is surveyed by Lahaie et al. [8]. For example, work by
Varian [15], Edelman et al. [4, 3] and Agarwal et al. [1]
study bidding strategies and equilibria. Work by Mehta et
al. [12] studies revenue maximization in the presence of bud-
get constraints but ignoring incentive issues. Feng et al. [5]
show how to calculate reserve prices that increase revenue
and quantify this improvement when bidders valuations are
drawn i.i.d from a uniform distribution. Iyengar and Ku-
mar [7] discuss the format of the optimal auction under var-
ious assumptions on the click through rates. Lambert and
Shoham [9] show, in repeated setting, that a certain class of
auctions are asymptotically optimal. Liu, Chen and Whin-
ston [11] view keyword auctions as weighted unit price auc-
tions, study bidding equilibria, prove revenue equivalence
results and study the form of the efficient and the optimal
auctions.

We mention related results from the literature on auc-
tion theory. Likhodedov and Sandholm [10] design multi-
item auctions that maximize efficiency subject to achiev-
ing specified revenue targets. As in our second result, Nee-
man [14] uses approximation ratios to study revenue prop-
erties of single-item english auctions. Rather than assuming
the monotone hazard condition, Neeman [14] assumes that
values are drawn from a distribution with bounded support;
the results are parameterized by the ratio of the expected
value to the maximum value. Under the i.i.d assumption,
they demonstrate that a distribution with a support of size
three realizes the worst case; rather than proceeding analyt-
ically, they use numerical analysis to derive approximation
ratios. (Compare with results listed in the previous section.)
We also build on techniques from two classic papers in auc-
tion theory—Myerson [13] and Bulow and Klemperer [2].

2. PRELIMINARIES

2.1 The Model
We examine revenue properties of efficient auctions in a

classical Bayesian auction setting studied by Myerson [13]).
We study standard pay-per-click keyword auctions (see for
instance [1]). We use the terms bidder and advertiser inter-
changeably. Details of the model follow.

In the standard pay-per-click model, the n bidders are ad-
vertisers who compete to have their advertisement displayed
in one of k slots. Such an auction is run by the search engine
on the event of a search query. When the advertisement of
a bidder i is placed in a slot j, the estimate of the proba-
bility of a future click on the advertisement is modeled by
the click-through rate CTRij . We assume that these esti-
mates are accurate. A common assumption in both theory
and practice is that the CTRs are separable [1]—that is, for
all bidders i and slots j, CTRi,j is µi · Θj . We also make
the natural assumption that Θj ≥ Θj+1 for every slot j. In
this paper, we primarily focus on the case where all ads are
equally relevant, in the sense that all µi’s are equal. (The
effect of relaxing this assumption is discussed in Section 4.2.)

We assume n symmetric bidders with non-negative val-
uations vi drawn independently from a known distribution
D. Here vi represents the value that the advertiser has for
a click on its advertisement—this value may represent the
profit that the advertiser expects to make on a subsequent
sale, with the probability of the sale appropriately factored
in. The value vi is private to the bidder. The distribution
D is described by a probability density function f and a cu-

mulative distribution function F . We assume that bidders’
utility functions are quasilinear—if a bidder i is allocated xi

clicks, its utility is xi ·vi−pi, where pi is the total amount it
pays. (The amount paid per click is pi/xi.) See Section 4.2
for further discussion of these assumptions.

As stated in the introduction, we look at two auction ob-
jectives. The first is efficiency, defined as the sum of the
value served:

P

i vi · xi. The second objective is revenue,
defined as the amount that the auctioneer receives:

P

i
pi.

As in Myerson [13], we are interested in the expected rev-
enue, where the expectation is over the product distribution
arising from the n valuations drawn i.i.d. from the distri-
bution D. Also, we restrict our attention to auctions that
are Bayesian incentive-compatible, where truthtelling forms
a Bayes-Nash equilibrium.

We assume throughout that the distribution D satisfies
the following regularity condition. Following Myerson [13],
we define the virtual valuation v of the distribution D as:

v(v) = v −
1 − F (v)

f(v)
. (1)

By definition, our regularity condition asserts that the vir-
tual valuation is strictly increasing in v. Under this assump-
tion, all the auctions that we consider are strategyproof. We
will sometimes strengthen this regularity assumption and re-
quire that D satisfies the monotone hazard rate condition.
Define the hazard rate h as

h(v) =
f(v)

1 − F (v)
. (2)

The monotone hazard rate condition states that the hazard
rate is increasing in v. Both assumptions are common in
auction theory [13, 2]. For example, Gaussian, uniform, and
exponential distributions all satisfy the monotone hazard
rate condition.

2.2 Useful Prior Results
Myerson [13] discusses the form of the revenue-maximizing

single-item auction. An intermediate result of [13] applies
to general single-parameter settings including ours. An auc-
tion can be viewed as an allocation rule—which maps bids
to allocations—and a payment rule—which maps bids to
payments. We define a monotone allocation rule as one in
which the expected number of clicks that a bidder receives
is non-decreasing in its bid, where the expectation is over
the values of the other bidders.

Definition 1. An allocation rule is monotone if for every
bidder i and values vi ≥ v′

i,
Z

V−i

xi(vi, v−i)f−i(v−i)dv−i ≥

Z

V−i

xi(v
′
i, v−i)f−i(v−i)dv−i

(3)

Myerson [13, Lemma 3.1] shows that every Bayesian incentive-
compatible auction must satisfy the following three proper-
ties.

• It has a monotone allocation rule.

• The allocation rule determines the payments (up to a
pivot term), with player i’s payment given by

pi(vi, v−i) = xi(vi, v−i) · vi −

Z vi

0

xi(vi, v−i) dv. (4)



• The expected revenue of the auctioneer can expressed
as a function of the allocation rule:
Z

V

 

X

i

v(vi)xi(v1, . . . , vn)

!

f(v1, . . . , vn)d(v1, . . . , vn)

(5)

Rewriting the expression in (5) in terms of virtual valua-
tions (1) shows that the expected revenue of an auction is
the expected virtual valuation served. The optimal auction
selects a monotone allocation rule that maximizes the ex-
pected virtual valuation.

3. REVENUE PROPERTIES OF EFFICIENT
KEYWORD AUCTIONS

Before we compare the revenue of the optimal and efficient
auctions, we briefly consider their allocation rules. The effi-
cient auction is discussed in detail in [1], while the optimal
auction is discussed in [7]. As the auctions that we discuss
are Bayesian incentive-compatible, we use the terms bids
and valuations interchangeably.

Sort the bidders in non-increasing order of the bids. By
the regularity condition, sorting by virtual valuations gives
the same result. Recall that for all slots j, the CTR Θj is at
least Θi+1. As the efficient auction attempts to maximize
the total value—

P

1≤i≤k Θi ·vi— it assigns the ith bidder to

the ith slot. The optimal auction, which maximizes the total
virtual valuation, allocates in the same way after ignoring
bids with negative virtual valuations. Ignoring bids with
negative virtual valuations corresponds to ignoring bids less
than a reserve price v

−1(0). (The inverse function v
−1 is

well defined as v is strictly increasing.) The next two facts
follow from this discussion.

Fact 1. The expected revenue of the efficient auction is
the weighted sum of the top k virtual valuations. It is the
expected value of

P

1≤i≤k
v(vmi

) ·Θi, where mi denotes the

index of the bidder with the ith highest (virtual) valuation.

Fact 2. The expected revenue of the optimal auction is
the expected value of

P

1≤i≤min(k,l) v(vmi
) · Θi, where mi

denotes the index of the bidder with the ith highest (virtual)
valuation, and l is the largest value such that v(vml

) ≥ 0.

3.1 Increased Competition vs. an Optimal Re-
serve Price

We next use Facts 1 and 2 to prove the following theorem.

Theorem 1. The expected revenue of the efficient key-
word auction with n + k bidders is at least the expected rev-
enue of the optimal auction with n bidders.

Before we prove the theorem, we discuss its implications.
Theorem 1 compares the efficacy of two ways that a search
engine can improve its revenue. The search engine can col-
lect information to learn the distribution D and calculate the
optimal reserve price v

−1(0). Alternatively, it can expand its
market and run the efficient auction, which does not require
any prior knowledge. Theorem 1 implies that enlarging the
market by the number of slots outweighs the benefit of run-
ning an optimal auction. Bulow and Klemperer [2] proved
an analogous theorem for auctions with identical goods.

Proof. First, we show that the expected virtual valua-
tion of a bidder is 0. From (1), the expected virtual valuation
of a bidder is
Z ∞

0

v(v) · f(v) · dv =

Z ∞

0

„

v −
1 − F (v)

f(v)

«

· f(v) · dv = 0,

where in the second equality we use the identity
R∞

0
v ·f(v) ·

dv =
R∞

0
(1 − F (v)) · dv for non-negative random variables.

Let W (a1 · · · an+k) denote the weighted sum of the top
k numbers among a1 · · · an+k, where the weight associated
with the ith highest number is Θi. By Fact 1, the expected
revenue of the efficient auction with n + k bidders is

E[W (v(v1) · · · v(vn+k))] = E[E[W (v(v1) · · · v(vn+k))|v1 · · · vn]].
(6)

Let l denote the random variable equal to the number of
the first n bidders with non-negative virtual valuations. For
i ∈ {1, 2, . . . , n}, let mi ∈ {1, 2, . . . , n} denote the index of
the bidder with the ith highest (virtual) valuation (among
the first n bidders). We can lower bound the right-hand side
of (6) by assuming that the efficient auction allocates the
first min{k, l} slots to the min{k, l} highest bidders among
the first n, and the remaining slots to the bidders n+1, n+
2, . . . , n+(k−min{k, ℓ}); the efficient auction always chooses
an allocation that is at least this good. Precisely, we have
E[W (v(v1) · · · v(vn+k))] ≥

E

2

4E

2

4

0

@

min{k,l}
X

i=1

Θi · v(vmi
) +

k−min{k,l}
X

i=1

Θl+i · v(vn+i)

1

A

˛

˛

˛

˛

˛

v1 · · · vn

3

5

3

5

By the mutual independence of the different valuations, the
fact that the expected virtual valuation of a single bidder
is 0, and linearity of expectations, the right hand side of the
above inequality is equal to

E

2

4E

2

4

min{k,l}
X

i=1

Θi · v(vmi
)

˛

˛

˛

˛

v1 · · · vn

3

5

3

5

By Fact 2, this is the expected revenue of the optimal k-
slot keyword auction with n bidders. This completes the
proof.

One drawback of Theorem 1 is that it does not directly
compare the revenue obtained by the efficient and optimal
auctions in the same environment. We address this issue in
the next section.

3.2 Approximation bounds
How can we directly compare the revenue generated by

efficient and optimal auctions? Theorem 1, which shows
that the revenue of the efficient auction with n + k players
is at least the revenue of optimal auction with n bidders,
suggests a potential approach. If the efficient auction with
n players collects at least a c fraction of the revenue of the
efficient auction with n+k bidders, then the efficient auction
also c-approximates the optimal revenue (with n bidders).
We use this idea to prove the following revenue guarantees
for the efficient keyword auction.

Theorem 2. Suppose the distribution D of valuations is
regular. Then the expected revenue of the efficient keyword
auction with k slots and n bidders is at least a (1 − k · (k +
1)/n) times that of the optimal auction.



Theorem 3. Suppose the distribution D of valuations sat-
isfies the monotone hazard rate. Then the expected revenue
of the efficient keyword auction with k slots and n bidders
is at least (1 − k/n) times that of the optimal auction.

First, as expected, these theorems confirm the intuition
that the revenue of the efficient auction approaches that of
the optimal one as the number of bidders tends to infinity.
But Theorems 2 and 3 show something much stronger: the
efficient auction obtains near-optimal revenue even in the
practically important case of a modest number of bidders—
as long as the number of bidders is a small multiple of the
number of slots, the revenue is close to optimal. Qualita-
tively, these theorems imply that distributional knowledge
and reserve prices have a negligible effect on auction revenue
when there is at least moderate competition (as for popular
keywords such as “camera” and “laptop”).

We now provide proofs for Theorems 2 and 3. Thus far,
we viewed the expected revenue of the efficient auction as
the expected value of the weighted sum of the top k virtual
valuations (Fact 1). In this section, we use equation (4) in-
stead. Assume that the bidders are sorted in non-decreasing
order of values. The allocation rule of the efficient auction
and equation (4) imply that the payment of the ith bidder
is

pi =
K
X

j=i

(Θj − Θj+1) · vj+1. (7)

A similar expression was established in [1]. Equation (7)
shows that for all i and j ≥ i, bidder i pays the j + 1th

highest bid for the marginal clicks Θj − Θj+1. Using the
above equation, the total revenue of the auctioneer is

X

1≤i≤k

pi =
X

1≤i≤k

k
X

j=i

(Θj − Θj+1) · vj+1

=
X

1≤j≤k

(Θj − Θj+1) · j · vj+1.

Fact 3. The expected revenue of the efficient auction is a
weighted sum of the expected values of k order statistics of
n samples taken i.i.d from the distribution D. The k order
statistics range from the 2nd highest to the k + 1th highest
number.

We aim to show that the efficient auction with n players
collects at least a c fraction of the revenue of the efficient
auction with n + k players. By Fact 3, we need only show
that the expected value of the ith highest number of n sam-
ples is at least c times that of the ith highest number of n+k
samples (where all samples are drawn i.i.d from the distri-
bution D). We begin with the regular case (Theorem 2).

Lemma 1. Let D be a regular distribution and l ∈ {2, . . . , k+
1}. The expected value of the lth-highest number among n
samples is at least

`

1 − k·l
n

´

times that of the lth-highest
number among n + k samples, when both sets of samples
are drawn i.i.d. from distribution D.

Proof. We view the two sample sets in the following way.
We first draw n+k i.i.d. samples from D. We then permute
the indices of these samples randomly (since the samples are
i.i.d. this does not affect the distribution). Define X to be

the random variable equal to the lth highest value among the
n + k samples. Define Y to be zero whenever any of the l
highest values occur among the final k samples (after the
random permutation), and equal to X otherwise. Since Y
is either the lth highest value among the first n samples or
zero, its expectation is a lower bound on the expectation of
the lth highest value among n i.i.d. samples.

Condition on the outcome of the first step of the ran-
dom process, thereby fixing the value of X. The condi-
tional expected value of Y is X · Pr[E ], where E is the
event that none of the l highest samples are mapped to
the last k indices. By the Union Bound, this occurs with
probability at least 1 − (kl/n). Taking expectations gives
E[Y ] ≥ (1 − lk/n) · E[X], which completes the proof.

Theorem 1, Fact 3, and Lemma 1 now give Theorem 2.
We next discuss the proof of Theorem 3. We start by

showing that among distributions that satisfy the monotone
hazard condition, the increase in revenue from additional
bidders is maximized by exponential distributions.

Lemma 2. Let D be a distribution that satisfies the mono-
tone hazard condition. The ratio between the expected value
of the lth-largest of n samples and the expected value of the
lth-largest of n + k samples (all i.i.d from D) is minimized
when D is an exponential distribution.

The proof of this lemma is technical and can be found
in the Appendix. The intuition behind the proof is that
distributions with long tails minimize the ratio. We can
write the distribution function F in terms of the hazard
rate of the distribution, via F (v) = 1 − exp{−

R v

0
h(v)dv}.

Thus, increasing the hazard rate effectively reduces the mass
in the tail. Exponential distributions, which have constant
hazard rates, have the longest tails among distributions that
satisfy the monotone hazard rate condition.

Lemma 2 justifies restricting attention to exponential dis-
tributions, for which there are closed form formulas for order
statistics.

Fact 4. [16, 6] The expected value of the kth-largest value
of n samples drawn i.i.d. from an exponential distribution
with rate λ is (Hn−Hk−1)/λ, where Hi =

Pi

j=1 1/j denotes

the ith Harmonic number.

Lemma 2 and Fact 4 now imply the following.

Lemma 3. Let D be a distribution that satisfies the mono-
tone hazard condition. The expected value of the lth-largest
value of n samples is at least (Hn − Hl−1)/(Hn+k − Hl−1)
times that of the lth-largest value of n + k samples (all i.i.d.
draws from D).

Theorem 3 now follows easily from Theorem 1, Fact 3, and
Lemma 3. We finish this section by stating a stronger ver-
sion of Theorem 3. The theorem uses the optimal efficiency
as the benchmark. The optimal efficiency upper bounds the
revenue achievable by any auction that guarantees individ-
ual rationality to its bidders; in particular, it upper bounds
the optimal revenue.

Theorem 4. Suppose the distribution D of valuations sat-
isfies the monotone hazard rate. Then the expected revenue
of the efficient keyword auction with k slots and n bidders
is at least (1 − k/n) times the optimal efficiency.



By Fact 3, the expected value of the k + 1th highest of n
numbers times the total click-through-rate is a lower bound
on the expected revenue. The proof of the above theorem is
now an easy implication of Lemma 3 and the following fact.

Fact 5. The optimal efficiency is a weighted sum of the
expected values of k order statistics of n samples taken i.i.d
from the distribution D. The k order statistics range from
the 1st highest to the kth highest number. The weight cor-
responding to the ith highest number is the CTR Θi.

4. DISCUSSION

4.1 Efficiency Properties of Optimal Keyword
Auctions

We briefly consider efficiency properties of optimal key-
word auctions. The following theorem asserts that under
modest competition, revenue maximizing auctions yield near
optimal efficiency. Taken together with Theorem 1, Theo-
rem 2, and Theorem 3, it asserts that under modest com-
petition, the objectives of efficiency and revenue are indeed
well aligned. The theorem is an easy implication of results
from the previous section.

Theorem 5. Suppose the distribution D of valuations sat-
isfies the monotone hazard rate. Then the expected efficiency
of the optimal keyword auction with k slots and n bidders is
at least (1 − k/n) times the optimal efficiency.

Proof. The revenue of the efficient auction is at most
the revenue of the optimal auction, which is the at most
the efficiency of the optimal auction. Applying Theorem 4
completes the proof.

4.2 Modeling Assumptions
In this section we discuss the sensitivity of our results to

various modeling assumptions.
First, we restrict attention to Bayesian incentive-compatible

auctions—we compare the revenue of the efficient auction to
the optimal one in this class. Most real-world keyword auc-
tions are not incentive compatible (see [1, 15, 4]) and gener-
ally can have multiple Nash equilibria. On the other hand,
Aggarwal et al. [1] show that, in these non-truthful auctions,
there is always an equilibrium that is revenue-equivalent to
the truthful auction. While this only shows that the effi-
cient auction is competitive with some equilibrium of these
auctions, we expect that other equilibria will have similar
revenue properties. Second, we have assumed that the CTR
of a slot is independent of the advertiser that is awarded it.
We can extend our results to advertiser-dependent CTRs,
although we lose a factor of the ratio µmin/µmax in our
bounds. Third, our results depend on the number of bid-
ders being a larger than the number of slots. On the other
hand, in practice there are many keywords with very few
bidders (although it is not clear that these auctions account
for a large fraction of a search engine’s revenue). Conceiv-
ably, reserve prices play a more significant role for auctions
with these unpopular keywords. Fourth, we assume that
the valuations are drawn identically from a distribution D
(which may or may not be known)—for a fixed keyword,
we think that this assumption is a reasonable approxima-
tion of reality. Finally, all of our results are for a single-shot
setting—it seems challenging to derive similar results in a
repeated setting.

4.3 Multi-item Auctions
The techniques used in Section 3.1, together with results

from Bulow and Klemperer [2], also imply approximation
bounds for single and multi-item auctions. In particular, we
can show the following.

Theorem 6. If the valuations are picked i.i.d from a dis-
tribution D that satisfies the monotone hazard rate condi-
tion, the expected revenue earned by an efficient k-item auc-
tion with n bidders is at least a (1 − k/n) fraction of the
expected revenue generated by the optimal auction with n
bidders. If we relax the condition to regularity, then the
auction obtains a 1 − (k · (k + 1))/n fraction of the optimal
revenue.

The above theorem can be viewed as a companion to a
theorem by Bulow and Klemperer [2], which states that the
revenue of the efficient k-item auction with n + k bidders
is at least the revenue of the optimal k-item auction with
n bidders. Theorem 6 clarifies the effect of the addition
of k extra bidders—it shows that even without these ad-
ditional bidders, if the number of bidders modestly exceeds
the number of items, then the efficient auction approximates
the optimal revenue.

We conclude with a correspondence between multi-item
and keyword auctions. We show that the optimal keyword
auction is essentially the superposition of multiple optimal
k-item auctions, while the efficient keyword auction is the
superposition of multiple efficient k-item auctions. We prove
the lemma generally for any auction that sets a reserve
price r and allocates the slots in order of non-increasing
bid to the the bidders that bid at least r. The efficient auc-
tion uses a reserve r = 0, while the optimal auction uses a
reserve r = v

−1(0).

Lemma 4. The expected revenue from a keyword auction
with reserve price r, k slots, and n bidders with valuations
drawn i.i.d. from D, is equal to the weighted sum of revenues
from k multi-item auctions, each with reserve price r and n
bidders with valuations drawn i.i.d from D. The ith multi-
item auction sells i objects.

Proof. Fix the valuations of the n bidders. Let l be the
last bidder in this sequence with vl ≥ r; if there is no such
bidder, l = 0. Let k′ = min(k, l). By (7), the total revenue
of the auction is

X

1≤i≤k′

pi =
X

1≤i≤k′

k
X

j=i

(Θj − Θj+1)max(r, vj+1).

=
X

1≤j≤k

(Θj − Θj+1)min(l, j)max(r, vj+1).

Note that the jth summand in the above expression is pre-
cisely (Θj − Θj+1) times the revenue of a j-item auction
with reserve price r—the min captures the constraint that
the auction sells exactly j objects unless there are fewer than
j bidders with bids at least the reserve price r.
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APPENDIX

A. MISSING PROOFS
Fix a distribution D with a p.d.f. f and c.d.f. F and a

hazard function h(t) = f(t)/1 − F (t). We assume that F
is strictly increasing and that D satisfies the monotone haz-
ard condition. We write the c.d.f F in terms of the hazard
function:

F (t) = 1 − e−
R

t
0

h(x)dx (8)

Let the random variable D(n, k) denote the value of the
kth highest of n samples taken i.i.d from distribution D. Let
U denote the uniform distribution with support [0, 1]. We
first prove a lemma that allows us to relate order statistics
of U to the order statistics of D.

Lemma 5. E[D(n, k)] = E[F−1(U(n, k)]. The first ex-
pectation is over the joint distribution resulting from n sam-
ples drawn i.i.d from distribution D, while the second is over
the joint distribution resulting from n samples drawn i.i.d
from U .

Proof. Let Y1, · · ·Yn be n random variables drawn i.i.d
from D. Set Xi = F (Yi). This defines the random variables
X1, · · ·Xn. We define the random variables Y ∗

1 · · ·Y ∗
n such

that Y ∗
k denotes the kth smallest number among Y1, · · ·Yn.

X∗
1 · · ·X∗

n are defined similarly for the X’s.
As F is strictly increasing, the relative order between the

Yi’s is preserved by the transformation. Also, F−1 is defined
because F is strictly increasing. So E[Y ∗

k ] = E[F−1(X
∗
k )],

where the second expectation is taken over the induced dis-
tribution on the X’s. We now show that the distribution on
the Xi’s is uniform in the interval [0, 1]. For any x ≤ 1, x ≥
0, Pr(Xi < x) = Pr(F (Yi) < x) = Pr(Yi < F−1(x)) =
F (F−1(x)) = x. As F is a c.d.f, for x > 1, Pr(X < x)
is 1 and for any x < 0, Pr(X < x) is 0. Noting that
X∗

k = U(n, k) and Y ∗
k = D(n, k) completes the proof.

We are now ready to prove Lemma 2. Let Pλ denote a
exponential distribution with rate parameter λ such that
0 < λ < ∞, with the c.d.f is Fλ. Formally, we show that for
all λ such that 0 < λ < ∞,

E[F−1
λ (U(n, k))]/E[F−1

λ (U(n + l, k))]
≤ E[F−1(U(n, k))]/E[F−1(U(n + l, k))]

Proof. Let X1 · · ·Xn denote n random variables drawn
from U . We condition on values for these random vari-
ables. This fixes Pλ(n, k) and D(n, k). Now add l > 0 sam-
ples Xn+1, · · ·Xn+l. We now show that Pλ(n, k)/E[Pλ(n +
l, k)] ≤ D(n, k)/E[D(n + l, k)] for suitable λ. We then
show that fixing λ is without loss of generality. We select
λ such that Pλ(n, k) = D(n, k). It suffices to show that
E[Pλ(n + l, k)] ≥ E[D(n + l, k)].

We now condition on values of Xn+1, · · ·Xn+l. Any values
below Pλ(n + 1, k) = D(n + l, k), do not change the value
of the kth highest number in either distribution. It suffices
for us to show for all x > U(n, k), F−1(x) ≤ F−1

λ (x). Al-
ternatively, we can show that for all Y ≥ F−1(U(n, k)),
F (Y ) ≥ Fλ(Y ). We now prove this claim.

First, by definition of the hazard rate, we can write F (t) =

1 − e−
R

t
0

h(x)dx. As F (D(n, k)) = F (Pλ(n, k)) = U(n, k),
RD(n,k)

0
h(x)dx = λ · D(n, k). Also as h is monotone in-

creasing, h(D(n, k)) ≥ λ. Further, for any Y ≥ D(n, k),

as h is monotone increasing,
R Y

0
h(x)dx =

R D(n,k)

0
h(x)dx +

R Y

D(n,k)
h(x)dx ≥ λ ·D(n, k)+λ(Y −D(n, k)) = λY . Apply-

ing Equation 8 proves the claim.
We now show that fixing λ is without loss of generality.

For an exponential distribution with rate λ, it is easy to see
that F−1(X) = −log(1 − X)/λ. We prove the claim point-
wise—fix values for random variables X1 · · ·Xn and l addi-
tional variables Xn+1, · · ·Xn+l. This fixes values, Pλ1(n, k) =



F−1
λ1 (U(n, k)), Pλ2(n, k) = F−1

λ2 (U(n, k)), Pλ1(n + l, k) =
F−1

λ1 (U(n + l, k)), Pλ2(n + l, k) = F−1
λ2 (U(n + l, k)). We can

see that Pλ1(n, k)/Pλ1(n + l, k) = Pλ2(n, k)/Pλ2(n + l, k).
This completes the proof.


