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1 Preamble

Gradient descent is an extremely simple algorithm — simpler than most of the algorithms you
studied in CS161 — that has been around for centuries. These days, the main “killer app”
is machine learning. Model-fitting often reduces to optimization — for example, maximizing
the likelihood of observed data over a family of generative models. A remarkably large
fraction of modern machine learning research, including some of the much-hyped recent
work on “deep learning,” boils down to implementing variants of gradient descent on a very
large scale (i.e., for huge training sets). Indeed, the choice of models in many machine
learning applications is driven as much by computational considerations — whether or not
gradient descent can be implemented quickly — as by any other criteria.

The first goal of this lecture is to develop the geometry and intuition behind gradient
descent, to the point that the algorithm seems totally obvious. The second goal is to make
the general method concrete with a case study on linear regression. (The method is also very
useful for many other problems.) Next lecture we’ll talk about extensions to the basic method
and the basic problem formulation that will bring you a step closer to the state-of-the-art in
modern machine learning.

Throughout this lecture, you might want to keep Figure 1 in mind. The figures show a
succession of lines that are an increasingly good fit for a collection of points in the plane.
“Linear regression” just means computing the best-fitting line, and this succession of lines
is generated by successive iterations of gradient descent. This is not all supposed to make
100% sense yet, of course — the rest of the lecture explains what’s going on — but this
example should provide you with a concrete picture to refer back to as the lecture proceeds.

∗ c©2015–2016, Tim Roughgarden and Gregory Valiant. Not to be sold, published, or distributed without
the authors’ consent.
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(a) 0 Iterations
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(b) 1 Iteration
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(c) 2 Iterations

Figure 1: Using gradient descent to solve a linear regression problem. The goal is to compute
the “best-fit” line to the given data points, and each iteration of gradient descent computes
a successively better line.

2 How to Think About Gradient Descent

2.1 Unconstrained Optimization

Viewed the right way, gradient descent is really easy to understand and remember — more
so than most algorithms. First off, what problem is gradient descent trying to solve? Un-
constrained optimization, meaning that for a given real-valued function f : Rn → R defined
on n-dimensional Euclidean space, the goal is

min f(w)

subject to
w ∈ Rn.

Note that maximizing a function falls into this problem definition, since maximizing f is
the same as minimizing −f . In this lecture, we’ll always assume that f is differentiable and
hence also continuous.1 For example, in our linear regression case study (Section 3), w will
encode a linear prediction function and f the mean-squared error of the function.

2.2 Warm-Up #1: n = 1

Suppose first that n = 1, so f : R→ R is a univariate real-valued function. We can visualize
the graph of f in the usual way; see Figures 2 and 3. The intuition we’ll develop for gradient
descent in this simple case gives a surprisingly accurate picture of what’s going on in the
general case (for any number of dimensions).

What would it mean to try to minimize f via greedy local search? For example, in the
parabola in Figure 2, if we start at the point x0, then we look to the right (f goes up) and
to the left (f goes down), and go further to the left. (Recall we want to make f as small

1Gradient descent requires gradients! Well, actually it doesn’t — there are extensions of gradient descent
that relax the differentiability assumption, but we won’t have time to discuss them.
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Figure 2: Minimizing a univariate objective function f via gradient descent.

as possible.) If we start at x1, then f is decreasing to the right and increasing to the left,
so we’d move further to the right. In either case, the algorithm terminates at the bottom of
the basin.

A little more formally — we’ll be precise when we discuss the general case — the basic
algorithm in the n = 1 case is the following:

1. while f ′(x) 6= 0

(a) if f ′(x) > 0 — so f is increasing — then move x a little to the left;

(b) if f ′(x) < 0 then move x a little to the right.

Note that at each step, the derivative of f is used to decide which direction to move in.
Intuitively, we’re releasing a ball at some point of the graph of the function of f , and the
algorithm terminates at the final resting point of this ball (after gravity has done its work).

Not all functions are as nice as the parabola in Figure 2, however. Consider the function
shown in Figure 3. If we start at point x0, then we go left and wind up at the bottom of the
left basin. If we start at x1, then we go right and the algorithm terminates at the bottom of
the right basin.

Our two examples exhibit two obvious differences.

1. In Figure 2, no matter which starting point is chosen, the termination point of the
algorithm remains the same. In Figure 3, where you end up depends on where you
start.

2. In Figure 2, the algorithm always terminates at the global minimum. In Figure 3, the
algorithm might terminate at a local minimum — meaning there’s no way to improve f
by moving a little bit in either direction — that is not a global minimum.

What is it about the functions that lead to these differences? The answer is convexity.2

A function is convex if all chords of its graph only lie above the graph. It is visually clear

2Your math classes may or may not have emphasized the central importance of convexity. But a good rule
of thumb, especially in optimization, is to equate convexity with “niceness,” including efficient solvability.
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Figure 3: With a non-convex objective function, gradient descent can yield different local
minima with different start states.

that the function in Figure 2 is convex while the function in Figure 3 is not. Mathematically,
a function is convex if and only if

f(1
2
w + 1

2
z) ≤ 1

2
f(w) + 1

2
f(z)︸ ︷︷ ︸

midpoint of chord between f(w) and f(z)

for every w, z ∈ Rn. That is, for points w and z, if you take the average of w and z and
then apply f , you’ll get a smaller number than if you first apply f to w and z and then
average the results. A seemingly stronger but in fact equivalent condition is

f(λw + (1− λ)z)︸ ︷︷ ︸
graph

≤ λf(w) + (1− λ)f(z)︸ ︷︷ ︸
point on chord

(1)

for all w, z ∈ Rn and λ ∈ [0, 1]. Note that these definitions makes sense for any function
f : Rn → R, not just in the n = 1 case. It’s not always easy to check whether or not a
given function is convex, but there is a mature analytical toolbox for this purpose (taught
in EE364, for example).

Already with n = 1 and in Figure 3, we observed that with a non-convex function f ,
gradient descent can compute a local minimum that is worse (i.e., larger) than a global
minimum. The converse also holds: if f is convex, then gradient descent can only terminate
at a global minimum.3 To see this, suppose x is sub-optimal and x∗ is optimal. As λ
goes from 0 to 1, the expression λf(x∗) + (1 − λ)f(x) changes linearly from f(x) to f(x∗).
Inequality (1) then implies that moving toward x∗ from x can only decrease f . Thus gradient
descent will not get stuck at x.

3Modulo any approximation error from stopping before the derivative is exactly zero; see Section 2.5 for
details.
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2.3 Warm-Up #2: Linear Functions

In almost all of the applications of gradient descent, the number n of dimensions is much
larger than 1. Already with n = 2 we see an immediate complication: from a point w ∈ Rn,
there’s an infinite number of directions in which we could move, not just 2.

To develop our intuition, we first consider the rather silly case of linear functions, meaning
functions of the form

f(w) = cTw + b, (2)

where c ∈ Rn is an n-vector and b ∈ R is a scalar.
Unconstrained minimization of a linear function is a trivial problem, because (assuming

c 6= 0) it is possible to make the objective function arbitrarily negative. To see this, take
any vector w with negative inner product cTw < 0 with c (such as −c) and consider points
of the form βw for β arbitrarily large.

Suppose you are currently at a point w ∈ Rn, and you are allowed to move at most one
unit of Euclidean distance in whatever direction you want. Where should you go to decrease
the function f in (2) as much as possible, and how much will the function decrease? To
answer this, let u ∈ Rn be a unit vector; moving from w one unit of distance in the direction
u changes the objective function as follows:

cTw + b 7→ cT (w + u) + b (3)

= cTw + b+ cTu (4)

= cTw + b︸ ︷︷ ︸
independent of u

+‖c||2 ‖u‖2︸︷︷︸
=1

cos θ, (5)

where θ denotes the angle between the vectors c and u. To decrease f as much as possible,
we see that we should make cos θ as small as possible (i.e., -1), which we do by choosing u to
point in the opposite direction of c (i.e., u = −c/‖c‖2). The derivation (3)–(5) shows that
moving one unit in this direction causes f to decrease by ‖c‖2, so ‖c‖2 is also the rate of
decrease (per unit moved) in the direction −‖c‖2. These are the things to remember about
this warm-up example: the direction of steepest descent is that of −c, for a rate of decrease
of ‖c‖2.

2.4 Some Calculus, Revisited

What about general (differentiable) functions, the ones we really care about? The idea is to
reduce general functions to linear functions. This might sound ridiculous, given how simple
linear functions are and how weird general functions can be, but basic calculus already gives
a method for doing this.

What it really means for a function to be differentiable at a point is that it can be locally
approximated at that point by a linear function. For a univariate differentiable function, like
in Figure 3, it’s clear what the linear approximation is — just use the tangent line. That is,
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at the point x, approximate the function f for y near x by the linear function

f(y) ≈ f(x) + (y − x)f ′(x) = f(x)− xf ′(x)︸ ︷︷ ︸
y-intercept

+y f ′(x)︸ ︷︷ ︸
slope

,

where x is fixed and y is the variable. It’s also clear that the tangent line is only a good
approximation of f locally — far away from x, the value of f and this linear function have
nothing to do with each other. Thus being differentiable means that at each point there exists
a good local approximation by a linear function, with the specific linear function depending
on the choice of point.

Another way to think about this, which has the benefit of extending to better approxi-
mations via higher-degree polynomials, is through Taylor expansions. Recall what Taylor’s
Theorem says (for n = 1): if all of the derivatives of a function f exist at a point x, then for
all sufficiently small ε > 0 we can write

f(x+ ε) = f(x) + ε · f ′(x)︸ ︷︷ ︸
linear approx.

+ ε2

2!
· f ′′(x) + ε3

3!
· f ′′(x) + · · · . (6)

So what? The point is that with the first two terms on the right-hand side of (6), we have
a linear approximation of f around x staring us in the face (in the variable ε). This is the
same as the tangent line approximation, with ε playing the role of y − x.4

The discussion so far has been for the n = 1 case for simplicity, but everything we’ve
said extends to an arbitrary number n of dimensions. For example, the Taylor expansion (6)
remains valid in higher dimensions, just with the derivatives replaced by their higher dimen-
sional analogs. Since we’ll use only linear approximations, we only need to care about the
higher-dimensional analog of the first derivative f ′(x), which is the gradient.

Recall that for a differentiable function f : Rn → R, the gradient ∇f(w) of f at w is the
real-valued n-vector

∇f(w) =

(
∂f

∂w1

(w),
∂f

∂w2

(w), . . . ,
∂f

∂wn
(w)

)
(7)

in which the ith component specifies the rate of change of f as a function of wi, holding the
other n− 1 components of w fixed.

To relate this definition to our two-warm ups, note that if n = 1, then the gradient
becomes the scalar f ′(x). If f(w) = cTw + b is linear, then ∂f/∂wi = ci for every i (no
matter w is), so ∇f is just the constant function everywhere equal to cT .

For a simple but slightly less trivial example, we can consider a quadratic function f :
Rn → R of the form

f(w) =
1

2
wTAw − bTw,

4Note the analogy with some of our “lossy compression” solutions — we’re throwing out as much infor-
mation as possible subject to some type of approximation guarantee.
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where A is an n× n matrix and b is an n-vector. Expanding, we have

f(w) =
1

2

n∑
i=1

n∑
j=1

aijwiwj −
n∑
i=1

biwi,

and you should check that
∂f

∂wi
(w) =

n∑
j=1

aijwj − bi

for each i = 1, 2, . . . , n. We can therefore express the gradient succinctly as

∇f(w) = Aw − b

at each point w ∈ Rn.
We’ll see another explicit gradient computation below, when we apply gradient descent

to a linear regression problem. For more complex functions f , it’s not always clear how to
compute the gradient of f . But as long as one can evaluate f , one can estimate ∇f by
estimating each partial derivative in the definition (7) in the obvious way — changing one
coordinate a little bit and seeing how much f changes.

2.5 Gradient Descent: The General Case

Here is the general gradient descent algorithm. It has three parameters — w0, ε, and α —
which we’ll elaborate on shortly.

Gradient Descent

initialize w := w0

while ‖∇f(w)‖2 > ε do

w := w − α︸︷︷︸
step size

·∇f(w) (8)

And that’s it!
It’s also worth zooming in to see what the update rule (8) looks like in some coordinate,

say the jth one:

wj := wj − α ·
∂f

∂wj
(w). (9)

The update (8) can be thought of as n updates of the form (9) being done in parallel (one
per coordinate j).

Conceptually, gradient descent enters the following contract with basic calculus:

1. Calculus promises that, for z close to w, one can pretend that the true function f is
just the linear function f(w) + ∇f(w)T (z − w) (Section 2.4). We know what to do
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with linear functions: move in the opposite direction of the coefficient vector — that
is, in the direction −∇f(w) — to locally decrease the function at a rate of ‖∇f(w)‖2
per unit distance (Section 2.3).

2. In exchange, gradient descent promises to only take a small step (parameterized by
the step size α) away from w. Taking a large step would violate the agreement, in
that far away from w the function f(w) need not behave anything like the local linear
approximation f(w) +∇f(w)T (z−w) (recall the tangent lines in Figure 3).

The starting point w0 can be chosen arbitrarily, though as we saw in Section 2.2, for
non-convex f the output of gradient descent can vary with the choice of w0. For convex
functions f , gradient descent will converge toward the same point — the global minimum
— no matter how the starting state is chosen.5 The choice of start state can still affect the
number of iterations until convergence, however. In practice, one should choose w0 according
to your best guess as to where the global minimum is likely be — generally, the closer w0 is
to the global minimum of f , the faster the convergence of gradient descent.

The parameter ε determines the stopping rule. Note that because ε > 0, gradient descent
generally does not halt at an actual local minimum, but rather at some kind of “approximate
local minimum.”6 Since the rate of decrease of a given step is ‖∇f(w)‖2, at least locally,
once ‖∇f(w)‖2 gets close to 0 each iteration of gradient descent makes very little progress;
this is an obvious time to quit. Smaller values of ε mean more iterations before stopping but
a higher-quality solution at termination. In practice, one tries various values of ε to achieve
the right balance between computation time and solution quality. Alternatively, one can
just run gradient descent for a fixed amount of time and use whatever point was computed
in the final iteration.

The final parameter α, the “step size,” is perhaps the most important. While gradient
descent is flexible enough that different α’s can be used in different iterations, in practice
one typically uses a fixed value of α over all iterations.7 While there is some nice theory that
gives advice on how to choose α as a function of the “niceness” of f , in practice the “best”
value of α is typically chosen by experimentation. The very first time you’re exploring some
function f , one option is a “line search,” which just means identifying by binary search the
value of α that minimizes f over the line w − α · ∇f(w). After a few line searches, you
should have a decent guess as to a good value of α. Alternatively, you can run the entire
gradient descent algorithm with a few different choices of α to see which run gives you the
best results.

5Strictly speaking, this is true only for functions that are “strictly convex” is some sense. We’ll gloss over
this distinction in this lecture.

6If the function f is sufficiently nice — “strongly convex” is most common sufficient condition — then
gradient descent provably terminates at a point very close to a global minimum.

7For example, one could imagine decreasing α over the course of the algorithm, a la simulated annealing.
But in the common case where the norm ‖∇f‖2 of f decreases each iteration, then even with a fixed α, the
distance traveled by gradient descent each iteration is already decreasing.
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3 Application: Linear Regression

A remarkable amount of modern machine learning boils down to variants of gradient descent.
This section illustrates how to apply gradient descent to one of the simplest non-trivial
machine learning problems, namely linear regression.

3.1 Linear Regression

In linear regression, the input ism data points x(1),x(2), . . . ,x(m) ∈ Rn, each an n-dimensional
vector. Also given is a real-valued “label” y(i) ∈ R for each data point i.8 For example, each
data point i could correspond to a 5th-grade student, y(i) could correspond to the score
earned by that student on some standardized test, and x(i) could represent the values of n
different “features” of student i — the average household income in his/her neighborhood,
the number of years of education earned by his/her parents, etc.

The goal is to compute the “best” linear relationship between the x(i)’s and the y(i)’s.
That is, we want to compute a linear function h : Rn → R such that h(x(i)) ≈ y(i) for every i.
Every such linear function h can be written as

hw(x) = w0 +
n∑
j=1

wjxj

for real-valued coefficients w0, w1, . . . , wn. We can simplify the notation by giving every
data point a “dummy zeroth coordinate” equal to 1. Then, the coefficient of the dummy
coordinate plays the role of the intercept w0. From now on, we assume that the data points
have been preprocessed in this way, and that the coordinates are named {1, 2, . . . , n}. We
then associate w ∈ Rn with the linear function

hw(x) =
n∑
j=1

wjxj. (10)

The two most common motivations for computing a “best-fit” linear function are pre-
diction and data analysis. In the first scenario, one uses the given “labeled data” (the x(i)’s
and y(i)’s) to identify a linear function h that, at least for these data points, does a good job
of predicting the label y(i) from the feature values x(i). The hope is that this linear function
“generalizes,” meaning that it also makes accurate predictions for other data points for which
the label is not already known. There is a lot of beautiful and useful theory in statistics and
machine learning about when one can and cannot expect a hypothesis to generalize, which
you’ll learn about if you take courses in those areas. In the second scenario, the goal is to
understand the relationship between each feature of the data points and the labels, and also
the relationships between the different features. As a simple example, it’s clearly interesting
to know when one of the n features is much more strongly correlated with the label y(i) than
any of the others.

8This is an example of supervised learning, in that the input includes the “correct answers” y(1), . . . , y(m)

for the data points x(1), . . . ,x(m), as opposed to just the data points alone (which would be an unsupervised
learning problem).
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3.2 Mean Squared Error (MSE)

To complete the formal problem description, we need to choose a notion of “best fit.” We’ll
use the most common one, that of minimizing the mean squared error (MSE) of a linear
function. For a linear function hw with coefficient vector w ∈ Rn, this is defined as

MSE(w) =
1

m

m∑
i=1

Ei(w)2 (11)

where the “error” or “residual” Ei(w) is the difference between hw’s “prediction” hw(x(i))
for the ith data point and the “correct answer” y(i):

Ei(w) = hw(x(i))− y(i). (12)

There are a couple of reasons to choose the MSE objective function.9 One is that, as we’ll
see, the function has several nice mathematical and computational properties. The function
also has a satisfying Bayesian justification: if the data is such that each label y(i) is generated
from x(i) by applying a linear function hw and then adding independent Gaussian noise to
each data point, then minimizing the MSE is equivalent to the problem of maximizing (over
linear functions) the likelihood of the data.10

Since we want to minimize the mean-squared error, our function f : Rn → R is that
in (11).11 In this minimization problem, the variables are the coefficients w of the linear
function hw — all of the data points (the x(i)’s) and labels (the y(i)’s) are given as input and
fixed forevermore.

One nice property of the MSE is that it is a convex function of its variables w. The rough
argument is: each function Ei(w) is linear in w, and linear functions are convex; taking the
square only makes these functions “more convex;” and the sum (11) of convex functions
is again convex. In particular, the only local minimum of the MSE function is the global
minimum.

3.3 The Gradient of the MSE Function

One approach to computing the linear function with minimum-possible MSE is to apply
gradient descent. To see what this would look like, let’s compute the gradient of the MSE
function (11) — it turns out to be quite nice and interpretable. Recall that derivatives are
linear — for example, (g+h)′ = g′+h′. Since (11) has one term per data point i = 1, 2, . . . ,m,
the gradient will also have one term per data point. This is a key point: the fact that the
gradient separates over the data points is a big reason why gradient descent can scale to
very machine learning problems.

9Next lecture we’ll look at some important variations.
10Even though reality may not conform to the precise assumption of independent Gaussian noise, a result

like this provides evidence that this approach should give good results quite generally.
11Omitting the normalizing term 1/m in (11) results in an equivalent optimization problem. Note that

the best step size to use in gradient descent will depend on whether or not this term in included.
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The term for the ith data point is, by the chain rule of calculus,

∇(Ei(w))2 = 2Ei(w) · ∇Ei(w).

Inspecting (10) and (12), we have
∂Ei
∂wj

= x
(i)
j

for j = 1, 2, . . . , n, and hence ∇Ei(w) = x. Putting it all together, we have

∇f(w) =
2

m

m∑
i=1

Ei(w)︸ ︷︷ ︸
scalar

· x(i)︸︷︷︸
n-vector

 , (13)

where f(w) denotes the MSE of the linear function hw.
The gradient (13) has a natural interpretation. The ith term Ei(w) · x(i) can be thought

of as the ith data point’s “opinion” as to how the coefficients w should be updated. To see
this, first note that if we move from w in the direction of x(i), then the prediction of the
current linear function

hw(x(i)) = wTx(i)

increases at rate ‖x(i)‖22.12 Similarly, if we move in the direction of −x(i), then the prediction
of the current linear function on x(i) decreases at this rate. Thus, if Ei(w) < 0, so that
the prediction hw(x(i)) of the current linear function underestimates the correct value y(i),
then data point i’s “vote” is to move in the direction of x(i) (increasing hw’s prediction), at
a rate proportional to the magnitude |Ei(w)| of the current error. Similarly, if Ei(w) > 0,
then data point i votes for changing w in the direction that would decrease hw’s prediction
for x(i) as rapidly as possible. Every data point has its own opinion, and the gradient (13) just
averages these opinions. In addition to be conceptually transparent, computing this gradient
is straightforward, requiring O(mn) time. And since (13) is a just a sum of terms, one per
data point, the computation is easy to parallelize. The data set can be spread over however
many machines or cores are available, the summands can be computed independently, and
then the results are aggregated together.

4 Lecture Take-Aways

After the course, the following would be a good list of things to remember about gradient
descent.

1. The goal of gradient descent is to minimize a function via greedy local search.

12In more detail, going from w to w + γx(i) means we go from hw(x(i)) = wTx(i) to h(w+γx(i))(x
(i)) =

(w + γx(i))Tx(i) = wTx(i) + γ(x(i))Tx(i) = wTx(i) + γ‖x(i)‖22.
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2. Gradient descent scales well to large data sets, especially with some tweaks (covered
next lecture) and if an approximately optimal solution is good enough. For example,
the algorithm doesn’t even need to multiply matrices. This is the primary reason for
the algorithm’s renaissance in the 21st century, driven by large-scale machine learning
applications.

3. Gradient descent provably solves many convex problems. (Some problems of interest
are convex, like linear regression, while others are not.)

4. Gradient descent can be an unreasonably good heuristic for the approximate solution
of non-convex problems; this is one of the main points of Mini-Project #3.
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