
COMS 4995-001 (Science of Blockchains): Homework #1

Due by 11:59 PM on Wednesday, February 5th, 2025

Instructions:

(1) Solutions are to be completed and submitted in pairs.

(2) We are using Gradescope for homework submissions. See the course home page for instructions, the
late day policy, and the School of Engineering honor code.

(3) Please type your solutions if possible and we encourage you to use the LaTeX template provided on
the Courseworks page.

(4) Write convincingly but not excessively. (We reserve the right to deduct points for egregiously bad or
excessive writing.)

(5) Except where otherwise noted, you may refer to your lecture notes and the specific supplementary
readings listed on the course Web page only.

(6) You are not permitted to look up solutions to these problems on the Web. You should cite any outside
sources that you used. All words should be your own. Submissions that violate these guidelines will
(at best) be given zero credit, and may be treated as honor code violations.

(7) You can discuss the problems verbally at a high level with other pairs. And of course, you are encour-
aged to contact the course staff (via the discussion forum or office hours) for additional help.

(8) If you discuss solution approaches with anyone outside of your pair, you must list their names on the
front page of your write-up.

Throughout this homework assignment, unless otherwise specified, we consider a network
of n validators, denoted by {v1, . . . , vn}.

Problem 1

(10 points) This problem concerns protocol A from Lecture 3. Protocol A was our first attempt at a consensus
protocol guaranteeing consistency and liveness in a synchronous network, in the presence of crash faults.
Let us now consider a slightly revised fault model, referred to as benign crash faults. In this fault model,
we treat message sending in a more atomic fashion. More precisely, a validator that crashes at timestep t,
crashes exactly before sending any messages it intended to send at timestep t, or exactly after sending all
messages it intended to send at timestep t. In other words, a validator either succeeds in sending all of its
messages at a timestep or none of its messages. Prove that protocol A satisfies consistency and liveness in a
synchronous network in the presence of an arbitrary number of benign crash faults.

Problem 2

(10 points) This problem concerns protocols A and B from Lecture 3. Setting aside benign crash faults and
turning our attention back to regular crash faults (where a validator may crash after sending some but not
all of the messages it intended to send at that timestep), suppose validators can order the messages they
send at a given timestep t (e.g. first message to validator 17, then to validator 18, etc.) such that, in the
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event that a validator v crashes at timestep t, it is guaranteed that the set of messages sent by v at timestep
t is a prefix of that order. More formally, if validator v intended to send messages m1, . . . ,mk (in that
order) at some timestep, then the set of messages that actually get sent by v is guaranteed to be of the form
{m1, . . . ,mj} for some j ∈ {1, 2, . . . , k}.

With this ability in mind, consider augmenting protocol A with the following changes:

1. Each validator sets its message delivery order to be the order of the subsequent leaders: the first
message goes to the leader of the next view, the second message to the leader of the view after that,
and so on.

2. As in protocol B from Lecture 3, the leader sends its entire chain instead of just the most recently
constructed block. (If a validator hears a proposal from the current leader, it updates its local chain
to that proposal; otherwise, it leaves its local chain as-is.)

Prove that with these modifications, protocol A satisfies consistency and liveness in a synchronous network
in the presence of an arbitrary number of crash faults.

Problem 3

(10 points) This problem concerns protocol B from lecture 3. In this problem, we consider a new fault
model, called the omission fault model. A validator that has suffered an omission fault behaves exactly
like a non-faulty validator, except that at any timestep it may fail to send one or more of the messages it
intended to send and/or may fail to receive one or more of the messages that were supposed to be delivered
to it. (Intuitively, the validator’s local Internet connection may drop outgoing or incoming packets without
warning.)

• Explain why crash faults are a special case of omission faults.

• Suppose I promise you that at most one validator will suffer a crash fault and at most one other
validator will suffer an omission fault. Does Protocol B still guarantee consistency in a synchronous
network? Justify your answer either with a proof of consistency or with an execution of the protocol
in which consistency is violated. (Remember that consistency needs to be satisfied only for the local
chains of non-faulty validators.)

Problem 4 (Optional)

(5 extra-credit points) In protocol B from Lecture 3, a view may conclude with different non-faulty validators
knowing about different sets of blocks (which is why everyone sent entire chains to each other rather than
just the latest block). Suppose we really wanted each view to preserve the property that, at the end of the
view, every non-faulty validator has exactly the same local chain (and were willing to make views longer in
order to achieve this). With this in mind, suppose we modify Protocol A by expanding the view length to
k ·∆ (for a parameter k, discussed below) and changing the pseudocode within a view to the following (in
effect, with all validators repeatedly comparing notes on what they’ve heard so far in the view):

• At time k∆ · v, the leader ℓ of the view assembles a block B (e.g., all not-yet-included transactions
that it knows about, ordered by time of arrival) and sends B to all validators.

• For j = 1, 2, . . . , k − 1:

– At time k∆ · v + j∆: If validator i has received a block B (from the leader or secondhand from
another validator) by this time during the view, send B to all validators.

• At time k∆ · v + k · ∆, if validator i received a new block B at some point in this view, update
Ci := (Ci, B). [I.e., append B to its local chain.]
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Assume that the network is synchronous, and that you are promised that there will be at most f crash
faults (you are told the value of f ∈ {1, 2, . . . , n − 1} up front). What is the smallest value of k for which
the subprotocol above guarantees agreement among the non-faculty validators at the end of a view (with
either all the non-faulty validators appending the same block B to their local chains, or all non-faulty
validators appending nothing to their local chains)? For full credit, provide a complete answer for all values
1 ≤ f ≤ n− 1 (i.e., a proof that your suggested value for k is sufficient for agreement at the end of a view,
and that any smaller value of k is not).
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Ethereum Sepolia Demo (20 points) 
 
For the final task of this assignment, we’re going to deploy a smart contract to the Ethereum 
Sepolia Testnet. Minimal/no coding is going to be required, and everything can be done from 
your browser. The main objective of this demo is to interact with a blockchain and develop a 
sense for what the practical end-to-end flow looks like.  
 
We’ll primarily be following this short tutorial: https://www.youtube.com/watch?v=I_OZd0HN7ro 
 
Step 1: Download MetaMask. The first thing we’re going to need to do is download a wallet 
client that will allow us to interface with the chain. We recommend downloading MetaMask, 
which you can use as a Chrome extension. You can download it here: 
https://metamask.io/download/ 
 
Step 2: Link MetaMask to Sepolia. Now that we have MetaMask installed, we need to make it 
interface with the Sepolia Testnet. You can do this by going to https://chainid.network/ and 
searching for “sepolia” in the search bar. Click the filter icon to the right of the search bar and 
make sure that “Show Testnets” is switched on. You will see many results, but only one of them 
will say just “Sepolia” and nothing else (it should have Chain ID 11155111). Click on “Add chain” 
for that result, and approve the MetaMask popup that comes up. After that, click on the 
MetaMask icon, and switch from Ethereum Mainnet to Sepolia by clicking the MetaMask icon on 
the Chrome toolbar, and then selecting the Ethereum icon on the upper left of the MetaMask 
menu (as in the left image). Then, scroll down to the bottom and select the “Sepolia” option 
(shown as a purple S in the right image below). This step is also shown in the YouTube tutorial. 

 
 

https://www.youtube.com/watch?v=I_OZd0HN7ro
https://metamask.io/download/
https://chainid.network/


Step 3: Receive Sepolia Tokens. In order to submit a transaction (including the smart contract 
that we’ll deploy today) to the chain, you’re going to need tokens. This is because in order to 
manage congestion on the chain, a transaction fee is charged to users who submit transactions. 
On main networks, these tokens can hold real value. Today, we’ll only be interacting with the 
Sepolia test network. While there is still technically still scarcity in test network tokens, you can 
acquire them for free through a faucet that distributes small denominations of the token.  
 
The faucet that we’ll use can be found here: 
https://cloud.google.com/application/web3/faucet/ethereum/sepolia 
 
After going to the website, first click the MetaMask icon and copy your wallet address: 
 

 
 
Then, paste it into the “Wallet address or ENS name*” box and click “Receive 0.05 Sepolia ETH 
 

 
 
After this step, you should see 0.05 SepoliaETH in your wallet.  
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Step 4: Write a contract on Remix. Remix is a web IDE that allows you to write smart 
contracts in a programming language called Solidity. You can access Remix at 
https://remix.ethereum.org/. In the file explorer on the left, right click on the “contracts” folder 
and make a new file (as shown in the left image). Name the file “SimpleStorage.sol”. The 
explorer should look like the image on the right when you’re done. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Next, open SimpleStorage.sol and paste in this code: 
https://github.com/charmingdata/all-smart-contracts/blob/main/SimpleStorage.sol 
 

 

 
 

https://remix.ethereum.org/
https://github.com/charmingdata/all-smart-contracts/blob/main/SimpleStorage.sol


Step 5: Deploy a contract on Remix. To deploy the contract, we have to first compile it. You 
can do that by either clicking Ctrl/Cmd-S, or by going to the compilation menu and clicking 
“Compile SimpleStorage.sol” as shown in the image below 

 
To deploy the contract, go to the deploy menu (indicated by the Ethereum sign and right arrow). 
Under Environment, select “Injected Provider - MetaMask”. Finally, type in a sentence (e.g. 
“test”) in the box next to the orange “Deploy” button. After clicking “Deploy” and confirming the 
MetaMask transaction fee, the contract will be live! You can view it on Etherscan by clicking the 
link in the Remix logs (as shown in the right image). The YouTube tutorial also shows this step. 

 
 
 
 
 
 

 

 
 



On Etherscan, you should see a page that looks like this 
 

 
 
Congrats, you’ve deployed your first smart contract!  
 
Step 6: Interacting with the contract 
 
Now that the contract has been deployed, we can interact with it. In Remix, open the dropdown 
for SIMPLESTORAGE under “Deployed Contracts”. When you click “getSentence”, you should 
see the string you entered in before. If you type in a new string next to “setSentence” and hit the 
button, you’ll be prompted by MetaMask to pay an additional transaction fee, and you should 
see another transaction show up on Etherscan. This is because when you’re calling 
getSentence, you’re only reading the network state. When you’re calling setSentence, you’re 
modifying it, which requires submitting a new transaction.  

 
 



Step 7: Submit to Gradescope 
 
Submit the URLs of the Etherscans for the transactions you submitted in steps 5 and 6 to 
Gradescope. 
 
 

 
 


