
Lecture 1

Introduction/Course Logistics/Mental
Models

• goals for lecture:

– mental model for blockchain protocols and web3

∗ what does this tech achieve that we didn’t already have?

∗ cf., mental model for Internet (near-instantaneous global digital communica-
tion)

∗ general-purpose functionality of a computer, but with the “decentralization/ownerlessness”
of the Internet

– overview of course and its requirements

• mental models for blockchains/web3:

– general-purpose functionality of a computer (like your laptop)

– “decentralization” of the Internet (i.e., result of coordination by many diverse
parties, no one owner or operator)

– Internet: shared global infrastructure for communication (i.e., data dissemination)

– blockchain protocol: shared global infrastructure for computation (i.e., data pro-
cessing) [a.k.a. the “computer in the sky”]

– so can think about a blockchain as either:

∗ like your laptop, but everyone else also has an account, and with the hardware
swapped out for the Internet

∗ the Internet, with a (virtual) shared computer sitting on top

• example application: ownership of digital assets

– (in a much more general sense than mere cryptocurrencies)

7



– in general, the same way a computer networking course doesn’t talk about social
media platforms, we will mostly won’t discuss applications and focus instead on
how to build the infrastructure that enables those applications

– but digital assets is a fundamental example and demonstrates why new technology
is needed

– “ownership” = think in the same sense as your physical possessions, for stu↵
you bought or created in the digital realm (e.g., a concert ticket, or social media
content)

– viscerally felt gap between strength of owndership for physical and digital posses-
sions; blockchain technology can help narrow this gap

• next: elaborate on analogies between blockchain protocols and two other “intermediate
layers,” operating systems and the IP protocol

• cartoon of a computer:

– visualize as a stack of layers, with user-facing layer at top

– top layer: applications like Photoshop, Word, etc.

– bottom layer: hardware/physical machine

– intermediate layer: operating system

– roles of the OS: (will be strong parallels with blockchain protocols)

∗ acts as a “master program” that coodinates all applications (e.g., which pro-
gram is using the processor at any given time)

∗ provides a “virtual machine” abstraction to applications (with an imaginary
processor, memory, etc.) — programmers can code as if their program will
run (by itself) on a physical realization of the virtual machine

– thus, separation of responsibilities: developers are responsible for translate what
a user wants (e.g., “crop an image”) into a sequence of VM instructions (typically
in two stages, first in a high-level language like Java and outsourcing the rest
to a compiler), the OS is responsible for mapping VM instructions to machine
instructions (which are realizable by the actual hardware)

– note: the OS insulates applications from hardware, and vice versa (recurring
theme of an “intermediate layer”)

∗ can innovate on applications without worrying about the underlying hard-
ward, as long as you conform to the OS’s virtual machine

∗ can innovate on hardware without worrying about applications, as long as
you can realize whatever the OS might ask of you

– recall litmus test: is this tech already good enough to realize the dream of property
rights for digital assets?

8



∗ good news: capable of any computation (e.g., certainly capable of maintaining
a logical spreadsheet that tracks who own what)

· aside: T. J. Watson (President of IBM) in 1943: “world market for a
total of 5 computers”

∗ bad news: neither shared nor decentralized

· for this reason, not suitable for ownership of digital assets

· computer could crash, go o✏ine

· anyone with admin privileges could change content or prevent updates,
etc.

• cartoon of the Internet:

– again, top layer is application layer, user-facing (send an email, load a Web page,
etc.)

– again, bottom layer is hardware/physical devices (which actually physically trans-
port 0s and 1s from one place to another)

– intermediate layer here is IP (Internet Protocol), whose responsibility is to provide
point-to-point communication to layers above

∗ like a digital version of the postal service—try to transport a data packet
from a machine with a given IP address to the machine with the packet’s
destination IP address

– local networks are then responsible for getting (by whatever means) a packet to
traverse one hop

– applications can use IP functionality without worrying about how it’s actually
realized (cellular, WiFi, Ethernet, etc.)

– lower-level networks can innovate on how they get 0s and 1s from one place to
another, as long as they can realized the one-hop routing functionality required
of them by IP

– decoupling of the application and hardware layers particularly striking in the
Internet example: IPv4 has been around since the 1980s, unchanged, even as
massive technological leaps have happened at the application and hardware layers
(Web, cloud, mobile, social, etc.)

– recall litmus test: is this tech already good enough to realize the dream of property
rights for digital assets?

∗ good news: shared and decentralized (everyone uses same network, no one
owner or operator, very di�cult to shut down or obstruct use due to the large
number of independent parties involved)

∗ bad news: only passes bits around, “stateless” by design (e.g., not designed
to track anything, digital assets or otherwise)

9



• cartoon of web3:

– one way to think about it: a shared computer but with its hardware swapped out
for the Internet

– another way: put a virtual machine on top of the Internet

– can again visualize as a three-layer stack:

∗ top layer: user-facing applications (in this context, sometimes called “smart
contracts”), e.g. Uniswap, OpenSea, Farcaster, etc.

∗ bottom layer: the Internet (in e↵ect, Web3 infrastructure piggybacks on ex-
isting Internet infrastructure)

∗ intermediate layer: blockchain protocol (e.g., Ethereum, Solana, etc.)

– strong parallels between the role of a blockchain protocol and that of the operating
system of a computer:

∗ acts as a “master program” that coordinates all applications/smart contracts
(e.g., determines which one is currently be executed by the virtual machine)

∗ exports a VM to application/smart contract developers (though in this case,
the VM is not meant to be an abstraction of any particular physical machine)

∗ programmers (e.g., in Solidity or Rust) can code applications as if their pro-
gram would be run a physical machine corresponding to the exported VM

– like the Internet, the product of coordination between many physical machines
(ideally with di↵erent owners/operators)—in this sense, “decentralized”

– analogy: Web servers are physical machine all over the planet that coordinate by
running a common protocol (http) to enable end users to experience the Web;
physical machines running a common blockchain protocol (e.g., Ethereum) coor-
dinate to enable end users to experience what is logically a shared general-purpose
computer

– note, fairly meta (confusing to non-CS folks): a collection of physical machines
coordinate (using a blockchain protocol) to simulate the results of a computation
if it were, hypothetically, to be run a physical realization of the virtual machine

– why take many physical computers and use them to simulate only one? only the
latter is decentralized and, e.g., suitable for attesting to ownership of digital assets

• high-level syllabus:

– goal of the course is to learn how to build the “computer in the sky” (in the same
sense that you learn what it takes to build the Internet in a computer networking
course, though in our case the technology is still very much in flux)

– will have three parts (each roughly 9 lectures):

10



– Part I: how to build a shared global virtual computer without regard to perfor-
mance (e.g., power of a 1950s computer) and with “permissioned” infrastructure
(e.g., a fixed and known set of 22 or 100 physical machines, all over the world)

∗ from day one, developing and using applications will be permissionless (i.e.,
open to anyone) — absolutely central to the blockchain/Web3 vision

∗ this part is largely a selection of the most relevant material from classic com-
puter science courses (which not everyone takes, alas), like distributed sys-
tems/computing and operating systems

∗ topics include: fault-tolerant consensus, virtual machine execution

– Part II: focus on performance/scaling (while retaining the “permissioned infras-
tructure” assumption); e.g. would like our virtual machine to at least have the
processing power of a 1990s or 2000s-era computer

∗ for much of the material, one could imagine a world in which it would already
be taught in existing computer science courses (even in the pre-blockchain
era), but for the most part it’s not—the design of high-performance blockchain
protocols seems to be forcing a novel synthesis of a number of known concepts

∗ topics include: rollups (optimistic and “zk”) and sequencers, SNARKs, light
clients, bridges, data availability, transaction fee mechanisms, etc.

– Part III: permissionless protocols: an even harder version of the problem in the
physical machines running the protocol can join and leave as they wish (as opposed
to being fixed and known)

∗ would’ve seemed crazy in the pre-Bitcoin era (still seems a bit crazy/impossible,
tbh), yes most of today’s major blockchain protocols (Bitcoin, Ethereum,
Solana, etc.) are to some degree permissionless

∗ topics include: proof-of-work vs. proof-of-stake (approach to sybil-resistance),
incentives, public mempools, MEV, etc.

• comments on the course:

– course is about a new computing paradigm, not digital money

∗ despite what you may have heard, blockchains 6= cryptocurrencies

∗ equating the two is like equating the Internet with email (the former is a
general-purpose technology, the latter is one very specific thing you can do
with the technology)

∗ cryptocurrencies not really relevant for us until Part III of the course, but even
there, they are a means rather than and ends (useful to provide incentives,
pay transaction fees, use as collateral, etc.)

– principles over protocols

11



∗ e.g., when you take an operating systems course, you focus on principles and
design trade-o↵s that relevant for most or all OSes, and use specific OSes
(Android, etc.) as case studies or to illustrate the more general concepts

∗ same thing here: you’ll learn plenty about Bitcoin and Ethereum (and several
other “layer-1s” and “layer-2s”) as we go along, the emphasis is on fundamen-
tal design choices that any blockchain protocol designer must grapple with,
and will view specific projects through the lens of these general principles

– a new area of computer science

∗ forming literally in real time, before our eyes

∗ synthesizes existing parts of computer science (distributed systems, cryptog-
raphy, etc.) and other fields (e.g., economics and game theory) but now
clearly an intellectually deep area in its own right

∗ this course is an inadvertent capstone course—you will see many threads of
your previous CS education come together in surprising and satisfying ways

∗ your opportunity to get in on the ground floor of this area, like getting into
the Internet/Web in the early 1990s

∗ this course is your one-stop shop for jumping into industry or research; mas-
ter this material and you will have a tremendous competitive advantage (cur-
rently, demand for this skill set is much bigger than supply, and outside of a
course like the skill set is very di�cult to acquire)

• deliverables

– (50%) open-ended team project, teams of 3 or 4

– (40%) homeworks, maybe 8 or 9 total

– (10%) participation

– no exams

12


