
Lecture 2

Consensus Basics

• recap: building the computer in the sky (i.e., what are we trying to build, again?)

– one way to think about it: a shared computer but with its hardware swapped out
for the Internet

– another way: put a virtual machine on top of the Internet

– can again visualize as a three-layer stack:

∗ top layer: user-facing applications (in this context, sometimes called “smart
contracts”), e.g. Uniswap, OpenSea, Farcaster, etc.

∗ bottom layer: the Internet (in e↵ect, Web3 infrastructure piggybacks on ex-
isting Internet infrastructure)

∗ intermediate layer: blockchain protocol (e.g., Ethereum, Solana, etc.)

– strong parallels between the role of a blockchain protocol and that of the operating
system of a computer:

∗ acts as a “master program” that coordinates all applications/smart contracts
(e.g., determines which one is currently be executed by the virtual machine)

∗ exports a VM to application/smart contract developers; programmers can
code applications as if their program would be run a physical machine corre-
sponding to the exported VM

– like the Internet, the product of coordination between many physical machines
(ideally with di↵erent owners/operators)—in this sense, “decentralized”

– why take many physical computers and use them to simulate only one? only the
latter is decentralized and, e.g., suitable for attesting to ownership of digital assets

• goals for lecture 2:

– blockchain protocol basics: validators, transactions, blocks, consensus vs. execu-
tion
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∗ need to start internalizing relevant language and concepts, will hear about
these over and over

– state machine replication (SMR), consistency, liveness

∗ the specific consensus problem relevant to blockchain protocols and the basic
guarantees that we want/need

– challenges to consensus: faulty validators (crash vs. Byzantine), message delays
(bounded vs. unbounded)

∗ consensus is hard because validators may not behave as expected, and the
communication network may not behave as expected

∗ will give us a road map to solve SMR in more and more challenging and
practically relevant settings

– (if time) security thresholds

∗ the fraction of validators at which consensus flips from possible to impossible

∗ threshold depends on assumptions (could be 33%, 50%, etc.)

• some terminology:

– validator = physical machine running a blockchain protocol [a.k.a. “node”]

∗ crucial to have many validators (meaning of “decentralization”)

∗ cf., Web servers (all running the http protocol)

∗ canonically, for now, maybe 22 or 100 validators

– transaction = user-submitted action

∗ cf., a command like “crop an image” in Photoshop

∗ from user perspective, the basic unit of computational activity

∗ could be an action to be taken by the blockchain itself (analogous to directly
asking your laptop’s OS to do something) or by a smart contract/program
running in its virtual machine

∗ translates to a snippet of low-level code to be executed in the blockchain’s
virtual machine

– block = a sequence of transactions

∗ i.e., a batch of transactions, ordered

∗ for now, allow blocks to have unbounded size (but if you want, think of e.g.
100 transactions in a block)

• responsibilities of a blockchain protocol:

– consensus: decide on a sequence (a.k.a. “chain” of blocks)
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∗ topic of the next 5 lectures

∗ since blocks are themselves sequences of transactions, a chain of blocks is a
transaction sequence (which will then correspond to a sequence of operations
carried out in the blockchain’s VM)

∗ crucial that all validators agree on the same sequence, else could disagree
about the state of the blockchain’s VM (e.g., on who owns what)

∗ think of a blockchain protocol as running forever (like your desktop), val-
idators should keep agreeing on new blocks as long as users keep submitting
transactions

∗ fundamentally, can think of the blockchain consensus layer as a sequencer: it
gets slammed with transactions from lots of di↵erent clients and determines
the ultimate order of operations (and also, if there isn’t room for everybody,
which transactions get included at all)

∗ at the consensus layer, pay no attention to what the transactions might mean
(they are just 0s and 1s), transaction semantics (as virtual machine instruc-
tions) are the job of the execution layer

– execution: keep the state of the virtual machine up-to-date

∗ topic of lectures 8 and 9 (concludes Part I)

∗ when a new block is added to the running sequence chain, must carry out the
corresponding lines of VM code on the VM (e.g., reading from and writing
to virtual memory, etc.)

∗ so, a validator (i.e., physical machine) has a local representation of the
blockchain’s virtual machine (e.g., perhaps a key-value store that represents
the current state of the virtual machine’s memory, etc.), and must update that
local representation whenever there are new VM instructions to be executed

• Consensus: Getting Started

– goal of the consensus section of the course is to develop a strong understand-
ing of the most fundamental concepts that come up all the time when discussing
blockchain protocols, like consistency-liveness trade-o↵s, synchronous vs. asyn-
chrony, security thresholds in di↵erent settings, etc.

– informally, the goal of consensus is to keep multiple validators in sync (e.g., on
who owns what) despite failures and attacks (e.g., denial-of-service attacks, hacked
validators, etc.)

– the fundamental problem that must be solved by any blockchain protocol—the
consensus component acts as the glue between the “Internet hardware” and the
application-facing virtual machine [in e↵ect, turns the Internet into a (decentral-
ized) transaction sequencer]
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– plan: start simple with relatively strong assumptions, gradually weaken assump-
tions and design more and more sophisticated, robust and practical protocols
(culminating with Tendermint, a popular blockchain consensus protocol originat-
ing with Cosmnos and now used by many other projects)

– standing assumptions:

∗ fixed and known set of n validators (e.g., n = 22 or n = 100), each with a
known ID and IP address

· i.e., when we design a protocol, can think of the validator set and their
IP addresses as hard-coded into it

· a.k.a. “permissioned” or “proof-of-authority” blockchains (i.e., randos
can’t just join the validator set)

· amazingly, all the most famous blockchain protocols are “permissionless”
(i.e., they do allow randos to join the validator set!), and accordingly will
relax this assumption in Part III (proof-of-work vs. proof-of-stake, etc.)

· blockchain protocol design already quite di�cult in the permissioned case,
as we’ll see in Parts I and II

∗ all validators have a common notion of time (i.e., “synchronized clocks”)

· in e↵ect, a shared global clock (like GMT)

· in practice, doable (at least to an accuracy acceptable for blockchain
protocol-relevant timescales)

· also, a protocol like Tendermint (see Lecture 6) can be modified (with
modest additional complexity) to accommodate a bounded amount of
heterogeneity across the clock rates of di↵erent validators

· won’t discuss this issue further in this course

• state machine replication (SMR)

– lots of di↵erent consensus problems (“Byzantine agreement” probably the most
famous); for a perpetually running blockchain protocol, state machine replication
(SMR) is the most relevant consensus problem

– “state machine” — like a DFA (as you might study in automata theory of com-
pilers); for us, “state” = state of a blockchain’s virtual machine (virtual memory
contents, etc.), execution of a single VM instruction corresponds to a (determin-
istic) state transition

– “replication” — all the validators perform the same sequence of state transitions
(and so agree on the state of the VM)

– definition of the SMR problem:

∗ “clients” submit transactions (abbreviated “txs”) to validators

· canonical client: you, using e.g. an app on your phone on a software wallet
on your desktop that interacts with a blockchain like Ethereum
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· canonical transactions: make a payment, mint an NFT, etc.

∗ each validator maintains an append-only list of finalized transactions (a.k.a.
a “log” or “history”)

– solution to the SMR problem: a protocol that guarantees consistency and liveness
[three terms we need to define]

– protocol = the code run by each validator (will see several concrete examples over
forthcoming lectures)

∗ local computations

∗ receive messages from other validators and transactions from clients

∗ send messages to other validators (remember, list of validators and their IP
addresses are baked into the protocol)

– consistency = all validators should agree on the history (i.e., on the same tx
sequence)

∗ OK if some validator lags behind the others and just needs to catch up (e.g.,
local histories B1 ! B2 ! B3 and B1 ! B2)

∗ but no disagreements about tx ordering are allowed (not OK: B1 ! B2 ! B3

and B1 ! B2 ! B0
3)

∗ equivalently: all validators’ local chains should be prefixes of a common chain

∗ equivalently (you check): if you superimpose all validators’ local chains, there
are no “forks”

– note: consistency by itself trivial to achieve (just do nothing!) so also need:

– liveness = every valid tx submitted by a client eventually added to validators’
histories

∗ in practice, also want a concrete bound on the delay until inclusion/finalization,
known as the latency of the protocol (an important performance metric, think
about it from the user perspective!)

• why is consensus hard?

– let’s try a first stab (which is not a bad idea, actually) and see what goes wrong

– Protocol A:

∗ target say one block per second
[fast, but achievable by state-of-the-art protocols]

(1) validators take turns as “leader” (round-robin, one per second)

[idea: di↵erent validators know about di↵erent transactions; rather than com-
pare notes, just elect a dictator to coordinate everybody]

[because of our assumptions of a shared global clock and a known set of
validators, everyone agrees on the leader of a given second without any com-
munication]
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(2) current leader decides on a block

[e.g., the new transactions it has heard of, ordered by time of arrival]

(3) leaders sends its block to all the other validators

– note Protocol A would seem to consistent and live, all validators operate in lock-
step, adding the same new block (namely, the leader’s proposal) in each second

– what could go wrong?

– question: what if a validator doesn’t hear from the current leader within one
second? (not suppose to happen, but what if it does?)

∗ perhaps due to a problem with the leader (e.g., it crashed)

∗ perhaps due to a problem with the network (e.g., congestion)

– and these are indeed the key challenges to consensus

∗ faulty validators (i.e., for whatever reason, don’t behave as expected)

· and protocol doesn’t automatically know which ones are faulty (otherwise
could just ignore the faulty and proceed with the rest)

∗ unreliable communication network (i.e., for whatever reason, doesn’t behave
as expected)

– these challenges are unavoidable in practice, so much design consensus protocols
to work despite them

– revised goal for SMR: a protocol that guarantees consistency and liveness, despite
faulty validators and an unreliable communication network

– can therefore get easier/harder versions of the SMR problem by allowing less/more
severe forms of faults and network unreliability

• faulty validators/unreliable network:

– faulty validators (easy mode): crash faults

∗ every validattor dutifully follows the protocol but may crash (forever) at some
point

∗ could crash e.g. while in the middle of sending a bunch of messages to all
other validators

– faulty validators (hard mode): Byzantine faults

∗ history bu↵s: see “Byzantine Generals” paper for backstory

∗ i.e., worst-case faults: Byzantine validators can act arbitrarily (pretend to
have crashed, swap out the protocol code for malicious code, lie about what
they know or the messages they’ve heard, etc.)

∗ seems paranoid, no?
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∗ originally studied in 1980s by researchers who protocols robust to software (as
opposed to hardware) faults—not clear how to model a machine with buggy
software, so ideally don’t commit to any one model and design a protocol
that works for arbitrary behavior

∗ true killer app of Byzantine fault-tolerant consensus is blockchain protocols
(especially those securing valuable assets), where validators might literally be
controlled by bad actors (directly, or through hacking/intrusion) who want
to interfere with the protocol (appropriate to be paranoid, as it is in e.g.
cryptography)

∗ lots of other fault/adversary models studied as well, we’ll only have time for
the crash/Byzantine cases

– unreliable network (easy mode): synchronous network

∗ a priori bounded delays — i.e., for a known parameter �, every message
delivered within � time steps (e.g., perhaps corresponding to 1 or 2 seconds)

∗ message delivery time still unpredictable (anywhere between 1 and �), but
bounded

∗ can hard-code � into the protocol description, if desired

∗ reasonable assumption for the Internet on a good day (and the bigger the
value of �, the more likely the assumption is true be true), but not when
there are network outages or attacks (e.g., a denial-of-service attack)

– unreliable network (hard mode): asynchronous network

∗ all messages eventually delivered (i.e., delays finite, but could be arbitrarily
large)

∗ as with Byzantine faults, this is a pessimistic assumption, but the Internet is
unpredictable place, might not want to commit to any one model of it

– (we’ll actually work a lot in a hybrid synchronous-asynchronous setup known as
partial synchrony, see Lecture 4)

• road map: (will solve successively harder and more practical versions of the SMR
problem)

– Lecture 3: SMR with crash faults and a synchronous network

– Lecture 4: SMR with crash faults and an asynchronous (actually, partially syn-
chronous) network

∗ will learn the essence of a famous protocol (used e.g. in lots of data centers)
called Paxos (or Raft, in a more modern incarnation)

– Lecture 6: SMR with Byzantine faults and an asynchronous (actually, partially
synchronous) network
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∗ will learn the essence of a famous protocol (used in many blockchain projects)
called Tendermint

– expectations:

∗ hopefully positive results (i.e., SMR protocols guaranteed to be consistent
and live) at the beginning of the road map when in easy mode

∗ gotta be ready for impossibility results (i.e., SMR unsolvable by any protocol)
at the end of the road map when in hard mode

∗ expect protocols to go from relatively simple to more sophisticated as we
progress along the road map

– aside: would obvious want a perfect protocol (simple, no assumptions, all the
guarantees we want), but alas doesn’t exist, any blockchain protocol must make
some tough trade-o↵s

– debates about the relative merits of di↵erent major blockchain protocols often
boil down to di↵erent design choices about how to resolve these trade-o↵s (on
which reasonable people can disagree)

– next 5 lectures will give you a strong understanding of these (very practical) issues

• security thresholds [ran out of time, will cover in future lecture]

– we’ve talked about two dimensions along which can make a consensus problem
easier/harder (less/more severe faults and message delays); a third is to vary the
number of misbehaving validators

– intuition: [largely correct]

∗ consensus is easy with 0% faulty validators

· Protocol A already basically good enough, even in asynchrony (why?)

– consensus is impossible with ⇡ 100% faulty validators

∗ intuition clearest in the case of Byzantine faults

∗ e.g., imagine that 98 Byzantine validators collude to convince the other two
(non-faulty) validators of di↵erent blocks, how can the latter distinguish the
one lone honest voice from the 98 liars?

· some subtleties here, actually, but still accurate in spirit

– security threshold = fraction of faulty validators at which solving the SMR prob-
lem flips from possible to impossible

∗ value generally depends on your assumptions (e.g., on severity of faults and
message delays)

∗ typical values: 50% (i.e., strict non-faulty majority necessary and su�cient
for consensus) or 33% (i.e., super-majority necessary and su�cient)
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∗ hear about these thresholds all the time in practice (e.g., on the possibility of
some bad actor gaining control of 51% of Bitcoin’s hashrate of 34% of staked
ETH)

– one takeaway: a credible blockchain protocol requires a validator set of mostly
reliable operators (you don’t have trust any given validator, but you do have
to believe that “on average” they are competently and correctly operating the
protocol)
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