
Lecture 3

SMR with Crash Faults in Synchrony

• recall from Lecture 2 definition of the SMR problem, definitions of consistency and
liveness

• recall from Lecture 2 the definition of crash faults (easy mode(), Byzantine faults (hard
mode), synchronous network (easy mode), asynchronous network (hard mode), and the
road map from easy/easy to hard/hard

• goal for this lecture:

– get a feel for the challenge of crash faults

– solve SMR (i.e., consistent and live protocol) in easy/easy mode (crash faults,
known bound � on message delays)

– discuss challenges of and compromises around asynchrony

• starting point: Protocol A from last time:

– “view” = � consecutive timeslots

– validators take turns as leader (one per view)

– in view v = 0, 1, 2, . . .:

∗ at time � ·v, leader assembles block B (all not-yet-included txs that it knows
about)

∗ at time � · v, leader sends B to all other validators

∗ at time � · v + �, all validators append B (if any received form leader) to
their local chains/histories

• question: what could go wrong? (might seem like it would be irrelevant if non-leaders
crash, and if the leader crashes everybody just skips that view, no harm no foul)

• problem: leader might crash after sending B to some but not all other validators (would
violate consistency, why?)

23



• example execution in which, due to issue above, consistency is violated (see slides)

• fix:

– validators will update the next leader as to their current history

∗ to make sure leader is as up-to-date as everyone else

∗ doubles the length of the view, as now have non-leader-to-leader communica-
tion (catch-up messages) followed by the opposite (leader’s proposal)

– validators pass around entire history/chain, not just latest block

∗ will see how to make this practical using cryptographic commitments in
Part II

∗ point: due to possibility of a sequence of leader crashes, a validator might
learn about a number of new blocks at the same time

• blending these ideas into Protocol A brings us to Protocol B:

– “view” = 2� consecutive timeslots (extra � so that there’s time for non-leaders
to update leader before leader makes a proposal)

– validators take turns as leader (one per view)

– each validator maintains a local chain Ci

– in view v = 0, 1, 2, . . .:

∗ at time 2� · v, each validator i sends the leader ` of the view its current
chain Ci

∗ at time 2� · v +�:

· let C denote longest Ci received by ` in this view

· leader assembles block B (all not-yet-included (in C) txs that it knows
about)

· leader sends C⇤ := (C,B) to all validators

∗ at time 2� · v + 2�:

· if validator i receives a new chain C⇤ from the leader, it updates Ci := C⇤

• show picture of communication pattern of one view of Protocol B

• show picture of communication pattern of multiple views of Protocol B

• give example execution (already a surprising number of di↵erent ways that things might
play out)

– e.g., at end of view with a faulty leader, non-faulty validators may have di↵erent
local chains (no consistency violation yet, but entering dangerous territory)

24



– e.g., might have one version B3 of block number 3 that gets forgotten (because all
validators that knew about it have crashed), and subsequently a new version B0

3 is
proposed by a non-yet-crashed validator (again, seems to be drifting dangerously
close to a consistency violation)

– in example, never actually wind up with a consistency violation — could this be
true in general?

∗ should demand a proof—in general, a distributed protocol without a correct-
ness proof is probably buggy

∗ and bugs in a successful and Internet-scale consensus protocol are likely to
surface (runs for multiple years, widely varying Internet conditions and work-
loads)

∗ proofs play an unusually central role in distributed computing—generally
have to design a protocol and its correctness proof at the same time, each
deeply informing the other

∗ only by seeing the correctness proofs can you understand why e.g. Paxos/Raft
and Tendermint work the way that they do

• proof of consistency:

– recall: consistency is equivalent to all (not-yet-crashed) validators’ local chains
being prefixes of a common chain (otherwise the superposition of all the local
chains has a fork, representing a consistency violation)

– claim: at each timeslot, the chains of the not-yet-crashed validators are consistent

[exercse: note chains of the crashed validators need not be consistent with the
uncrashed ones, why?]

– proceed by induction on timesteps (certainly true at the beginning)

– only time something could go wrong is at the end of a view, when validators might
update their local chains (e.g., for view v, at timestep 2� · v + 2�)

– for each view v, by the inductive hypothesis, all Ci’s sent to the leader are con-
sistent with each other (i.e., all prefixes of a common chain)

∗ these were the local chains of all not-yet-crashed validators at timestep 2� ·v
(at which the inductive hypothesis applies)

– thus C, the longest of these Ci’s, will extend all the Ci’s (in fact, C is exactly the
common chain that all the Ci’s are prefixes of)

– since C⇤ is just C with an extra block (B) tacked on the end, it will extend all of
the Ci’s

– thus, no matter which validators update their local chains to C⇤ (i.e., no matter
which validators receive the leader’s proposal before the leader possibly crashes),
the inductive statement will continue to hold

25



• proof of liveness:

– suppose tx z known to some non-faulty validator i at timestep t

– let v be the next view where i is the leader (exists, why?)

– i’s proposal in that view will include z (if nothing else, in the new block B)

– since i non-faulty, by end of view v, all uncrashed validators will have adopted i’s
proposal and included z in their local chains

• key takeaways/design patterns from Protocol B and its analysis (will recur in the
Paxos/Tendermint, and also many modern blockchain protocols):

1. views = repeated attempts to finalize new txs

2. leaders = coordinate the txs proposed in each view

– chosen e.g. round-robin, or randomly

3. view may end with non-faulty validators in di↵erent states

– possibly due to a faulty leader and/or due to asynchrony

– leader of next view may need to “clean up the mess” left by the previous view

4. leader should be as up-to-date as all non-faulty validators

– otherwise, an out-of-date leader might (despite the best of intentions) propose
a chain that conflicts with those of up-to-date validators

– worse, this proposal might be adopted by other out-of-date validators, leading
to a consistency violation with the previously up-to-date validators

5. distributed computing is hard! (even the playground of crash faults and bounded
message delays is non-trivial)

– you may experience this yourself on the homeworks!

• next challenge: asynchrony

– synchrony assumption is pretty strong, would prefer protocols robust to unex-
pected network outages/attacks

• question: is Protocol B still consistent and live if some messages might get delayed
more than � timesteps?

• answer: no. reason: leader may not hear about all non-faulty Ci’s by the time it makes
a proposal

– have the issues with an out-of-date leader mentioned above. e.g., if some non-
faulty validator has local chain B1 ! B2 ! B3, the leader only knows about
B1 ! B2 (because catch-up message from the former validator is delayed), leader
may propose B1 ! B2 ! B0

3, which might be adopted by some other validator
that knows only about B1 ! B2 (which is a consistency violation)

26



• will need a more sophisticated protocol to deal with asynchrony (see Lecture 4 for the
solution, which involves adding additional friction to validators finalizing new txs and
to leaders making proposals, and also a new assumption that a strict majority of the
validators are non-faulty)

• question: how should we model asynchrony?

• bad answer: make� really big (basically avoid the problem, wind up with stupid/impractical
protocols that sit around idly most of the time)

• ambitious answer: no assumptions on message delays at all (other than eventually
delivery, which is presumably necessary for anything to be possible)

– called the asynchronous model

• problem: (FLP theorem) even with the threat of a single crash fault, can’t solve SMR
with an asynchronous network (exact statement is subtle and proof is quite non-trivial,
see Bonus Lecture 1 for a detailed discussion); in the main lectures, we will take this
result on faith

• perspective: the point of an impossibility result is not to give up, it’s to provide
guidance as to the sort of compromises you’ll need to make to make progress (i.e.,
places limits on the best-case scenario)

• possible compromises:

1. pull back from asynchrony to “partial synchrony” (next lecture, sweet spot be-
tween synchrony and asynchrony)

– partial synchrony assumption is weak enough to be practically relevant, but
strong enough that can design protocols with satisfying guarantees

2. solve a problem easier than SMR (e.g., with relaxed consistency requirement)

– this is interesting and relevant to blockchains (e.g., for unrelated payments
like Alice ! Bob and Carol ! David, doesn’t matter is di↵erent validators
disagree on their orcer), but we won’t have time for it, alas

– would make for a good project

3. use randomized protocols to solve SMR with high probability (FLP does not rule
this out and, indeed, such protocols exist)

– big literature here, but mostly academic, limited practical impact (at least so
far)

– again, would make for a good project

27


