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1 Introduction

In this review, we provide an overview of the technical progress and applications of zk-SNARKs, zero-
knowledge succinct non-interactive argument of knowledge. We give a detailed dive into the Pinnochio
zk-SNARKs protocol[1], go over important current applications of zk-SNARKs, and propose zk-SNARK
circuits for new applications and games.

As a motivating example, zk-SNARKs are useful for blockchain rollups where the prover wants to keep
the witness of their computation a secret. Suppose Alice runs some computation off-chain, and in her
computation, she obtains some secret witness, such as the details of a z-cash transaction, or the location
of a newly-generated planet in the zk-game, Darkforest[2]. Alice would like the chain to commit the state
changes her computation made, without revealing her secret witness and without the chain rerunning her
entire computation on-chain. To this end, she would like a protocol where she, the prover, can convince the
chain, the verifier, that a statement is true, but reveal nothing else.

The following is a concrete example of a zero knowledge proof system, for the graph 3-coloring problem
(G3COL). A prover P and verifier V both know a graph G. P wants to convince V that she has a valid
3-coloring of G, without disclosing her coloring. The following protocol can be used[3]:

1. V randomly chooses an edge e ∈ E and asks P for the colors on the two vertices of e.

2. P randomly permutes the colors of the vertices of G, so that all red vertices becomes blue, all blue
becomes green, etc.

3. P returns the permuted colors of e.

4. V repeats steps (1) and (2) n times and accepts if and only if each of her n queries were answered with
two distinct colors

If P has a true 3-coloring of G, she will convince V with probability 1. In contrast, if P’s coloring
contains at least one edge whose vertices are the same color, she will convince V with probability at most
p = (1− 1/E)n. Thus, after a sufficient number of repetitions, n = O(E ln 1

δ ), V is confident that P has a
true graph coloring with probability 1− δ.

The above is an interactive proof system, where two parties’ (prover and verifier) interactions enable
them to recognize some language, L. The proof system should be such that any statement x ∈ L has a proof
causing V to accept it, while any statement x /∈ L has no proof that causes V to accept it. The protocol
should also not reveal x to V––only convince V that P has a member of L. These three key properties are
defined below. More formal definitions can be found in the appendix (8).
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1. Zero-knowledge: the proof only conveys information about the validity of the statement and nothing
about the prover’s witness

2. Completeness: Every statement with a valid witness has a proof that convinces the verifier

3. Soundness: A statement with an invalid witness does not have a proof that convinces the verifier

Zero-Knowledge interactive proof protocols were the starting point of zk-SNARKs. Goldwasser, Micali,
and Racknoff[4] first introduced sound, complete, and zero-knowledge interactive proof systems for Quadratic
Residuosity and Quadratic Non-Residuosity, two languages in coNP ∩NP [4].

Subsequently, Blum, Feldman, and Micali developed non-interactive zero-knowledge (NIZK) proofs [5],
using shared randomness to create a common reference string (CRS). Unlike the protocol for Graph-coloring,
a non-interactive protocol requires just one message to be sent from prover to verifier, cutting out the
back-and-forth interaction. This feature is especially important in blockchain rollups, so that the prover does
not need to be around every time someone wants to verify their proof.

The next key innovation was in reducing the size of the proof sent. Kilian[6] gave an interactive protocol
for zero-knowledge arguments that sent fewer bits than the size of the statement to be proved. Micali then
created the first sublinear-size NIZK proofs [7].

The next goal was to make proofs constant size. Groth, Ostrovsky, and Sahai[8][9] introduced pairing-based
NIZK proofs. Using these ideas, Groth developed the first constant-size NIZK arguments system for Circuit
SAT, an NP complete language[10]. Groth’s protocol used pairings to efficiently check polynomial relationships
between the discrete logs (the decoded versions) of the prover’s encoded messages, without needing to know
the decoded messages themselves. The proof is created so that checking a particular polynomial relationship
between elements of the proof is equivalent to verifying that prover has a satisfying assignment for the circuit,
a core idea in current zk-SNARKs.

Continuing on with the idea of verifying polynomial equations, Gennaro, Gentry, Parno, and Raykova[11]
introduced the now-popular Quadratic Span program (QSP) and Quadratic Arithmetic Program (QAP)
reductions, where an NP-statement is reduced to a statement about QSPs. Their method’s proof size, proof
generation complexity, and CRS setup complexity were much more efficient than Groth’s constant-size NIZK
arguments system[11].

The Pinnochio protocol used QAP reductions to create a constant-size NIZK arguments protocol with
CRS and proof generation time linear in the circuit size; verification in Pinnochio is also less than 10 ms, a 5-7
order of magnitude improvement[1]. Pinnochio is protocol Z-cash first used[1][12]. Subsequently, the Groth-16
protocol[13] improved on Pinnochio’s proof size and verifier complexity, having just 3 group elements in its
proof. It has since become the state-of-the-art, used in Z-cash and Circom[14].

These improvements are highly important because a zk-SNARK should be non-interactive and succinct.
In the graph 3-coloring proof system example, the protocol is sound, complete, and zero-knowledge. However,
it is interactive, and the proof size is linear in E. The technique it uses is also not generalizable. We will now
describe how a zk-SNARK achieves all these properties, for proving NP-statements (statements in NP, e.g.
that my graph coloring is in G3COL) about a wide range of computations.

2 zk-SNARK Construction

2.1 Preliminaries

Definition 1. (Arithmetic Circuit) A directed acyclic graph, with nodes as addition and multiplication gates,
and edges as wires, over a finite field Fp. Wires connect the outputs of one gate to the inputs of another.
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Each gate has two inputs and one output wire, and the circuit has one final output wire. Figure (1) is an
example of an arithmetic circuit.

Figure 1: Arithmetic circuit for f(s1, s2, s3) = (s1 · s2) · s3

For an m-gate, n-wire circuit, define a witness s = (s1, s2, ...sn) to be the assignments to the n wires of the
circuit such that each gate’s inputs and outputs satisfies the constraint defined by its operation. An m-gate,
n-wire arithmetic circuit defines a relation over witnesses s = (s1, s2, ...sn) such that for some constants
{ui,q, vi,q, wi,q}1≤i≤n,1≤q≤m,

n∑
i=1

siui,q ·
n∑

i=1

sivi,q =

n∑
i=1

siwi,q ∀1 ≤ q ≤ m (1)

The constraints above are a set of m rank-1 constraints, which model the relationships a circuit’s
multiplication gates enforces over its input and output wires. An example of a particular rank-1 constraint
may be s1 ∗ s2 − s3 = 0, for if a multiplication gate take as input s1, s2 and outputs s3. A set of m rank-1
constraints can be generalized into a quadratic arithmetic program, which makes QAPs natural to reduce
arithmetic circuits to.

Definition 2. (Quadratic Arithmetic Program) Pick target points r1, r2, ...rm ∈ Fp. Define t(x) =
∏m

q=1(x−
rq). Further, let ui(x), vi(x), wi(x) be degree m - 1 polynomials such that for 1 ≤ i ≤ n, 1 ≤ q ≤ m

ui(rq) = ui,q (2)

vi(rq) = vi,q (3)

wi(rq) = wi,q (4)

Then, a Quadratic Arithmetic Program is a relation over s = (s1, s2, ...sn) such that

n∑
i=1

siui(x) ·
n∑

i=1

sivi(x)−
n∑

i=1

siwi(x) ≡ 0 (mod t(x)) (5)
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Each target point corresponds to a gate in the circuit. For each target point rq, the QAP constructs
3n polynomials that when evaluated at rq, yield the 3n constants of the qth gate’s rank-1-constraint. The
QAP expresses the m rank-1 constraints as a QAP as a single equation over the polynomials. Thus, checking
polynomial equality in Equation (5) is equivalent to checking the m rank-1 constraints simultaneously. We
will eventually see that this is crucial to make our proofs succinct.

Checking particular equality and divisibility conditions about QAPs is key to our zk-SNARK protocols.
To do these checks in an encrypted manner, we introduce the following two concepts:

Definition 3. (Homomorphic Encoding) An injective homomorphism E : Fp → G such that it is hard to find
x given E(x).

For a cyclic group G of order p and multiplication as the group operation, we will use the encoding
E(a) = ga, for a generator g of G. This is homomorphic and injective. Moreover, by the hardness of the
discrete log problem, it is also hard to find x given E(x).

Definition 4. (Pairing Function) Suppose G1, G2, and GT are groups of prime order p. A pairing function,
or bilinear map, is a function

e : G1 ×G2 → GT (6)

such that if g, h, are generators of G1 and G2 respectively, then e(g, h) ̸= 1 is a generator of GT and
e(ga, hb) = e(g, h)ab.

Below, we are some basic properties about bilinear maps.

e(u, vw) = e(ga, hbhc) = e(g, h)a(b+c) = e(ga, hb)e(ga, hb) = e(u, v)e(u,w) (7)

e(vw, u) = e(v, u)e(w, u) (8)

e(ux, v) = e(g, h)xab = e(u, vx) (9)

For the Pinnochio implementation, we use symmetric bilinear maps, where G := G1 = G2[1].

In addition to these preliminaries for the Pinnochio protocol, we’ve included more formal definitions for
soundness, completeness, and zero-knowledge in the appendix (8), as well as the subtle difference between a
proof system and an argument system.

2.2 Reducing Arithmetic Circuits to QAP

Arithmetic-circuit satisfiability is an NP-complete language[13]. Therefore, for any NP-computation that a
prover and a verifier both agree on beforehand, they can construct an arithmetical circuit for that computation
such that a witness satisfying the circuit is a witness for the original computation. It is possible to build
circuits for a variety of useful NP-computations, such as the language of valid terrain-generations according to
some terrain-generation algorithm, the language of valid transactions according to some transaction protocol.

Thus, for an arbitrary arithmetic circuit, the prover needs a way to prove to the verifier that they have
a witness, without revealing it. Since Pinnochio take as input an instance of QAP, we must show how to
reduce an arithmetic circuit to a QAP, such that an NP-statement about satisfiability of an arithmetic circuit
can be made into an equivalent NP-statement about satisfiability of a QAP. This reduction should further be
such that the witness of the arithmetic circuit is a witness of the constructed QAP. Then, verifying that the
prover has a witness for the QAP is equivalent to verifying the original computation was done correctly.
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2.2.1 An Example Reduction

Consider the arithmetic circuit in figure (1). Both verifier V and prover P know this circuit, but only P knows
a set of assignments (s1, s2, s3, s4, s5) for the wires that satisfies each gate’s rank-1 constraint. P would like
to reduce proving that s1 ∗ s2 = s4 and s3 ∗ s4 = s5 into proving a statement about polynomial divisibility, as
the latter can be done succinctly.

Label the two multiplication junctions in the circuit with labels x = 1 and x = 2, which we call our
target points. For each junction i, define polynomials Li(x), Ri(x), Oi(x), corresponding to the left, right,
and output wires of junction i, respectively. The key requirement is that these polynomials must equal 1 at x
= i, and 0 for other values of x. This interpolation property will be useful soon. To this end, let

L1(x) = R1(x) = O1(x) = 2− x (10)

L2(x) = R2(x) = O2(x) = x− 1 (11)

Notice that L1, R1, O1 are 1 at x = 1 and 0 at x = 2, and the opposite interpolation for L2, R2, O2. Label
the wires j = 1...5 and define l(i) = j if j is left wire into junction i; that is, its left wire’s assignment is sj .
Define r(i) = j if j is right wire into junction i. Define o(i) = j if j is output wire of junction i. Now consider
the polynomial,

P (x) := (

2∑
i=1

sl(i)Li) · (
2∑

i=1

sr(i)Ri)−
2∑

i=1

so(i)Oi (12)

=
(
s1(2− x) + s4(x− 1)

)
·
(
s2(2− x) + s3(x− 1)

)
−

(
s4(2− x) + s5(x− 1)

)
(13)

The interpolation properties becomes useful because requiring that P have zeros at all target points (at
x = 1, 2) yields the circuit’s rank-1 constraints.

P (1) = s1 · s2 − s4 = 0 (14)

P (2) = s4 · s3 − s5 = 0 (15)

Therefore, proving that P(1) = P(2) = 0 would imply that the rank-1 constraint at each gate is satisfied
by the assignment. Proving that the polynomial t(x) = (x− 1)(x− 2) divides P(x) is equivalent to proving
P (1) = P (2) = 0, which importantly offers a succinct way for the prover to convince the verifier that it
possesses a valid assignment for the QAP. The crux of Pinnochio and Groth-16 is to prove this polynomial
divisbility property holds without revealing the witnesses.
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Figure 2: Circuit from Figure 1, annotated with target points and polynomial interpolates

2.2.2 The General Reduction

The following reduction is adapted from [15].

1. Suppose our circuit has n wires and m gates. Our witness is s = (s1, s2, ...sn) ∈ Rn.

2. For all 1 ≤ i ≤ m and ai, bi, ci ∈ Rn, a triple (ai, bi, ci) represents a rank 1 constraint for s, requiring
that (s · ai)× (s · bi)− s · ci = 0. There is one such constraint for each multiplication junction of our
circuit.

3. Stack the constraints vectors to obtain matrices A,B,C ∈ Rm×n, where

A =


aT1
aT2
...

aTm

B =


bT1
bT2
...
bTm

C =


cT1
cT2
...
cTm

 (16)

4. Using Langrange Interpolation[16], find 3 sets of n polynomials {ui}ni=1, {vi}ni=1, {wi}ni=1 such that for
all i ∈ [n] and x ∈ [m],

ui(x) = A[x][i] (17)

vi(x) = B[x][i] (18)

wi(x) = C[x][i] (19)

5. Find the polynomial h(x) such that
(∑n

i=1 siui(x)
)
·
(∑n

i=1 sivi(x)
)
−

(∑n
i=1 siwi(x)

)
= h(x)t(x)

where t(x) = (x− 1)(x− 2)...(x− n).

The reduction is complete. Now P can apply the Pinnochio protocol to prove to V that she knows a
witness s that satisfies (5), without revealing her witness.
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2.3 Pinnochio Protocol for QAP

2.3.1 Non-zero-knowledge Pinnochio Protocol Construction

We start by illustrating the workings and intuition for the Pinnochio protocol, without zero knowledge.
Afterwards, we will state the modification of the protocol to make it zero knowledge.

Let G be a group of prime order p. Let E : Fp → G be a homomorphic encoding. In particular, E(q) = gq,
for a generator g. Let e : G×G→ GT be a elliptic curve bilinear map. Suppose the prover P knows a witness
{si}ni=1 for the original arithmetic circuit. By the reduction, she knows some polynomials such that

( n∑
i=1

siui(x)
)
·
( n∑

i=1

sivi(x)
)
−
( n∑

i=1

siwi(x)
)
= h(x)t(x) (20)

The main idea of the protocol is as follows. Intuitively, V would like to test P at a random point z ∈ Fp

for the values of the polynomials above. P is queried for the value of the u(z) =
∑n

i=1 siui(z), v(z) =∑n
i=1 sivi(z), w(z) =

∑n
i=1 siwi(z), and h(z) at some random z ∈ Fp. P will homomorphically encode

these values and send them to V. Due to homomorphic and bilinear map properties, V can verify that the
homomorphically encoded values satisfy the same equation (20). If they do, she can be confident P truly
knows a witness, without learning the witness itself. Below are more details of the main idea just described.

The first step of the protocol is to generate a common reference string (CRS), which contains homomorphic
encodings of specific multiples of z. The CRS serves two purposes: First, P can generate her homomorphic
encodings for her proof using linear combinations of the group elements of the CRS without needing to know
z. Second, setting up the CRS obviates the need for V to manually generate a z, and send a message with
the encodings of z to P. This enables this proof to be purely non-interactive, as after the CRS is generated, P
has enough to generate a convincing proof.

We can think of the CRS as two sets of public group elements: the evaluation key, which contains the
group elements needed to construct the proof, and the verification key, which contains the elements needed
to verify.

Common Reference String:

Pick random α, β, βu, βv, βw, γ, z ∈ F ∗
p . Publish the CRS below, then discard all of the sampled group

elements used in its generation (the toxic waste).

Evaluation key:

• {E(zi)}ni=0, {E(αzi)}ni=0

• {E(ui(z)}ni=1, {E(αui(z)}ni=1, {E(βuui(z)}ni=1

• {E(vi(z)}ni=1, {E(αvi(z)}ni=1, {E(βvvi(z)}ni=1

• {E(wi(z)}ni=1, {E(αwi(z)}ni=1, {E(βwwi(z)}ni=1

Verification key:

• E(1), E(α), E(t(z))

• E(γ), E(βuγ), E(βvγ), E(βwγ)

Prover’s message:

Assuming the prover has polynomials
(∑n

i=1 siui(x)
)
·
(∑n

i=1 sivi(x)
)
−

(∑n
i=1 siwi(x)

)
= h(x)t(x),

first the prover computes h(x). Then the prover’s proof consists of the following:

• E(u(z)), E(αu(z)), where u(z) =
∑n

i=1 siui(z)
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• E(v(z)), E(αv(z)), where v(z) =
∑n

i=1 sivi(z)

• E(w(z)), E(αw(z)), where w(z) =
∑n

i=1 siwi(z)

• E(h(z)), E(αh(z))

• E(βuu(z) + βvv(z) + βww(z))

Verification:

Upon receiving the prover’s proof, the verifier first checks that the terms u(z), v(z), w(z), h(z) were
constructed as linear combinations of terms in the CRS, performing the following 4 checks.

e(E(u(z)), E(αu1(z))) = e(E(αu(z)), E(u1(z))) (21)

e(E(v(z)), E(αv1(z))) = e(E(αv(z)), E(v1(z))) (22)

e(E(w(z)), E(αw1(z))) = e(E(αw(z)), E(w1(z))) (23)

e(E(h(z)), E(α)) = e(E(αh(z)), E(1)) (24)

Next, check that each term u(z), v(z), w(z) was generated using the same linear coefficients, {si}ni=1. That
is, if u(z) =

∑
i siui(z), then v(z) =

∑
i sivi(z) and w(z) =

∑
i siwi(z). This can be checked by verifying the

following equation:

e(E(βuu(z) + βvv(z) + βww(z)), E(γ)) = e(E(u(z)), E(βuγ))e(E(v(z)), E(βvγ))e(E(w(z)), E(βwγ)) (25)

Finally, we check the key condition that characterizes the polynomial divisibility criterion:

e(E(u(z)), E(v(z))) = e(E(w(z)), E(1)) · e(E(t(z)), E(h(z))) (26)

Accept if and only if all the checks (21)-(26) hold.

2.3.2 Non-zero-knowledge Pinnochio Protocol Analysis

We will provide an intuition for why this protocol works, deferring formal argument to the Pinnochio paper[1].
To begin, it is crucial to understand the following cryptographic assumption in order to understand the role
the random offsets α, βu, βv, βw.

Claim 1. (Knowledge of Exponent Assumption[17]) Suppose Alice is given a pair of group elements (x, αx).
Let’s call such a pair α− separated. Then it is computationally intractable for her to come up with another
α−separated pair (y, αy), except by deriving it as follows

(y, αy) = (γx, γαx) (27)

An extension to this is that given n α−separated pairs, if Alice returns a different α−separated pair, it
must be a linear combination of the original α−separated pairs with extremely high probability[17].
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Back to our protocol, the key condition that V needs to check is the polynomial-divisibility condition:

u(z)v(z)− w(z) = t(z)h(z) (28)

However, in addition to this equation, there need to be other equations that the verifier also checks. This
is because it is possible for P to forge values that satisfy this equation, but that were not generated from a
true witness s for the circuit. To this end, V needs a way to check that the polynomials P uses are truly a
linear combination of the basis polynomials in the CRS.

The Knowledge-of-Exponent assumption is useful because if a pair of group elements that P sends and a
given pair are both α− separated, P’s pair must be generated as linear combination of the given α− separated
pairs. Thus, V can use a pairing function to efficiently check that these two pairs are both α− separated, to
ensure P produced her proof from an actual satisfying assignment of the circuit. More concretely, for two
pairs (x, αx), (y, αy), the following is true:

E(x) = gx (29)

e(E(x), E(αy)) = e(g, g)xαy = e(E(αx), E(y)) (30)

V can use this to produce the following check:

(1) e(E(u(z)), E(α)) = e(E(αu(z)), E(1)) =⇒ u(z) is a linear combination of {ui(z)}ni=1

(2) e(E(u(z)), E(α)) ̸= e(E(αu(z)), E(1)) =⇒ u(z) is NOT a linear combination of {ui(z)}ni=1

Using this idea, the verifier needs to verify three things

(1) u(z)v(z)− w(z) = t(z)h(z)

(2) u(z) (resp. v(z), w(z)) is a linear combination of {ui(z)}ni=1 (resp. {vi(z)}ni=1, {wi(z)}ni=1).

(3) u(z) is a linear combination with the same coefficients as v(z) and w(z) (i.e. produced in linear
combinations using the same witness s).

We are now ready to describe why Pinnochio satisfies completeness and soundness.

Completeness

Regarding completeness, we are always able to generate such a proof from QAP. It remains to show that
if P’s polynomials satisfy

( n∑
i=1

siui(x)
)
·
( n∑

i=1

sivi(x)
)
−
( n∑

i=1

siwi(x)
)
= h(x)t(x) (31)

then the verification checks (21)-(26) hold. That is, the proof is valid and will be accepted with probability
1.

Equations (21)-(24) hold if P honestly produces her polynomials from the CRS basis polynomials, due to
the knowledge-of-exponent assumption.
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Equations (25) holds if P uses the same {si}i as linear coefficients for her polynomials. This is evident as:

e(E(βuu(z) + βvv(z) + βww(z)), E(γ)) = e(E(βuu(z)), E(γ))e(E(βvv(z)), E(γ))e(E(βww(z)), E(γ)) (32)

= e(E(u(z)), E(βuγ))e(E(βvv(z)), E(γ))e(E(βww(z)), E(γ)) (33)

= e(E(u(z)), E(βuγ))e(E(v(z)), E(βvγ))e(E(w(z)), E(βwγ)) (34)

Equations (26) holds due to the divisibility condition, Equation (5)

Soundness

Regarding soundness, if P does not have a valid witness, then when P constructs polynomials u, v, w,
and h, then u(x)v(x)− w(x) ̸= h(x)t(x). Thus, it is enough to argue that if P does not have polynomials
satisfying Equation (5), then V will reject with high probability.

Suppose u(x)v(x) − w(x) ̸= h(x)t(x). First, the degree of u and v is m - 1, since they are the sum of
polynomials who, constructed through lagrange interpolation, go through m pre-determined points (one for
each junction in the arithmetic circuit). The degree of t(x) is m. Therefore, the degree of h(x) is m - 2.

u(x)v(x)− w(x) and h(x)t(x) are two polynomials degree 2m. By the Schwartz-Zippel lemma[18], two
different polynomials degree at most 2m intersect in at most 2m points. Thus, u(x)v(x)− w(x) and h(x)t(x)
intersect in at most 2m points.

Because z ∈ Fp has p possible values, then with probability at least 1− 2m
p , equation (26) will fail and V

will reject P’s proof. This probability can be made arbitrarily close to 1 by taking p to be large.

Proof and Verification Complexity

The proof size is 9 group members, from section (2.3.1). Regarding verifier complexity, the verifier spends
8 pairings to verify equations (21)-(24). It spends 4 pairings verifying (25), and 3 pairings for (26). In total,
this implementation of Pinnochio uses 15 pairings, which are the most expensive operation. Finally, the CRS
setup and the proof generation take time linear in the size of the original computation[1].

There exist refinements to Pinnochio that use 11 pairings with a proof size of 8 group elements[13].

2.3.3 Zero-knowledge Pinnochio Protocol Modification

In principle, if the verifier V came up with their own witness s′ = (s′1, s
′
2, ...s

′
n), they can compute

E(u′(z)), E(v′(z)), E(w′(z)), E(h′(z)) following the prover’s protocol, and compare them with the prover’s
proof. If they are different from E(u(s)) and such, then the verifier concludes that the prover’s witness is not
s’[18].

To eliminate this, the prover adds on a random shift to the polynomials u, v, and w[1]. P shifts these by
a multiple of t(x), so that everything is still the same mod t(x). For random δ1, δ2, δ3 ∈ Fp,

uz(x) = u(x) + δ1t(x) (35)

vz(x) = v(x) + δ2t(x) (36)

wz(x) = w(x) + δ3t(x) (37)

Then, P will evaluate these at z using the CRS, and send over the shifted terms in its proof in the place
of the corresponding unshifted terms.
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2.4 Groth-16 Protocol for QAP

Groth-16 is a recent, more succinct zk-SNARK protocol that has replaced Pinnochio in many applications
such as Z-cash and Circom. It works on similar principles to Pinnochio, but both the proof size and the
verifier complexity is significantly lower in Groth-16.

For an arithmetic circuit, let n := number of wires, m := number of gates, P denote a pairing, and E
denote an exponentiation. Table (1), taken from [13], compares the complexity of important quantities
between Groth-16 and Pinnochio.

Table 1: Comparison between Groth-16 and Pinnochio[13]

CRS size Proof size Prover complexity Verifier complexity
Pinnochio 7n + m G 8 G 7n + m E l E 11 P
Groth-16 n + 2m G 3 G n + 3m E l E, 3 P

3 Application: Financial Security

One of the most common use-cases for zero-knowledge proofs is for increased financial security. Although
blockchains are already secure and decentralized, we can make even stronger security guarantees using
zero-knowledge proofs, which allow us to, for instance, hide transaction amounts. In this section, we discuss
two of the most common applications that deploy zero-knowledge proofs for financial security: Zcash and
Tornado Cash.

3.1 Zcash

Zcash is a Layer 1 token that allows for privacy protection [12]. Zcash allows both private and public addresses,
and both private and public coins. Coins can be ’shielded’ or ’unshielded’ by sending them from public to
private or private to public addresses. In the following sections, we will examine a simplified form of Zcash
with the strongest security guarantees – a Bitcoin-like private ledger where coins cannot be traced back to
the sender, the amount of each coin is shielded, and coins can be withdrawn from the ledger. [19][20]

To create a private transaction, Zcash uses a similar approach as Bitcoin, which validates the transactions
by linking the sender address, receiver address, and input and output values on the public blockchain.
However, each of these values are shielded. Intuitively, one can imagine a naive implementation of Zcash that
copies Bitcoin’s UTXO model, but where each UTXO’s data is kept off-chain. In its place, a hash is kept
on-chain, and a zero-knowledge proof is used to prove that some address has the right to consume the UTXO.
We will construct the Zcash model piece by piece.

3.1.1 Protocol Construction

The most naive model for Zcash would be as essentially an unordered set of commitments. To mint a coin, we
sample some random ri and publish ci = h(ri) for some hash function. To allow Bob to spend ci, we simply
have to send Bob ri off-chain, and Bob can provide a zero-knowledge proof that his ri hashes to ci, allowing
him to consume the coin. The obvious difficulty here is that Alice still retains knowledge of ri through this
process. The remainder of this section formalizes and elaborates on this basic idea.

Step 1: Anonymity with Fixed-Value Coins. Let’s begin with a model where all coins are discrete
and have the same value. Consider the scenario when Alice wants to send a coin to Bob in a private
transaction. To do this, she’ll sample a random serial number for the coin, sn, and a trapdoor r. We define
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this commitment c for a commitment function comm as c = commr(sn). In particular, commr has the
property that if the trapdoor r is revealed, sn can be unlocked, and c = commr(sn) can easily be verified.
This coin can then be consumed by revealing r. So, for Alice to send the coin to Bob, she simply needs to
send him r privately [21].

However, this has the problem that Alice retains her ability to spend the coin herself. To solve this, Alice
also needs to invalidate her ownership of the commitment c publicly by publishing its trapdoor, and at the
same time create a new commitment that now belongs to Bob, which he can then claim for himself later.

To create a new note for Bob, Alice follows a similar scheme as above to generate a new commitment
c′. At this point, we need to introduce public keys. We can execute the above scheme by modifying the
commitments to be define as follows, where pkA is Alice’s public key, and pkB is Bob’s public key:

c = commr(sn||pkA) (38)

c′ = commr′(sn
′||pkB) (39)

After this, other nodes will check that the published trapdoor doesn’t already exist, i.e. that the fund
hasn’t yet been spent. They will then grant Alice the right to publish c′, which Bob has access to, finishing
the transaction from Alice to Bob. This concludes the implementation of our naive fixed-value coin model.

Step 2: Introducing Zero-Knowledge Proofs.

However, this implementation has many flaws. For instance, although we checked that c wasn’t spent
before, we do not check that the c belongs to Alice, nor do we enforce that c really exists at all– we only check
that r has not been used before. We need another proof step to ensure that c really exists and is related to r
in a specific way, and that these are both related to pkA. This is where zk-SNARKs come to play: to verify
that these requirements are valid while also preserving privacy.

In particular, zero-knowledge proofs allow Alice to provide a proof that she knows the secret key skA
that relates to pkA, and additionally that c has been computed in a valid way, without needing to reveal
r, sn, skA. This proves both that c truly does exist and that she owns it, solving both of our problems.

The use of zero-knowledge proofs here also allows us to mask further information about the coins. In
particular, we can now also have variable-size coins. They no longer need to be fixed-value, and we can even
mask the value of the coin itself. Alice can privately commit that a coin is worth, for instance, 57 units, then
pass this information to Bob as above, without ever publishing the value of 57 to the chain. Zero-knowledge
proofs once again enforce that Alice’s commitments to the chain are honest.

Finally, in order to create a general-purpose payment scheme, we also need to make it possible to subdivide
a single coin into smaller ones, just like in Bitcoin.

Step 3: General-Purpose Anonymous Payments.

To implement all of this, we redefine our commitments as follows. For a seed x, we define deterministic
pseudo-random functions prfaddrx to generate public keys from secret keys, and prfsnx to generate serial
numbers. We define:

pk = prfaddrsk (0) (40)

sn = prfsnsk (p) (41)

Each user u generates a public key and secret key pair pk, sk. The coins owned by u contain pk and can
only be spent by proving knowledge of sk. sk is randomly sampled, and pk is related to it by pk = prfaddrsk (0).
This allows us to generate a zero-knowledge proof relating pk to sk.
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To mint a coin of value v, the user first samples some randomness p, which is related to sn as sn := prfsnsk (p).
(Again, this allows for a zero-knowledge proof to verify that sn was generated validly, without revealing sk
or p.) u then commits to (pk, v, p) in two phases: (i) u computes k := commr(pk||p) for a random r; (ii) u
computes cm := comms(v||k) for a random s. This creates a nested commitment, which in particular allows
us to act on v and k without revealing the components of k. In particular, this allows a user to verify that a
coin has value v without actually revealing pk or sn, which are a part of k.

We then define the pour function, which is like consuming a bitcoin UTXO, and is the main means by which
our coins are exchanged. Suppose that u with (pk, sk) wants to consume c = (pk, v, p, r, s, cm) and produce
two new coins c′1, c

′
2 which satisfy v′1 + v′2 = v targeted at addresses pk′1, pk

′
2. The user follows the two-step

process for computing c′1, c
′
2, starting with sampling p′1, p

′
2. This yields the coins c′1 = (pk′1, v

′
1, p

′
1, r

′
1, s

′
1, cm

′
1),

c′2 = (pk′2, v
′
2, p

′
2, r

′
2, s

′
2, cm

′
2).

We then define pour as follows:

Given the serial number sn, and commitments cm′
1, cm

′
2, I know c, c′1, c

′
2 and secret key sk such that:

• The coins are well-formed: for c, k = commr(pk||p), cm = comms(v||k), and similarly for c′1, c
′
2

• The secret key and public key match: pk = prfaddrsk (0)

• The serial number is well-formed: sn = prfsnsk (p)

• The values match: v = v′1 + v′2

Upon executing this function, u will need to provide a zero-knowledge proof for each step. Thus,
zero-knowledge proofs allow us to construct a decentralized payments protocol.

Note that the pour function also accomplishes a secondary purpose of allowing us to make coins harder
to track. In particular, Zcash is backed using an escrow pool. This means that transactions can possibly be
tracked by cross-referencing coin amounts to withdrawn amounts. Thus, pour also allows us to ’mix’ the
tokens.

For this reason, in actual implementation we also modify pour to take two inputs and two outputs,
which becomes a flexible general-purpose function that allows us to mix arbitrary inputs to produce arbitrary
outputs, making them very difficult to trace. This allows us to more generally produce any number of inputs
and any number of outputs, as we can also make input or output coins null. But for the purposes of this
discussion, we will assume that pour only has one input.

Step 4: Public Payments

As described, the Zcash ledger can only be used for maintaining a private ledger of transactions. But this
isn’t very useful - in order to actually use any of these tokens, we need to at some point withdraw coins from
the shielded network. In order to do this, we add an additional field vpub to pour which represents a public
payment, such that the value proof is v = v′1 + v′2 + vpub. The address of this public payment is stored in
transaction metadata, which is hashed on commitment and revealed on consumption. The public output is
also optional, in which case vpub = 0.

Step 5: Merkle trees

Zcash provides one final innovation which both allows it to scale and also gives the protocol further
security. Rather than directly proving knowledge of a coin, users will instead prove knowledge that this coin
exists in the set of all commitments using a Merkle tree. The contract maintains a state root rt, and when
we pour the coin c, we need to also provide a zero-knowledge proof of the Merkle proof that rt contains c.
By doing so, we prevent ever actually revealing the Merkle tree off-chain; it can be maintained by nodes or
validators on the network.
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The Merkle tree has an additional property of further masking transactions. It’s possible by careful
inspection to trace the history of a transaction. For instance, suppose that a coin is consumed and the entire
value is made public. An attacker could trace the history of that coin and possibly see its source commitment.
By putting this transaction data in a Merkle tree, we can entirely discard the commitments, meaning that at
any given time, not only can adversaries inspecting the network not know the state of the ledger, they cannot
even know its total size.

3.1.2 Analysis

Zcash, although a novel and interesting concept, still has many security risks. For instance, security is only
offered at the level of the ledger. The nodes and the network can still be attacked. Even though public keys
cannot be associated with private keys, and insecure IP can still be associated with a public key.

Additionally, since Zcash is a Layer 1 Bitcoin-like token, it has a hard time bootstrapping value into its
own network. Unlike Tornado Cash (discussed in the next section), which is built on Ethereum, Zcash doesn’t
benefit from the battle-tested security of Ethereum. Users need to trust Zcash and its fairly centralized
bridges and validators, given that the network is comparatiely small relative to Ethereum and Bitcoin. The
security concept is novel but not clearly useful enough to demand an entirely new network. Indeed, only
about 6% of transactions on Zcash actually use the shielding functionality at all [22], suggesting that for the
most part, despite its grandiose dreams, Zcash functions largely as yet another layer 1 token.

Finally, though the use of Merkle trees also allows for further security on hiding transaction data, the
implementation of them is difficult. In particular, the circuits get much more complicated, as the zero-
knowledge proofs now also need to include Merkle proofs for both old coins. In addition, these Merkle proofs
need to update along with the global state root. If I wait a hundred years to unshield my Zcash coin, whatever
original Merkle proofs I had are no longer going to be valid. This means that there needs to be some sort of
additional layer to maintain the Merkle trees, and the current implementation of Zcash simply ignores this by
leaving the responsibility of tree maintenance to the nodes. [21]

3.2 Tornado Cash

Tornado Cash has a similar objective to Zcash, but rather than having private tokens that can be moved
around and unshielded, only one transaction type is supported – sending some amount of ETH untraceably
from a sender to a receiver. However, on Tornado Cash, it’s harder to trace the original transaction due to
the use of a liquidity pool. The ’mixing’ caused by this pool is what gives the protocol the ’Tornado’ in its
name. (Zcash technically has some amount of mixing since each transaction mixes at least two inputs, but
it’s not as powerful as Tornado’s single liquidity pool.) Zcash can be thought of as a bitcoin-like ledger where
the state of the ledger is unknown but proofs of valid state transitions are published. However, each coin still
has its own transaction history, and is in a sense non-fungible, since it has a serial number. On the other
hand, Tornado Cash is much simpler, using a single giant liquidity pool that can only be deposited into and
withdrawn from [23].

Specifically, we would like to be able to send an N ETH note to an address t without anyone to be able
to trace where the transaction came from. In Zcash this is not quite possible, since we can think of Zcash as
being essentially a shielded UTXO model. When each UTXO is consumed, the history of that consumption
still exists somewhere on the blockchain – it’s just that the specific details of these actions are shielded. On
Zcash, the N -eth funds are deposited into a liquidity pool on the contract, making the transaction truly
untraceable, as the original deposit transaction is not even stored anywhere on the contract.
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3.2.1 Protocol

Formally, we allow a coin to be defined as (k, r), where k is a 248-bit nullifier and r is a 248-bit randomness;
k, r ∈ B248 where B := {0, 1}. Let T represent a tuple of transaction data, chiefly including the designated
address and the amount of ether sent. Let H denote a hash function (MiMC, in our case).

When I deposit a coin, I generate k, r ∈ B248 with my desired transaction T and compute C = H(k||r||T ).
I send C to the contract, which stores it in a Merkle tree as a non-zero leaf node.

When I withdraw a coin, I need to provide k, r, T , C = H(k||r||t), together with a zero-knowledge proof
that C has been computed properly. Additionally, I need to provide a proof that C is actually a member of
the Merkle root currently stored in the contract. k, T become public, while r is kept private. In particular, k
is added to an array of nullifier hashes, which indicates which deposited coins have been withdrawn, so that
no two coins can be withdrawn twice.

This protocol claims the following security guarantees:

• Only coins deposited into the contract can be withdrawn

• No coin can be withdrawn twice

• Any coin can be withdrawn if (k, r, T) are known

• Coins cannot be traced to their sender

• Tornado Cash is secure up to 126 bits, specifically, the same number of bits as the cryptographic
primitives it implements (namely, MiMC and zkSNARKs using circom)

3.2.2 Comparison to Zcash

Tornado Cash’s key improvements on Zcash, are (1) the use of a liquidity pool to help mask transaction
histories; (2) the storage of some of the Merkle tree on the contract; and (3) the move to a simple smart
contract model rather than a complex layer-2 solution, which solves the issue of unmasking hidden coins
when a user wants to withdraw them from privacy. It’s worthwhile to compare these two solutions, which
have similar end goals.

The liquidity pool is certainly a very powerful innovation. On Zcash, it would be quite easy to trace a
small number of tokens around just by following commitments manually, but with a liquidity pool, every
transaction is truly untraceable. This, in addition to the fact that Zcash is built as a smart contract on top of
Ethereum, which is an extremely well-trusted token with huge amounts of capital locked up, makes Tornado
cash the platform of choice for most people, especially for sending large amounts of USD anonymously (since
ETH is more popular than ZEC).

The use of a smart contract also means that consensus details can be handled by Ethereum, which allows
the Tornado cash protocol to be much more elegant than Zcash’s, as evidenced by the length of the protocol
itself. This means that users don’t need to trust smaller Zcash nodes but can instead place their trust in the
Ethereum ecosytem as a whole.

However, the downside of this is that Tornado cash cannot entirely abstract the Merkle tree away from
the protocol. Rather, it attempts to store some of the Merkle history in the contract. But this is not
straightforward. In particular, it’s not sufficient to simply store the root of the Merkle tree – one also needs to
store enough of a leaf path that the next leaf on the tree can be computed. This presents a possible security
issue, since part of the guarantee Tornado cash makes is that transaction data is discarded, but in this case
some amount of data needs to be retained so that the Merkle tree can be computed on the contract side. In
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particular, it stores the past 100 Merkle roots, and a withdrawer can provide a Merkle proof to any of these
Merkle roots. But since Merkle roots are recomputed each transaction, this means that a withdrawer needs
to constantly update its Merkle proof. For instance, if it stops receiving state updates from the contract for
101 root updates, it will no longer have enough information to actually withdraw the coin, unless it receives
the leaf path from a trusted 3rd party.

In any case, the use of a Merkle tree is actually subtly complicated here, which is the reason the nullifier
is used – rather than updating the Merkle tree to indicate when a coin has been consumed, it’s easier to
simply keep a list of all transactions that have ever been consumed. This seems rather inelegant; as this
history will scale linearly with the number of coins ever consumed on the contract.

3.2.3 Analysis

There are still a few potential issues with the implementation. First of all, since the liquidity pool is entirely
backed by these deposited notes, it’s technically possible to track the source of a transaction simply by looking
at changes in the liquidity pool. For instance, in the naive case, one can certainly track a single transaction
that moves the liquidity pool from zero to nonzero. Some address much initiate a transaction that moves the
liquidity pool; this is the source of the note of ether. This could possibly be resolved by having a large buy-in
to the pool during setup phase, i.e. if the pool is initiated with 10000ETH, changes of 1ETH would be hard
to track.

However, very specific numbers could still be traced. For instance, one block causes the pool to increase by
3.267ETH, then a later withdraw transaction that decreases the pool by the same amount can be reasonably
assumed to be linked. This could be resolved by some sort of mixing operation. For instance, a trusted
3rd-party relayer node could wait to receive a fixed size batch of transactions, e.g. could wait until 10ETH of
transactions are submitted, then only make commitments of 10ETH at once while providing a proof that
the sum of the transactions is 10ETH, perhaps supplying some of its own liquidity to round off. Similarly, a
relayer could also take a large transaction and split it into smaller ones, e.g. a 50ETH transaction could be
split into 50 smaller ones of 1ETH each.

Both of these changes unfortunately require some higher-powered cryptographic tools, too. Abstractly,
one wants to generate a SNARK that proves a valid state transition has occurred on the ledger, but which can
encompass multiple transactions at once. This is certainly not impossible, and is in fact the same principle
that rollups are built on, but it’s not entirely straightforward, either, and detracts from the elegance of the
Tornado Cash protocol.

Another issue is that transactions can be frontrun, since in this construction anyone who knows (k, r, T )
can force the transaction to occur. This differs from Zcash, where the user’s address is actually taken into
account in each transaction. Here, as long as the contract is provided with a valid proof, a coin can be
released. While not typically an issue, since the recipient of the coin is encoded in the coin itself, this is still
a potential security vulnerability in the sense that at an attacker is allowed to interfere with a process where
neither party wants that attacker involved. One could imagine, for instance, if a large amount of funds are
sent, that an attacker could force a transaction before the receiver sets up a multisig or buys a hardware
wallet.

4 Application: Rollups

In this section, we discuss ”ZK rollups”. Rollups are essentially tools to optimize transaction throughput by
execution some portion of computation off-chain and using zero-knowledge proofs to verify these executions
on-chain. Since it’s faster to verify computations than execute them, this provides a significant speedup
(depending a lot on the specific implementation). Technically, a majority of these solutions are only ’validity
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rollups’, and don’t exhibit perfect zero knowledge (8). In many cases, public data is being taken off-chain to
be optimized. In other words, we don’t care if computation on that data can be revealed or inspected by
looking at a validity proof. However, most of these rollups are implemented using libraries that do provide
the zero-knowledge property, and so we will call them ZK rollups.

These rollups are divided into essentially two categories: constructions for application-specific rollups,
where a particularly expensive part of an application is put into a rollup, and general rollups, which are
meant to scale the entire Ethereum network by being able to generate validity proofs for any state transition
on the EVM. The former type of rollup is the kind that the previously-discussed Zcash and Tornado Cash
implements. We will start with a few more examples of application-specific rollups, and try to work towards
a possible construction for general-purpose rollups in this section.

4.1 Validity Rollups and Validium

First, we will introduce the intuition for rollups by discussing at a high-level how one might use general-purpose
rollup to speed up Ethereum, assuming that one has a construction. Additionally, it’s worth discussing the
difference between two flavors of rollup. We will call these validity-style and validium-style, after the
proposition for Validium as discussed in [24]. Both application-specific rollups and general rollups can be
categorized into either of these types.

To begin, consider the problem we are trying to solve: although Ethereum is the most popular Turing-
complete blockchain infrastructure on which people can build apps, the Ethereum block rate is merely 15
second/block which can barely serve the billions of users it purports to serve. This leads to gas fees that
often exceed hundreds of dollars.

As a result, there are efforts to scale Ethereum. The intuitive way to do so is just build a new blockchain
to have a higher transaction capacity. However, this method will only end up with bigger blocks, making
computation more difficult to verify and potentially centralizing nodes as a result. Of course, some improvement
can be done via techniques called sharding to split up the work of building and verifying the building and
verifying process across various nodes. These implementations, called ”layer-1 scaling”, are very difficult to
execute.

For rollups, the general structure is that we allow users to compute transaction state changes off-chain.
These computations are managed in a second network, called an L2, as opposed to direct on-chain computations,
or L1. After calculating off-chain on L2, there is a smart contract on L1 that link with L2, bridges tokens
between the two, but also verifies that transactions actually happen correctly on L2.

One way to implement this L2 scaling is called Optimistic Rollup, where we just assume that every L2
transaction is valid until someone refutes it. The contract holds for some period, giving users a chance to
submit a fraud proof saying that a transaction was done incorrectly. We can see how optimistic rollup can
scale Ethereum, but at the same time still relies on people submitting fraud proof to make sure that the
transactions are secure.

ZK or Validity Rollup follows much the same architecture [25], only instead of waiting for users to submit
fraud proofs, Zero-Knowledge proofs are used to verify that transaction state changes are applied correctly
[26]. The general protocol is as follows:

• Users do their activities including signing transactions on L2 and submit those transactions to validators,
which act as a bridge between L1 and L2

• Validators aggregate (”roll up”) thousands of submitted transactions together into a single batch and
submit the following to an L1 main chain smart contract:

– A new L2 state root
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– A proof powered by zk-SNARKs to prove the correctness of the state root

– Transaction headers for each transaction in the batch

– A Merkle root of the transaction batch, allowing users to check whether or not a transaction was
really in this batch

• The main chain, thanks to zk-SNARKs, verifies both the validity of all the transactions included in the
block and the validity of the proposed state transition on the Merkle root

zk-SNARKs verification is much cheaper than verifying every transaction individually, and storing the
state off-chain is significantly cheaper than storing it on EVM, hence enabling a huge boost of scalability
(100-200x mainnet capacity) and saving on transaction fees.

Validium essentially makes the minor change that even transaction headers are not stored, the SNARK
instead proving only that the state transition is valid, but not providing any information about what led to
that state transition. We can think of validity rollups as being a proof of computation, and validium as being
both a proof of knowledge and of computation. The same differentiation exists for application-style rollups,
too: one can roll up only an expensive computation but retain the data on-chain, or one can also discard
the data and put it off-chain. We will call rollups as in the protocol described above validity-style, and
protocols that also discard data validium-style.

4.2 Dark Forest

Dark Forest [2] is the first fully on-chain game built on Ethereum, and is powered largely by zkSNARKs.
In the game, planet coordinates are kept private. Planet data is public, but is indexed by the hash of the
planet’s coordinates. The game is inspired by the highly adversarial nature of science-fiction novels but also
of the Ethereum ecosystem more broadly. In particular, revealing one’s coordinates can be seen as being akin
to a declaration of war, since it invites other players to attack that planet.

Games, especially an MMORTS like Dark Forest, are actually a particularly interesting use case for
rollups. In particular, due to the thousands of transactions that players execute when the game is in action,
any amount of computation or storage that can be saved is incredibly valuable, since blocks will nearly always
be entirely saturated. We will discuss two uses of rollups in Dark Forest.

In the game, each planet has cartesian coordinates (x, y) and a planet id h := H(x, y) for some hash
function H. Additionally, planets have certain properties, such as biome, computed from a perlin noise
function, denoted here as n := p(x, y) for a perlin function p.

A SNARK is used to verify that h = H(x, y), which primarily serves the purpose of protecting the values
of (x, y), but actually has the side effect of also allowing (x, y) to not be stored on the contract. This, in
a sense, is a validium-style rollup, though it is a minor one. Perhaps more interestingly, perlin noise can
actually be quite expensive to compute on-chain, and it is computed off-chain in a validium-style rollup.

The flow for generating a new planet thus is as follows: when a new planet is discovered, the user makes a
transaction to the contract providing a proof that they know (x, y) for some declared h such that h = H(x, y),
and that the planet’s perlin value n is also related to (x, y) by n = p(x, y). The contract verifies the first
proof, and if it is successful, verifies the second proof. It then uses this value of n and references it with a
table of planet generation data, returning a planet with different properties depending on the value of n.

The full implementation of perlin noise is not discussed here, but we will quickly give a construction for
sampling a random gradient vector (one step in the perlin noise process), since the example is illuminating.
The typical way to do this would be by sampling a random angle and then calculating its sine and cosine.
However, sine and cosine are not easy to linearize into an arithmetic circuit - they have Taylor series
approximations, but those converge very slowly. The technique here is to use the hash of the coordinates to
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pseudorandomly generate an index from 0 to 7 as in r(x, y)%8, which is used to sample one of 8 pre-generated
vectors corresponding to iπ/4 for 0 ≤ i < 8. This process is elaborated on in the appendix.

This construction shows how a specifically-engineered solution can provide a large speedup to a particular
problem, and will underscore the central tension in trying to develop general-purpose rollups: generic
algorithms for creating circuits are rarely as fast as specifically-engineered ones.

4.3 zkEVM - Turing-Complete Rollups

Here, we will discuss a particular implementation for general-purpose ZK rollups, as implemented by zkSync.
This problem is often referred to as zkEVM, in the sense that we want to embed all state changes on the EVM
into a circuit. We will begin with naive implementations, then describe the problems with them, moving
towards a solution that is actually deployed onto Ethereum Mainnet. [27]

We can essentially state the problem as such: for any given block, comprised of transactions that make
calls to any number of contracts, we want to generate a zero-knowledge proof of the state transition that
applying the block to the EVM creates.

4.3.1 TinyRAM

The most naive way to implement this is to first compile the block and its transactions down to its
corresponding opcodes, then provide an arithmetic circuit node for each opcode. This is trivially easy to
do, since this compilation must occur at some point, and since opcodes are read like a stack, it’s easy to
create a long circuit that simply reads opcodes off sequentially. zkSync in particular implements a TinyRAM
architecture, which has a small instruction set, and thus can easily be converted into a circuit.

The problem with this implementation is that it’s incredibly slow. Simple operations like array accessing
might get compiled down to a very large number of opcodes - incrementing pointers, etc. And so, TinyRAM
has an average of over 1000x overhead compared to direct circuit implementation, like the one given above
for Dark Forest.

Table 2: Comparison of circuit complexity for hardwired circuit vs TinyRAM [27]

Operation Gates: hardwired Gates: TinyRAM
Add 1 1k
Sub 128 1k

Poseidon hash 250 250k
SHA256 hash 25,000 25M
Keccak hash 300,000 unreasonably large

4.3.2 Recursive Aggregation

The next attempt would be to use a more powerful cryptographic tool (discussed later in the paper) called
recursive SNARKs. Essentially, using elliptic-curve properties, it’s possible to combine two SNARKs into one
of the same size. The proposition here is for each contract to provide its own zero-knowledge proof, and thus
a transaction would be able to aggregate a SNARK across each contract in a way similar to a Merkle tree.

Consider for instance a block comprised of 4 transactions: t1, t2, t3 and t4 together with proofs π1, π2, π3, π4.
Recursive aggregation would allow us to generate π12 from π1, π2 and π34 from π3, π4, then finally πblock

from π12, π34. We could continue this process for every transaction in a block to generate a proof for the
whole block.
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The problem here is that recursion-friendly cryptography isn’t actually possible on the EVM, it’s possible
to implement but there are no precompiles issued in the protocol. One possible solution is to use PLONK, a
zero-knowledge proof construction that is not discussed in this paper, which was implemented by Matter
Labs [27] to generate a recursive SNARK on January 2021. But the problem here is that PLONK is not
Turing-complete. In particular, it cannot implement jumps or recursion, similar to a shader or other parallel
operations.

Recursive aggregation is shown in the below figure:

Figure 3: Recursively aggregated SNARK

4.3.3 Heterogeneous Mixing

The insight that allows zkSync to fully implement zkEVM is to use a mix of all three rollup solutions -
hardwired circuits, TinyRAM, and recursively aggregated PLONK. This works because Ethereum opcodes
tend to be distributed in cost as a power-law, as in, a small number of opcodes are more expensive than the
rest combined: SSTORE costs 20000 GWEI while ADD costs 3. [28]

The result of this is that in most transactions, 99.9% of the gas costs comes simply from memory and
signatures, which are both expensive. Thus, a very simple first-approximation solution to zkEVM is to
write hardwired circuits just for the difficult operations (storage and signatures) while using TinyRAM for
everything else.

The problem to this naive solution is that circuits themselves also have a size, and thus the circuit’s
compute needs to be allocated between these two solutions in some way. A naive fixed 50/50 split doesn’t
work well because blocks tend to be fairly heterogenous. One block might comprise of many hashes, while
the next comprises of SSTOREs. The result is that circuits will usually not end up being fully saturated,
making the rollup inefficient, which defies the whole point of using them in the first place.

The solution to this, and the solution that zkSync deploys for zkEVM, is hetereogenous mixing – the
use of recursive aggregation to regulate the ratio between hardwired circuits and TinyRAM circuits. In
essence, it combines all three of the discussed solutions for a maximally optimized rollup.

To see this in practice, suppose as in the previous example that we have t1, t2, t3 and t4 together with
proofs π1, π2, π3, π4. We can think of each πi as being comprised of πt

i , π
h
i , and πs

i , referring to subroutines
that deal with TinyRAM operations, hashes, and storage respectively (the three largest types of proofs).
Recursive aggregation allows for eacn πt

i to be aggregated into one large πt, and similarly for πh and πs.
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πblock is then aggregated from πt, πh, and πs. This situation is illustrated in the below figure:

Figure 4: Hetereogenous mixing for SNARKs

In summary, combining these various techniques allows us to generate Turing-complete zero-knowledge
proofs. This, together with application-specific rollups, will allow Ethereum to scale significantly over the
coming years.

5 ZK Circuits for Novel Applications

5.1 Private Auction

5.1.1 Motivation

Zero knowledge private auction aims to simulate an anonymous auction process where buyers can submit
bids without revealing their identity or funds available. Maintaining private information is crucial for auction.
In a recent event involving ConstitutionDAO, a group of crypto holders collected over 40 million dollars in
ETH to bid for one of the earliest copies of US Constitution available. However, because their total funds
were publicly viewable on the blockchain, another group in the auction outbid their maximum by a small
amount and won the auction[29].

Creating a decentralized private auction is complicated for multiple reasons. First, the identity of the
accounts need to be private because revealing the account informs the amount of funds available during the
auction. Second, the auction needs to prevent malicious users from submitting bids beyond their available
funds. There should be penalty if the user fails to pay the winning bid.

A naive solution to these two problems is where the user pays their bid upfront for each bid they make.
However, this is not feasible because any form of transaction reveals information about the bidder. People
can view the auction participants by viewing the transactions related to the contract via Etherscan. As such,
the bidding process cannot involve a direct transfer of funds to the contract performing the auction, therefore
violating the anonymity of the process.

Our proposed solution involves a proof-of-stake process where the bidders stake a certain amount of coins
upfront, a fee. If the bidder did not win the auction, the coins can be reclaimed. If the bidder wins the
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auction, he or she needs to pay additional fees on top of the staked coins within a given time period to avoid
the coins getting slashed.

5.1.2 Accounts

Each user should have two accounts. First, they have a staking account, which is public and is used to
transfer the entry-fee coins up front. Additionally, the seller may choose to double the staking coins in the
middle of the auction, which will require the bidder to transfer more coins to the auction from the staking
account. The money transfer in between accounts can be untraceable with use of Tornado Cash.

Second, each bidder also has a private account. This account holds the actual funds the bidder will use
to fulfill the winning bid. Because this account is separate from the staking account, a third party cannot
determine the maximum a bidder can bid from the transaction from their staking account. Also, to protect
the interests of the seller, zero knowledge cryptography should be used to prevent the bidder from submitting
bids higher than the actual funds.

The protocol should consist of the following steps.

5.1.3 Protocol

1. The users pre-commit the MiMC hash of the account address and the MiMC hash of funds available to
the Merkle Tree. The zero knowledge proof will verify that the user indeed owns the account, and that
the pre-images of the commited MiMC hashes are equal to the public account address and the available
funds. Account addresses to the Merkle tree cannot be duplicated.

2. Before a bidder submits a bid, the contract verifies the previous bidder’s account. The previous bidder
cannot be the same as the current bidder, to prevent one account artificially inflating the price. Although
this mechanism does not prevent a person from having two staking accounts and two private accounts,
there is one added argument that having two accounts will reduce the fund available in each account
and therefore reduce the possibility of winning the auction, as transfer of funds into the private account
is not possible after commitment to Merkle tree.

3. A zero knowledge proof will be submitted to verify that the bidder owns a fund that is higher than the
bid. The input to the circom circuit includes

(1) pre-image of the account address

(2) pre-image of the available funds

(3) bid submitted to the contract.

A comparator circuit is used to compare the available funds with the bid submitted to the contract. If
the comparator zero-knowledge circuit returned True, the bid is valid. Else, the bid is invalid. The
circuit also consists intermediary checks to prevent tempering the witness file. The circuit also checks
that the MiMC hash of account address and available funds is in the Merkle tree. As such, we can have
a complete protocol of a private decentralized auction process.

There are possible attacks against this protocol. For example, a person can use alternative sources like
Etherscan to look for accounts with most funds. MiMC hash is not reversible, but it will be easy to compute
the MiMC hash of the top 1000 available funds. If all the 1000 funds are not part of the auction, this will
give some upper bounds on the amount of funds available in the merkle tree accounts. If one or more of the
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funds are part of the auction, a lower bound on the amount of funds can be calculated. With prior knowledge
on the possible participating funds, it is easily verifiable if a given fund participate in the auction or not. One
idea is for the user to each to commit a salt - a large random number that will be added together with the
account address and fund available inputs. This will make the attack invalid because knowing the address
itself does not generate the hash - the pre-image of the salt needs to be known too.

5.1.4 Proof of Concept Implementation: Private Auction Bid

As a proof of concept, a minimalistic version of zero-knowledge private auction is implemented in Circom
with accompanying contracts. The zero knowledge proof below verifies if a given bid is valid at each instance.
The circuits verifies Merkle Tree identitiy inclusion for a given user, as well as proving bid validity.

To prove the Merkle tree inclusion, the inputs to the circuit consists of a) the leaf node, b) the root node,
c) pathElements, d) pathIndices. These information are either committed on chain or can be easily generated
when user commits to Merkle tree. pathIndices consist of a list of 0 or 1 that indicates if a given pathElement
is on the left or right of the Merkle Tree. By continuously hash the current node with the pathElements, we
are able move up in the Merkle Tree till the root node. Then, the inclusion check is valid if the calculate root
node is equal to the public root node, suggesting that a path exists to move from the leaf node to the root
node. This part of the circuit is generated with reference to Tornado cash and semaphore implementation
of the merkle tree. Since the use of MiMC hash function exceeds the number constraints given by circom,
Poseidon hash is used as an alternative, more zksnarks friendly version of the hash function.

To prove the validity of the bid, we need to ensure that the given bid is lower than the funds available.
The inputs to the circuit consists of a) pre-image of the account, b) pre-image of the fund available, c)
submitted bid. The poseidon hash of the pre-image of the account and pre-image of the fund available will
be checked against the publicly committed hash, which in our case is the leaf node. If equal, we can verify
that the bidder is indeed the owner of a participating account. Then, a comparator circuit is used to verify
that the fund available is larger than the bid. This prevents overbidding to take place, which can hurt the
decentralized auction ecosystem.

The output the circuit mainly consists of a) outValid, which indicates if the available fund is higher than
the bid, b) finalBid, which is strictly equal to the bid submitted to the user. Note that the outputs of the
circom is directly fed into the smart contract. By having finalBid as an output, this ensures that the smart
contract only accepts the bid that goes through the zero knowledge proof circuit in circom.

inc lude ” . . / . . / node modules / c i r c om l i b / c i r c u i t s /mimcsponge . circom ” ;
in c lude ” . . / . . / node modules / c i r c om l i b / c i r c u i t s / pose idon . circom ” ;
in c lude ” . . / . . / node modules / c i r c om l i b / c i r c u i t s /mux1 . circom ” ;
in c lude ” . . / . . / node modules / c i r c om l i b / c i r c u i t s / comparators . c ircom”

template PoseidonHashT3 ( ) {
var nInputs = 2 ;
s i g n a l input inputs [ nInputs ] ;
s i g n a l output out ;

component hasher = Poseidon ( nInputs ) ;
f o r ( var i = 0 ; i < nInputs ; i ++) {

hasher . inputs [ i ] <== inputs [ i ] ;
}
out <== hasher . out ;

}
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// Computes PoseidonHash ( [ l e f t , r i g h t ] )
template HashLeftRight ( ) {

s i g n a l input l e f t ;
s i g n a l input r i gh t ;
s i g n a l output hash ;

component hasher = PoseidonHashT3 ( ) ;
hasher . inputs [ 0 ] <== l e f t ;
hasher . inputs [ 1 ] <== r i gh t ;
hash <== hasher . out ;

}

// i f s == 0 re tu rn s [ in [ 0 ] , in [ 1 ] ]
// i f s == 1 re tu rn s [ in [ 1 ] , in [ 0 ] ]
template DualMux ( ) {

s i g n a l input in [ 2 ] ;
s i g n a l input s ;
s i g n a l output out [ 2 ] ;

s ∗ (1 − s ) === 0
out [ 0 ] <== ( in [ 1 ] − in [ 0 ] ) ∗ s + in [ 0 ] ;
out [ 1 ] <== ( in [ 0 ] − in [ 1 ] ) ∗ s + in [ 1 ] ;

}

template B i dVe r i f i e r ( l e v e l s ) {
s i g n a l input l e a f ;
s i g n a l input root ;
s i g n a l input pathElements [ l e v e l s ] ;
s i g n a l input path Ind i ce s [ l e v e l s ] ;

s i g n a l p r i va t e input account ;
s i g n a l p r i va t e input value ;
s i g n a l p r i va t e input bid ;

// Merkle t r e e i n c l u s i o n check
component s e l e c t o r s [ l e v e l s ] ;
component hashers [ l e v e l s ] ;
s i g n a l hashP ;
s i g n a l output outVal id ;
s i g n a l output f i n a lB i d ;

f o r ( var i = 0 ; i < l e v e l s ; i++) {
s e l e c t o r s [ i ] = DualMux ( ) ;
s e l e c t o r s [ i ] . in [ 0 ] <== i == 0 ? l e a f : hashers [ i − 1 ] . hash ;
s e l e c t o r s [ i ] . in [ 1 ] <== pathElements [ i ] ;
s e l e c t o r s [ i ] . s <== pathInd i ce s [ i ] ;

hashers [ i ] = HashLeftRight ( ) ;
hashers [ i ] . l e f t <== s e l e c t o r s [ i ] . out [ 0 ] ;
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hashers [ i ] . r i g h t <== s e l e c t o r s [ i ] . out [ 1 ] ;
}

root === hashers [ l e v e l s − 1 ] . hash ;

// Bid v a l i d i t y check
component hasher = PoseidonHashT3 ( ) ;
hasher . inputs [ 0 ] <== account ;
hasher . inputs [ 1 ] <== value ;
hashP <== hasher . out ;
hashP === l e a f ;

component g r e a t e r = LessThan ( 1 1 ) ;
g r e a t e r . in [ 0 ] <== value ;
g r e a t e r . in [ 1 ] <== bid ;

outVal id <== grea t e r . out ;
f i n a lB i d <== bid ;

}

component main = B idVe r i f i e r ( 1 6 ) ;

5.2 Decentralized Card Games

5.2.1 Motivation

We provide a set of protocols that can be used to play incomplete information games on chain (games where
the players don’t have full information of the game state). For example, in poker the player’s hand is private
information, and the card drawing process has to be completely private as well. The presence of incomplete
information is interesting because it allows game theory, heuristic reasoning, bluffing, and other complex
strategies, even beyond the context of card games. For instance, given the recent popularity with non-fungible
tokens (NFTs), it may be interesting to see players using NFTs as their ”cards” to play various games of
incomplete information.

However, incomplete information game is hard to simulate on chain. It is difficult to simultaneously
prevent cheating and ensure privacy in games, as the hidden cards have to be stored and drawn locally
without explicit commitment to the smart contract.

Usually, the current card games use a commit and reveal approach. Players commit each action they take
in a game by committing the hashes. For example, I claim that I have played the card 5 and must commit
the hash of my remaining hand on chain. At the end of the game, all hands are revealed publicly and verified
at each step to ensure that no players are lying in the game. If any discrepancies are found in the process,
the entire game is rolled back to the beginning.

The commit and reveal process is problematic for two reasons. Firstly, there is no way for us to verify
that rules were followed before the end of the game. There are no way to catch players lying on the spot, and
any slight discrepancies or misplay will have to void the entire game. The roll-back process is costly and
frustrating, especially if players have incentives to deliberately void the game. Secondly, the commit and
reveal approach requires that all cards be shown publicly at the end, revealing each player’s bluffing strategy.
Bluffing is a key strategy in a poker game and excess information about players’ strategies should not be
revealed if it can be avoided.
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An interesting question is whether these two problems can be solved using zero knowledge proofs. We
provide the following decentralized card game protocols that don’t have the two issues mentioned above.

5.2.2 Decentralized Card Game Subroutines

Generating Randomness

Randomness is required during the card draw process to get a card. Supposed card deck is a public array
with integers 1 to 13, the process ensures a random card is drawn. The following protocol can be used to
generate public and private source of randomness.

1. A public source of randomness is given by previous block’s hash. Whenever a new block is committed,
its block hash can be assumed to be pseudo-random. However, relying solely on previous block hash
can lead to bias. Players can choose when they play the card, depending on if the previous blockhash is
would yield a favorable draw.

2. The private source of randomness is given by a seed hash committed by the player prior to the start of
the game. The player is able to choose a random number k, and the MiMC hash, MiMC(k), will be
pre-committed on chain. During the game, the player is able to prove their knowledge of the pre-image
of MiMC(k) without revealing k itself. The number k constitutes private source of randomness.

Random and Private Card Draw

With the ability to simulate randomness, the random and private card draw is fairly straight forward. A
random number can be generated from previous block hash and player’s pre-commited hash, possibly as an
addition of the two numbers. The card drawn will be given as:

card = (previous block hash + k)%(number of cards) (42)

To further reduce the bias of the game, it is also possible for each player to set the secret seed k for their
opponents. Such protocol is able to achieve unbiased random card draw while ensuring privacy.

Check Hand Consistency

While it is straightforward to draw a card, the process where a hand is updated is not as obvious. Note
that the player’s hand is also private. When a card is drawn, the hand needs to be updated, and the hash of
the new hand needs to be committed on chain. The zero knowledge protocol needs to achieve three purposes.

1. The protocol needs to ensure that the old hand corresponds to the previous committed hash.

2. It needs to prove transition between the old hand and new hand.

3. It needs to ensure that the committed hash corresponds to the hash of the new hand.

While the first and third steps are a simple implementation of MiMC module in circom[14], the second
step is not as obvious, where we need to prove transition between old hand to new hand. With this challenge,
a permutation protocol can be used where we prove the (old hand + card drawn) is a permutation of the
(new hand + empty card). The card drawn process is seen as a exchange between an empty card from old
hand with the new card drawn.

Private Card Play
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During private card play, a card can be publicly shown. The zero knowledge proof process is fairly similar
to the previous steps. The player needs to go through three-stage proof process similar to the previous parts.
Firstly, prove the old hand is the pre-image of the committed hash. Secondly, prove transition from old hand
to new hand through permutation. (old hand + empty card) is the permutation of (new hand + card played).

With these subroutines, we now have the necessary building blocks to generate many possible decentralized
card games on chain.

5.2.3 Proof of Concept Implementation: Decentralized Card Games

As a proof of concept, a simplified poker game is constructed to demonstrate the randomness simulation and
card playing process. The simplified game rule consists of a player drawing a card and comparing the card
with the dealer’s card. The person with the larger card number wins the game.

There are two main circuits involved in the process. The first circuit is used to randomly and privately
draw a card. It takes in the blockhash and pirvate seed as inputs. Using the module circuit, it is able to
divide seed + blockhash by 13, and uses the remainder as the card drawn. The output seedCommit can be
used to verified against the previously committed hash on chain. The output cardCommit can be used to
directly commit the new card hash on smart contract.

i n c lude ” . . / . . / node modules / c i r c om l i b / c i r c u i t s /mimcsponge . circom”
inc lude ” . . / . . / modulus . circom”

template Main ( ) {
s i g n a l p r i va t e input seed ;
s i g n a l input blockhash ;

s i g n a l output cardCommit ;
s i g n a l output seedCommit ;

s i g n a l card ;

component cardCa l cu la to r = Modulo (16 , 100000000000000000000000000000000000000);

ca rdCa l cu la to r . d iv idend <== seed + blockhash ;
ca rdCa l cu la to r . d i v i s o r <== 13 ;

card <== cardCa l cu la to r . remainder + 1 ;

component cardHash = MiMCSponge (1 , 220 , 1 ) ;
cardHash . i n s [ 0 ] <== card ;
cardHash . k <== 0 ;
cardCommit <== cardHash . outs [ 0 ]

component seedHash = MiMCSponge (1 , 220 , 1 ) ;
seedHash . i n s [ 0 ] <== seed ;
seedHash . k <== 0 ;
seedCommit <== seedHash . outs [ 0 ] ;

}

component main = Main ( ) ;
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The second circuit involves comparing the player’s card with the dealer’s card to determine the winner.
MiMC hash of the playerCard is compared with the previously committed hash. A comparator circuit is
used to determine if the playerCard is larger than the dealer’s card. It is interesting to note that the player’s
card is a private input and remains hidden throughout the game. There is no reveal step during the entire
decentralized card game.

i n c lude ” . . / . . / node modules / c i r c om l i b / c i r c u i t s /mimcsponge . circom”
inc lude ” . . / . . / node modules / c i r c om l i b / c i r c u i t s / comparators . c ircom”

template Main ( ) {
s i g n a l p r i va t e input playerCard ;
s i g n a l input playerCardCommit ;
s i g n a l input dealerCard ;

s i g n a l output outCardCommit ;
s i g n a l output outVal id ;

/∗
Ver i fy that the c a l c u l a t ed hash o f x ( outCardCommit ) i s the inputted hash ( playerCardCommit )

∗/

component mimc = MiMCSponge (1 , 220 , 1 ) ;
mimc . i n s [ 0 ] <== playerCard ;
mimc . k <== 0 ;

outCardCommit <== mimc . outs [ 0 ] ;
outCardCommit === playerCardCommit ;

/∗
Ver i fy that p laye r card i s l a r g e r than thre sho ld
outVal id = 1 i f x l e s s than thre sho ld ;
outVal id = 1 i f x >= thre sho ld

∗/

component g r e a t e r = LessThan ( 1 1 ) ;
g r e a t e r . in [ 0 ] <== playerCard ;
g r e a t e r . in [ 1 ] <== dealerCard ;

outVal id <== grea t e r . out ;
}

component main = Main ( ) ;

6 Future of ZK

6.1 zk-STARKs

Although success of zk-SNARKs is shown through various applications such as Zcash and zk-Rollups, they
still have exploitable weaknesses. zk-SNARKs require a trusted setup, which means that it needs a certain
secret key to create the common reference string, on which proof and verification is based. This private key is
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called ”toxic waste” because it needs to be disposed or securely kept. If an attacker obtains this secret, he
can utilize the secret to forge the transaction.[30]

One common way to mitigate the risk of attacker acquiring the toxic waste is via Multi-Party Computation,
where we require a set of multiple participants to cooperatively construct the key. Each of them holds a
shard of private key which is for constructing a shard of public key (CRS) that can be combined to get public
key[31]. In this setup, the exploit is minimized since having at least one of participants successfully deletes
their private key shards is enough to make it impossible for attacker to acquire toxic waste. However, this
approach can be cumbersome. Another concern of SNARKs is that it is not quantum resistant.

zk-STARKs was created by Eli Ben-Sasson, Iddo Bentov, Yinon Horeshy in 2018[32]. Unlike zk-SNARKs,
the base technology for zk-STARKs relies on collision-resistant hash functions. As a result, zk-STARKs
doesn’t require an initial trusted setup and also achieve quantum-resistance. However, zk-STARKs proof
has a far bigger size of the proofs compared to zk-SNARKs, resulting in much longer verification time than
zk-SNARKs, costing more gas. Although the developer documentation, tools, and community of zk-STARKs
is far smaller than zk-SNARKS. zk-STARKs is another promising technology that is emerging as seen from
the fact that the Ethereum Foundation gave STARKware, a zk-STARKs based scaling solutions, a $12 million
grants.

6.2 Recursive SNARKs

Although SNARKs can be applied to various applications, there are some applications that naive SNARKs
is not suitable. For example, in case that we want to prove the correctness of a function after t iterated
execution on it. With SNARKs, we need to prove all t executions at once. This ”monolithic” execution can
cause many problems. For instance we may not know number of t in advance or the whole t executions are
too big for memory[33]. This problem becomes clearer when we want to implement an application like private
but verifiable elections. In these elections, people should be able to vote without exposing their identity, and
the protocol can count the votes and verify that the vote result is correct. As we’ve discussed above, this
application is almost impossible with naive SNARKs since we are unable to process all the proofs of each
individual voter all at once.

As a result, another version of SNARKs is developed, called ”recursive SNARKs” With recursive SNARKs,
it is possible to apply SNARKs at each iterated execution to prove that execution and the correctness of prior
proof. Hence, we don’t need to wait to aggregate all executions to prove at once. With this, the election
problem becomes a lot easier since people can submit the proof of their vote and the vote-counter can just
aggregate the vote and verify the intermediary result of voting. When more people votes are sent, we can
just apply recursive SNARKs again to update and verify the new voting result, and so on [34].
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8 Appendix

8.1 Soundness, Completeness, Zero-Knowledge, Arguments versus Proofs

This section provides formal definitions for soundness, completeness, zero-knowledge, touching on the difference
between computational and statistical versions of these definitions. The following definitions are directly
quoted from Groth, Ostrovsky, and Sahai’s 2011 paper[9].

Let R be an efficiently computable binary relation. For (x,w) ∈ R, we call x the statement and w the
witness. L is the language consisting of statements in R. A non-interactive proof system for relation R consists
of a common reference string generation algorithm K, a prover P, and a verifier V. These algorithms are all
probabilistic non-uniform (takes polynomial length advice) polynomial time algorithms. K produces a CRS σ
of length Ω(k). The prover takes (σ, x, w) and produces a proof π. The verifier takes (σ, x, π) and outputs 1
iff the proof is accepted.

Denote 1k as a unary string of 1’s of length k. Denote σ ← K(1k) as σ being assigned the output of
K(1k), with probability equal to the probability that K outputs σ. (K, P, V) is a non-interactive proof system
for R if it has completeness and soundness properties below:

Definition 5. (Perfect Completeness) A proof system is complete for all adversaries A if

P [σ ← K(1k); (x,w)← A(σ);π ← P (σ, x, w) ∧ V (σ, x, π) = 1if(x,w) ∈ R] = 1 (43)

Definition 6. (Perfect Soundness) A proof system is sound if for all polynomial size families {xk} of
statements xk /∈ L and all adversaries A,

P [σ ← K(1k);π ← A(σ, xk) ∧ V (σ, xk, π) = 1] = 0 (44)

Definition 7. (Computational Soundness) A proof system is computationally sound if for all polynomial size
families {xk} of statements xk /∈ L and all non-uniform polynomial time adversaries A, if k is sufficiently
large,

P [σ ← K(1k);π ← A(σ, xk) ∧ V (σ, xk, π) = 1] ≤ k−c,∀c > 0 (45)

Definition 8. (Computational Zero Knowledge)

A non-interactive proof (K, P, V) is computational zero-knowledge if

1. There exists a polynomial time simulator S = (S1, S2) where S1 returns a simulated CRS σ with a
simulation trapdoor τ that enables S2 to simulate proofs without access to the witness. In particular, if
(x,w) ∈ R, S(σ, τ, x, w) = S2(σ, τ, x). If (x,w) /∈ R, both oracles output ”failure”.

2. For all non-uniform polynomial time adversaries A,

P [σ ← K(1k) ∧AP (σ,·,·)(σ) = 1] ≈ P [(σ, τ)← S1(1
k) ∧AS(σ,τ,·,·)(σ) = 1] (46)
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The notation AP (σ,·,·) and AS(σ,τ,·,·) mean that A has access to a subroutine (called an oracle) that on
input (x,w) returns a proof π. The adversary only sees the inputs and outputs of the oracle, and does not
know which type of oracle it has access to.

Intuitively, the adversary A plays the role of a distinguisher between the distributions over proofs generated
by the simulator and by the actual prover. The more perfectly some simulator can simulate the prover, the
more the proof is zero knowledge, because then the prover does not reveal anything to the verifier that would
help the verifier compute anything much faster than before [4]. Everything the verifier sees from the prover is
something the prover could have computed for herself if she knew that (x,w) ∈ R.

Taking this idea further, if the two probabilities above are exactly equal, then this property is called perfect
zero knowledge.

There is an important distinction between the computational and perfect versions of soundness and
zero-knowledge. Computational soundness is weaker than perfect soundness, requiring that only non-uniform
polynomial time adversaries cannot provide accepted proofs for false statements with non-negligible probability.
Simiarly, computational zero-knowledge is weaker than perfect zero-knowledge, requiring that the information
the verifier sees, called its View[4], is distributed similarly to that of some polynomial time simulator.

With these definitions, the distinction between proof systems and argument systems is as follows. Proof
systems require perfect soundness––a computationally unbounded prover cannot be able to make proofs for
false statements. On the other hand, argument systems only require computational soundness.

This distinction is made because different notions of zero-knowledge are achievable in argument systems
versus in proof systems. Fortnow [35] showed that unless PH collapses, there do not exist perfect zero-
knowledge proof systems for NP complete problems. In fact, even interactive proof systems cannot have both
perfect soundness and perfect zero knowledge. In contrast, there are perfect zero-knowledge (and additionally,
non interactive) argument systems for NP complete problems[10][9].
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