
Bonus Lecture #1: The FLP
Impossibility Theorem

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Understanding the asynchronous model.
– what does “no assumptions on message delays” mean?

2. Proof of the FLP Theorem.
– state machine replication (SMR) is “unsolvable” in asynchrony
– need to compromise to make further progress

• pull back to “partial synchrony” (see next lecture)
• relax consistency guarantees (could be a good project)
• randomized protocols that succeed with high probability

– could also be a good project

2

Goals for Bonus Lecture #1

Lecture #3: in the synchronous model, can solve the SMR
problem (i.e., via a consistent and live protocol), even with an
arbitrary number of crash faults.
• uncrashed validators remain consistent, guarantee liveness

3

SMR: Synchrony vs. Asynchrony

Lecture #3: in the synchronous model, can solve the SMR
problem (i.e., via a consistent and live protocol), even with an
arbitrary number of crash faults.
• uncrashed validators remain consistent, guarantee liveness

FLP Theorem: in the asynchronous model, even with the threat of
just one crash fault, can’t solve SMR via any protocol.

– ouch!

4

SMR: Synchrony vs. Asynchrony

Lecture #3: in the synchronous model, can solve the SMR
problem (i.e., via a consistent and live protocol), even with an
arbitrary number of crash faults.
• uncrashed validators remain consistent, guarantee liveness

FLP Theorem: in the asynchronous model, even with the threat of
just one crash fault, can’t solve SMR via any protocol.

– ouch!

Question: what’s the “asynchronous model”?

5

SMR: Synchrony vs. Asynchrony

• shared global clock, timesteps 0,1,2,…
– traditional asynchronous model does not have this (only makes today’s

impossibility result stronger)
• pool M of outstanding messages (sent but not yet received)

6

The Setup (≈ Asynchronous Model)

• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

7

The Setup (≈ Asynchronous Model)

• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides:
• which messages of M to deliver to their recipients (if any)
• which validators to crash (if any)

8

The Setup (≈ Asynchronous Model)

• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides:
• which messages of M to deliver to their recipients (if any)
• which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
• as instructed by whatever protocol they’re running
• messages sent injected directly into M

9

The Setup (≈ Asynchronous Model)

• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides:
• which messages of M to deliver to their recipients (if any)
• which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
• constraints on adversary:

– only allowed to crash (at most) one validator
– every message sent must eventually get delivered 10

The Setup (≈ Asynchronous Model)

• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides which messages of M to deliver to their recipients
(if any) and which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
– constraints on adversary: only allowed to crash (at most) one

validator, and every message sent must eventually get delivered
• at most two transactions exist, a & b

11

The Setup (≈ Asynchronous Model)

• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides which messages of M to deliver to their recipients
(if any) and which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
– constraints on adversary: only allowed to crash (at most) one

validator, and every message sent must eventually get delivered
• at most two transactions exist, a & b
• each validator receives either a or b at the start of the protocol

12

The Setup (≈ Asynchronous Model)

• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides which messages of M to deliver to their recipients (if any) and which validators to
crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send

• constraints on adversary: only allowed to crash (at most) one validator, and every message sent
must eventually get delivered

• at most two transactions exist, a & b
• each validator receives either a or b at the start of the protocol

Theorem: [FLP85] no SMR protocol guarantees consistency and
liveness in the setup above.

13

The FLP Impossibility Theorem

• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]

14

Preliminaries

• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]
• validator i “outputs 0” (respectively, “outputs 1”) if tx a

(respectively, tx b) is the first tx it finalizes

15

Preliminaries

• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]
• validator i “outputs 0” (respectively, “outputs 1”) if tx a

(respectively, tx b) is the first tx it finalizes

Assume [for contradiction]: protocol ∏ guarantees consistency
and liveness in the preceding setup.

16

Preliminaries

• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]
• validator i “outputs 0” (respectively, “outputs 1”) if tx a

(respectively, tx b) is the first tx it finalizes

Assume [for contradiction]: protocol ∏ guarantees consistency
and liveness in the preceding setup.

– “protocol” = specifies what validators should do in each timestep
• as a function of their input, the timestep, and messages received

– think of ∏ as deterministic (or with adversary-controlled randomness)

17

Preliminaries

Assume [for contradiction]: protocol ∏ guarantees consistency
and liveness in the preceding setup.

Consequences:

18

Preliminaries (con’d)

Assume [for contradiction]: protocol ∏ guarantees consistency
and liveness in the preceding setup.

Consequences:
1. liveness of ∏ è every non-faulty validator eventually outputs

0 or 1

19

Preliminaries (con’d)

Assume [for contradiction]: protocol ∏ guarantees consistency
and liveness in the preceding setup.

Consequences:
1. liveness of ∏ è every non-faulty validator eventually outputs

0 or 1
2. consistency of ∏ è all non-faulty validators eventually output

the same thing

20

Preliminaries (con’d)

Assume [for contradiction]: protocol ∏ guarantees consistency
and liveness in the preceding setup.

Consequences:
1. liveness of ∏ è every non-faulty validator eventually outputs

0 or 1
2. consistency of ∏ è all non-faulty validators eventually output

the same thing
3. if all inputs are 0 (respectively, 1) è all outputs are 0

(respectively, 1)
21

Preliminaries (con’d)

Definition: a configuration C := the state of all validators and the
message pool M at the beginning of a timestep.
• “state” of validator = input and messages received (and when)

– snapshot of an execution at the beginning of some timestep

22

Configurations

Definition: a configuration C := the state of all validators and the
message pool M at the beginning of a timestep.
• “state” of validator = input and messages received (and when)

– snapshot of an execution at the beginning of some timestep

Note: strategy of adversary in a timestep (which messages to
deliver, validator to crash) induces a transition C à C’.

23

Configurations

Definition: a configuration C := the state of all validators and the
message pool M at the beginning of a timestep.
• “state” of validator = input and messages received (and when)

– snapshot of an execution at the beginning of some timestep

Note: strategy of adversary in a timestep (which messages to
deliver, validator to crash) induces a transition C à C’.

Proof plan: devise strategy of adversary resulting in an infinite
sequence C0 à C1 à C2 à C3 à …. of configurations such that
no validator outputs in any Ct. [note: would contradict liveness]

24

Configurations

Definition: a benign adversary always delivers all messages in the
pool M and never crashes any validators.

25

The Value of a Configuration

Definition: a benign adversary always delivers all messages in the
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the
protocol ∏ with an adversary that is benign from C onward.

26

The Value of a Configuration

Definition: a benign adversary always delivers all messages in the
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the
protocol ∏ with an adversary that is benign from C onward.
• i.e., val(C)=0 if all validators eventually output 0
• i.e., val(C)=1 if all validators eventually output 1

27

The Value of a Configuration

Definition: a benign adversary always delivers all messages in the
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the
protocol ∏ with an adversary that is benign from C onward.
• i.e., val(C)=0 if all validators eventually output 0
• i.e., val(C)=1 if all validators eventually output 1
• note: by consequences (1)-(3) above, no other possibilities

– (technically, defined only for configurations C with at most one crash)

28

The Value of a Configuration

Definition: a benign adversary always delivers all messages in the
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the
protocol ∏ with an adversary that is benign from C onward.
• i.e., val(C)=0 if all validators eventually output 0
• i.e., val(C)=1 if all validators eventually output 1
• note: by consequences (1)-(3) above, no other possibilities

Next: define a “pivotal” configuration as (roughly) one in which
crashing a validator flips the output of the protocol. 29

The Value of a Configuration

Definition: for a validator i, a configuration C is i-restricted if:

30

Pivotal Configurations

Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet

31

Pivotal Configurations

Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet
• messages in M from i = all messages sent by i in some interval

{t’,t’+1,…,t-1} [where t = current timestep in configuration C]
– all messages i sent before t’ already delivered
– nobody has heard anything from i from t’ onward

32

Pivotal Configurations

Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet
• messages in M from i = all messages sent by i in some interval

{t’,t’+1,…,t-1} [where t = current timestep in configuration C]
– all messages i sent before t’ already delivered
– nobody has heard anything from i from t’ onward
– as far as other validators j≠i can tell, i crashed at time t’

• only difference is the state of M, which validators do not observe

33

Pivotal Configurations

Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet
• messages in M from i = all messages sent by i in some interval

{t’,t’+1,…,t-1} [where t = current timestep in configuration C]

Definition: for an i-restricted configuration C, val(C \ i) := output of
the protocol ∏ with an adversary that:
• at timesteps < t: behaves identically to the adversary in C

(delivers same msgs each timestep) except it crashes i at t’
• at timesteps ≥ t: is benign

34

Pivotal Configurations

Definition: for a validator i, a configuration C is i-restricted if:
– no validators have crashed yet
– messages in M from i = all messages sent by i in some interval {t’,t’+1,…,t-1} [where

t = current timestep in configuration C]

Definition: for an i-restricted configuration C, val(C \ i) := output of the
protocol ∏ with an adversary that:

– at timesteps < t: behaves identically to the adversary in C (delivers same msgs each
timestep) except it crashes i at t’

– at timesteps ≥ t: is benign

Definition: an i-restricted C is i-pivotal if val(C) ≠ val(C \ i).
• key point: C pivotal è no validators have output yet (why?) 35

Pivotal Configurations

Definition: an i-restricted C is i-pivotal if val(C) ≠ val(C \ i).
• key point: C pivotal è no validators have output yet (why?)

36

An Infinite Sequence of Pivotal Configurations

Definition: an i-restricted C is i-pivotal if val(C) ≠ val(C \ i).
• key point: C pivotal è no validators have output yet (why?)

Recall proof plan: devise strategy of adversary resulting in an
infinite sequence C0 à C1 à C2 à C3 à …. of configurations
such that no validator outputs in any Ct. [contradicts liveness]
• suffices to use only pivotal configurations
• we will exhibit such a sequence, inductively

37

An Infinite Sequence of Pivotal Configurations

38

Base Case: A Pivotal Initial Configuration

• let Xi = initial configuration in which validators 1,2,…,i have
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j [no crashes, M is empty]

39

Base Case: A Pivotal Initial Configuration

• let Xi = initial configuration in which validators 1,2,…,i have
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1

40

Base Case: A Pivotal Initial Configuration

• let Xi = initial configuration in which validators 1,2,…,i have
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1

• on the other hand: val(Xi-1 \ i) = val(Xi \ i)
– if i crashes immediately, doesn’t matter whether its input was 0 or 1

41

Base Case: A Pivotal Initial Configuration

• let Xi = initial configuration in which validators 1,2,…,i have
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1

• on the other hand: val(Xi-1 \ i) = val(Xi \ i)
– if i crashes immediately, doesn’t matter whether its input was 0 or 1
– in general: if validator sees identical messages at every timestep in two

different executions, will behave identically (including the same output)

42

Base Case: A Pivotal Initial Configuration

• let Xi = initial configuration in which validators 1,2,…,i have
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1

• on the other hand: val(Xi-1 \ i) = val(Xi \ i)
– if i crashes immediately, doesn’t matter whether its input was 0 or 1

• so: either (i) val(Xi-1 \ i) = 1 (in which case Xi-1 is i-pivotal) or
(ii) val(Xi \ i) = 0 (in which case Xi is i-pivotal)
– either way, we have our initial pivotal configuration C0 43

Base Case: A Pivotal Initial Configuration

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)

44

Inductive Step: Extending the Sequence

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

45

Inductive Step: Extending the Sequence

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal [done, just take Ct+1 = Y]

46

Inductive Step: Extending the Sequence

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

47

Inductive Step: Extending the Sequence

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

48

Inductive Step: Extending the Sequence

val(Y) = val(Y \ i)
in harder case, Y is

not i-pivotal

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

49

Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is

not i-pivotal

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

50

Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is

not i-pivotal
=

you check:
val(Ct \ i), val(Y \ i) defined by the

exact same execution
[with adversary crashing i at t’]

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

• upshot: val(Ct) ≠ val(Y) 51

Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is

not i-pivotal
=

you check:
val(Ct \ i), val(Y \ i) defined by the

exact same execution
[with adversary crashing i at t’]

• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

• upshot: val(Ct) ≠ val(Y), say val(Ct) = 0 and val(Y) = 1 52

Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is

not i-pivotal
=

you check:
val(Ct \ i), val(Y \ i) defined by the

exact same execution
[with adversary crashing i at t’]

• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

53

Extending the Sequence (con’d)

• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i

54

Extending the Sequence (con’d)

• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of

M except the last r of i’s messages (and doesn’t crash anybody)

55

Extending the Sequence (con’d)

• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1

56

Extending the Sequence (con’d)

• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1
– so there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1

57

Extending the Sequence (con’d)

• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1
– so there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)

58

Extending the Sequence (con’d)

• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1
– so there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)

• you check: Yr-1, Yr both j-restricted [with t’=t]
59

Extending the Sequence (con’d)

• define transition CtàYr by adversary delivering all messages of
M except the last r of i’s messages (and doesn’t crash anybody)

• there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)
– you check: Yr-1, Yr both j-restricted [with t’=t]

60

Extending the Sequence (con’d)

• define transition CtàYr by adversary delivering all messages of
M except the last r of i’s messages (and doesn’t crash anybody)

• there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)
– you check: Yr-1, Yr both j-restricted [with t’=t]

• on the other hand: val(Yr-1 \ j) = val(Yr \ j)
– if j crashes at start of timestep t, doesn’t matter whether it was going to

receive the rth message at the timestep [no one will ever know]

61

Extending the Sequence (con’d)

• define transition CtàYr by adversary delivering all messages of
M except the last r of i’s messages (and doesn’t crash anybody)

• there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)
– you check: Yr-1, Yr both j-restricted [with t’=t]

• on the other hand: val(Yr-1 \ j) = val(Yr \ j)
– if j crashes at start of timestep t, doesn’t matter whether it was going to

receive the rth message at the timestep [no one will ever know]
• so: either (i) val(Yr-1 \ j) = 1 (in which case Yr-1 is j-pivotal) or

(ii) val(Yr \ j) = 0 (in which case Yr is j-pivotal)
– either way, we have our next pivotal configuration Ct+1

62

Extending the Sequence (con’d)

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

63

Completing the Proof

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

Question: are we done? [contradicts liveness?]

64

Completing the Proof

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?

65

Completing the Proof

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)

66

Completing the Proof

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message

67

Completing the Proof

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message

– problem: if for some t, Ct à Ct+1 à Ct+2 à… are all i-pivotal configurations
generated using the “easy case,” i’s messages never get delivered

68

Completing the Proof

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message

– problem: if for some t, Ct à Ct+1 à Ct+2 à… are all i-pivotal configurations
generated using the “easy case,” i’s messages never get delivered

– fix:

69

Completing the Proof

Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of
pivotal configurations (è no validator outputs in any Ct).

»

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message

– problem: if for some t, Ct à Ct+1 à Ct+2 à… are all i-pivotal configurations
generated using the “easy case,” i’s messages never get delivered

– fix: modify adversary strategy to crash i at timestep t, act benign thereafter
• other validators can’t tell the difference, protocol behavior unchanged
• now a valid adversary strategy è contradicts liveness of ∏! 70

Completing the Proof

Perspective: impossibility results like the FLP Theorem give
guidance on how to compromise to make progress.

71

Getting Around the FLP Theorem

Perspective: impossibility results like the FLP Theorem give
guidance on how to compromise to make progress.

Possible compromises:
1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models

72

Getting Around the FLP Theorem

Perspective: impossibility results like the FLP Theorem give
guidance on how to compromise to make progress.

Possible compromises:
1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models
2. Solve a problem easier than SMR (e.g., with relaxed

consistency requirements).
– agreement on total ordering of txs is overkill in some applications

73

Getting Around the FLP Theorem

Perspective: impossibility results like the FLP Theorem give
guidance on how to compromise to make progress.

Possible compromises:
1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models
2. Solve a problem easier than SMR (e.g., with relaxed

consistency requirements).
– agreement on total ordering of txs is overkill in some applications

3. Use randomized protocols, solve SMR with high probability.
– rich academic literature on this topic 74

Getting Around the FLP Theorem

