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1. Understanding the asynchronous model.
– what does “no assumptions on message delays” mean?

2. Proof of the FLP Theorem.
– state machine replication (SMR) is “unsolvable” in asynchrony
– need to compromise to make further progress

• pull back to “partial synchrony” (see next lecture)
• relax consistency guarantees (could be a good project)
• randomized protocols that succeed with high probability

– could also be a good project
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Goals for Bonus Lecture #1



Lecture #3: in the synchronous model, can solve the SMR 
problem (i.e., via a consistent and live protocol), even with an 
arbitrary number of crash faults.
• uncrashed validators remain consistent, guarantee liveness
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SMR: Synchrony vs. Asynchrony



Lecture #3: in the synchronous model, can solve the SMR 
problem (i.e., via a consistent and live protocol), even with an 
arbitrary number of crash faults.
• uncrashed validators remain consistent, guarantee liveness

FLP Theorem: in the asynchronous model, even with the threat of 
just one crash fault, can’t solve SMR via any protocol.

– ouch!
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SMR: Synchrony vs. Asynchrony



Lecture #3: in the synchronous model, can solve the SMR 
problem (i.e., via a consistent and live protocol), even with an 
arbitrary number of crash faults.
• uncrashed validators remain consistent, guarantee liveness

FLP Theorem: in the asynchronous model, even with the threat of 
just one crash fault, can’t solve SMR via any protocol.

– ouch!

Question: what’s the “asynchronous model”?
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SMR: Synchrony vs. Asynchrony



• shared global clock, timesteps 0,1,2,…
– traditional asynchronous model does not have this (only makes today’s 

impossibility result stronger)
• pool M of outstanding messages (sent but not yet received)
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The Setup (≈ Asynchronous Model)



• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…
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The Setup (≈ Asynchronous Model)



• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides:
• which messages of M to deliver to their recipients (if any)
• which validators to crash (if any)
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The Setup (≈ Asynchronous Model)



• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides:
• which messages of M to deliver to their recipients (if any)
• which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
• as instructed by whatever protocol they’re running
• messages sent injected directly into M
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The Setup (≈ Asynchronous Model)



• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides:
• which messages of M to deliver to their recipients (if any)
• which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
• constraints on adversary:

– only allowed to crash (at most) one validator
– every message sent must eventually get delivered 10

The Setup (≈ Asynchronous Model)



• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides which messages of M to deliver to their recipients 
(if any) and which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
– constraints on adversary: only allowed to crash (at most) one 

validator, and every message sent must eventually get delivered
• at most two transactions exist, a & b
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The Setup (≈ Asynchronous Model)



• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides which messages of M to deliver to their recipients 
(if any) and which validators to crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send
– constraints on adversary: only allowed to crash (at most) one 

validator, and every message sent must eventually get delivered
• at most two transactions exist, a & b
• each validator receives either a or b at the start of the protocol
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The Setup (≈ Asynchronous Model)



• shared global clock, timesteps 0,1,2,…
• pool M of outstanding messages (sent but not yet received)
• at each timestep t=0,1,2,…

1. adversary decides which messages of M to deliver to their recipients (if any) and which validators to 
crash (if any)

2. non-crashed validators decide which txs to finalize, messages to send

• constraints on adversary: only allowed to crash (at most) one validator, and every message sent 
must eventually get delivered

• at most two transactions exist, a & b
• each validator receives either a or b at the start of the protocol

Theorem: [FLP85] no SMR protocol guarantees consistency and 
liveness in the setup above.
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The FLP Impossibility Theorem



• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]
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Preliminaries



• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]
• validator i “outputs 0” (respectively, “outputs 1”) if tx a

(respectively, tx b) is the first tx it finalizes
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Preliminaries



• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]
• validator i “outputs 0” (respectively, “outputs 1”) if tx a

(respectively, tx b) is the first tx it finalizes

Assume [for contradiction]: protocol ∏ guarantees consistency 
and liveness in the preceding setup.
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Preliminaries



• “input 0” = tx a, “input 1” = tx b [each validator gets input 0 or 1]
• validator i “outputs 0” (respectively, “outputs 1”) if tx a

(respectively, tx b) is the first tx it finalizes

Assume [for contradiction]: protocol ∏ guarantees consistency 
and liveness in the preceding setup.

– “protocol” = specifies what validators should do in each timestep
• as a function of their input, the timestep, and messages received

– think of ∏ as deterministic (or with adversary-controlled randomness)
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Preliminaries



Assume [for contradiction]: protocol ∏ guarantees consistency 
and liveness in the preceding setup.

Consequences: 
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Preliminaries (con’d)



Assume [for contradiction]: protocol ∏ guarantees consistency 
and liveness in the preceding setup.

Consequences: 
1. liveness of ∏ è every non-faulty validator eventually outputs 

0 or 1
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Preliminaries (con’d)



Assume [for contradiction]: protocol ∏ guarantees consistency 
and liveness in the preceding setup.

Consequences: 
1. liveness of ∏ è every non-faulty validator eventually outputs 

0 or 1
2. consistency of ∏ è all non-faulty validators eventually output 

the same thing
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Preliminaries (con’d)



Assume [for contradiction]: protocol ∏ guarantees consistency 
and liveness in the preceding setup.

Consequences: 
1. liveness of ∏ è every non-faulty validator eventually outputs 

0 or 1
2. consistency of ∏ è all non-faulty validators eventually output 

the same thing
3. if all inputs are 0 (respectively, 1) è all outputs are 0 

(respectively, 1)
21

Preliminaries (con’d)



Definition: a configuration C := the state of all validators and the 
message pool M at the beginning of a timestep.
• “state” of validator = input and messages received (and when)

– snapshot of an execution at the beginning of some timestep
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Configurations



Definition: a configuration C := the state of all validators and the 
message pool M at the beginning of a timestep.
• “state” of validator = input and messages received (and when)

– snapshot of an execution at the beginning of some timestep

Note: strategy of adversary in a timestep (which messages to 
deliver, validator to crash) induces a transition C à C’.
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Configurations



Definition: a configuration C := the state of all validators and the 
message pool M at the beginning of a timestep.
• “state” of validator = input and messages received (and when)

– snapshot of an execution at the beginning of some timestep

Note: strategy of adversary in a timestep (which messages to 
deliver, validator to crash) induces a transition C à C’.

Proof plan: devise strategy of adversary resulting in an infinite 
sequence C0 à C1 à C2 à C3 à …. of configurations such that 
no validator outputs in any Ct.  [note: would contradict liveness]
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Configurations



Definition: a benign adversary always delivers all messages in the 
pool M and never crashes any validators.
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The Value of a Configuration



Definition: a benign adversary always delivers all messages in the 
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the 
protocol ∏ with an adversary that is benign from C onward.
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The Value of a Configuration



Definition: a benign adversary always delivers all messages in the 
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the 
protocol ∏ with an adversary that is benign from C onward.
• i.e., val(C)=0 if all validators eventually output 0
• i.e., val(C)=1 if all validators eventually output 1
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The Value of a Configuration



Definition: a benign adversary always delivers all messages in the 
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the 
protocol ∏ with an adversary that is benign from C onward.
• i.e., val(C)=0 if all validators eventually output 0
• i.e., val(C)=1 if all validators eventually output 1
• note: by consequences (1)-(3) above, no other possibilities

– (technically, defined only for configurations C with at most one crash)
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The Value of a Configuration



Definition: a benign adversary always delivers all messages in the 
pool M and never crashes any validators.

Definition: for a configuration C, val(C) := the output of the 
protocol ∏ with an adversary that is benign from C onward.
• i.e., val(C)=0 if all validators eventually output 0
• i.e., val(C)=1 if all validators eventually output 1
• note: by consequences (1)-(3) above, no other possibilities

Next: define a “pivotal” configuration as (roughly) one in which 
crashing a validator flips the output of the protocol. 29

The Value of a Configuration



Definition: for a validator i, a configuration C is i-restricted if:

30

Pivotal Configurations



Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet
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Pivotal Configurations



Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet
• messages in M from i = all messages sent by i in some interval 

{t’,t’+1,…,t-1}   [where t = current timestep in configuration C]
– all messages i sent before t’ already delivered
– nobody has heard anything from i from t’ onward
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Pivotal Configurations



Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet
• messages in M from i = all messages sent by i in some interval 

{t’,t’+1,…,t-1}   [where t = current timestep in configuration C]
– all messages i sent before t’ already delivered
– nobody has heard anything from i from t’ onward
– as far as other validators j≠i can tell, i crashed at time t’

• only difference is the state of M, which validators do not observe
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Pivotal Configurations



Definition: for a validator i, a configuration C is i-restricted if:
• no validators have crashed yet
• messages in M from i = all messages sent by i in some interval 

{t’,t’+1,…,t-1}   [where t = current timestep in configuration C]

Definition: for an i-restricted configuration C, val(C \ i) := output of 
the protocol ∏ with an adversary that:
• at timesteps < t: behaves identically to the adversary in C 

(delivers same msgs each timestep) except it crashes i at t’
• at timesteps ≥ t: is benign 
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Pivotal Configurations



Definition: for a validator i, a configuration C is i-restricted if:
– no validators have crashed yet
– messages in M from i = all messages sent by i in some interval {t’,t’+1,…,t-1}   [where 

t = current timestep in configuration C]

Definition: for an i-restricted configuration C, val(C \ i) := output of the 
protocol ∏ with an adversary that:

– at timesteps < t: behaves identically to the adversary in C (delivers same msgs each 
timestep) except it crashes i at t’

– at timesteps ≥ t: is benign 

Definition: an i-restricted C is i-pivotal if val(C) ≠ val(C \ i).
• key point: C pivotal è no validators have output yet (why?) 35

Pivotal Configurations



Definition: an i-restricted C is i-pivotal if val(C) ≠ val(C \ i).
• key point: C pivotal è no validators have output yet (why?)
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An Infinite Sequence of Pivotal Configurations



Definition: an i-restricted C is i-pivotal if val(C) ≠ val(C \ i).
• key point: C pivotal è no validators have output yet (why?)

Recall proof plan: devise strategy of adversary resulting in an 
infinite sequence C0 à C1 à C2 à C3 à …. of configurations 
such that no validator outputs in any Ct.  [contradicts liveness]
• suffices to use only pivotal configurations
• we will exhibit such a sequence, inductively
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An Infinite Sequence of Pivotal Configurations



38

Base Case: A Pivotal Initial Configuration



• let Xi = initial configuration in which validators 1,2,…,i have 
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j   [no crashes, M is empty]
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Base Case: A Pivotal Initial Configuration



• let Xi = initial configuration in which validators 1,2,…,i have 
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j   [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1
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Base Case: A Pivotal Initial Configuration



• let Xi = initial configuration in which validators 1,2,…,i have 
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j   [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1

• on the other hand: val(Xi-1 \ i) = val(Xi \ i)
– if i crashes immediately, doesn’t matter whether its input was 0 or 1
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Base Case: A Pivotal Initial Configuration



• let Xi = initial configuration in which validators 1,2,…,i have 
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j   [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1

• on the other hand: val(Xi-1 \ i) = val(Xi \ i)
– if i crashes immediately, doesn’t matter whether its input was 0 or 1
– in general: if validator sees identical messages at every timestep in two 

different executions, will behave identically (including the same output)
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Base Case: A Pivotal Initial Configuration



• let Xi = initial configuration in which validators 1,2,…,i have 
input 1 and validators i+1,i+2,…,n have input 0
– note: all Xi’s j-restricted for all j   [no crashes, M is empty]

• note: for some i ≥1, val(Xi-1)=0 and val(Xi)=1
– follows from fact that val(X0)=0 and val(Xn)=1

• on the other hand: val(Xi-1 \ i) = val(Xi \ i)
– if i crashes immediately, doesn’t matter whether its input was 0 or 1

• so: either (i) val(Xi-1 \ i) = 1 (in which case Xi-1 is i-pivotal) or    
(ii) val(Xi \ i) = 0 (in which case Xi is i-pivotal)
– either way, we have our initial pivotal configuration C0 43

Base Case: A Pivotal Initial Configuration



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)

44

Inductive Step: Extending the Sequence



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]
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Inductive Step: Extending the Sequence



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal  [done, just take Ct+1 = Y]
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Inductive Step: Extending the Sequence



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal  [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:
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Inductive Step: Extending the Sequence



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal  [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:
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Inductive Step: Extending the Sequence

val(Y) = val(Y \ i)
in harder case, Y is        

not i-pivotal



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal  [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:
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Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is        

not i-pivotal



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal  [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:
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Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is        

not i-pivotal
=

you check:
val(Ct \ i), val(Y \ i) defined by the 

exact same execution                          
[with adversary crashing i at t’] 



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal  [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

• upshot: val(Ct) ≠ val(Y) 51

Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is        

not i-pivotal
=

you check:
val(Ct \ i), val(Y \ i) defined by the 

exact same execution                          
[with adversary crashing i at t’] 



• let Ct be an i-pivotal configuration (need to exhibit pivotal Ct+1)
• consider transition CtàY if adversary delivers all messages of 

M except those sent by i (and doesn’t crash anybody)
– note: because Ct is i-restricted, so is Y [with the same value of t’]

• easy case: Y is also i-pivotal  [done, just take Ct+1 = Y]
• harder case: Y not i-pivotal. picture then is:

• upshot: val(Ct) ≠ val(Y), say val(Ct) = 0 and val(Y) = 1 52

Inductive Step: Extending the Sequence

val(Ct) ≠ val(Ct \ i)because Ct is i-pivotal

val(Y) = val(Y \ i)
in harder case, Y is        

not i-pivotal
=

you check:
val(Ct \ i), val(Y \ i) defined by the 

exact same execution                          
[with adversary crashing i at t’] 



• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign
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Extending the Sequence (con’d)



• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
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Extending the Sequence (con’d)



• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of 

M except the last r of i’s messages (and doesn’t crash anybody)
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Extending the Sequence (con’d)



• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of 

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1
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Extending the Sequence (con’d)



• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of 

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1
– so there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
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Extending the Sequence (con’d)



• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of 

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1
– so there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)
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Extending the Sequence (con’d)



• the story so far: val(Ct) = 0 and val(Y) = 1
– in transition CtàY, adversary delays i’s messages, is otherwise benign

• in Ct, M must contain p≥1 messages sent by i
• define transition CtàYr by adversary delivering all messages of 

M except the last r of i’s messages (and doesn’t crash anybody)
– val(Y0) = val(Ct) = 0; since Yp = Y, val(Yp) = val(Y) = 1
– so there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)

• you check: Yr-1, Yr both j-restricted [with t’=t]
59

Extending the Sequence (con’d)



• define transition CtàYr by adversary delivering all messages of 
M except the last r of i’s messages (and doesn’t crash anybody)

• there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)
– you check: Yr-1, Yr both j-restricted [with t’=t]
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Extending the Sequence (con’d)



• define transition CtàYr by adversary delivering all messages of 
M except the last r of i’s messages (and doesn’t crash anybody)

• there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)
– you check: Yr-1, Yr both j-restricted [with t’=t]

• on the other hand: val(Yr-1 \ j) = val(Yr \ j)
– if j crashes at start of timestep t, doesn’t matter whether it was going to 

receive the rth message at the timestep [no one will ever know]
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Extending the Sequence (con’d)



• define transition CtàYr by adversary delivering all messages of 
M except the last r of i’s messages (and doesn’t crash anybody)

• there exists r≥1 such that val(Yr-1) = 0 and val(Yr) = 1
– let j = recipient of rth message (j≠i)
– you check: Yr-1, Yr both j-restricted [with t’=t]

• on the other hand: val(Yr-1 \ j) = val(Yr \ j)
– if j crashes at start of timestep t, doesn’t matter whether it was going to 

receive the rth message at the timestep [no one will ever know]
• so: either (i) val(Yr-1 \ j) = 1 (in which case Yr-1 is j-pivotal) or    

(ii) val(Yr \ j) = 0 (in which case Yr is j-pivotal)
– either way, we have our next pivotal configuration Ct+1
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Extending the Sequence (con’d)



Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»
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Completing the Proof



Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»

Question: are we done? [contradicts liveness?]
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Completing the Proof



Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?
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Completing the Proof



Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
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Completing the Proof



Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message
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Completing the Proof



Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»

Question: are we done? [contradicts liveness?]

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message

– problem: if for some t, Ct à Ct+1 à Ct+2 à… are all i-pivotal configurations 
generated using the “easy case,” i’s messages never get delivered 
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Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message

– problem: if for some t, Ct à Ct+1 à Ct+2 à… are all i-pivotal configurations 
generated using the “easy case,” i’s messages never get delivered 

– fix:
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Upshot: there is an infinite sequence C0 à C1 à C2 à C3 à …. of 
pivotal configurations (è no validator outputs in any Ct). 

»

Issue: in adversary strategy above, are its constraints respected?
• good news: never uses a crash fault (only the threat of a fault)
• bad news: not guaranteed to eventually deliver every message

– problem: if for some t, Ct à Ct+1 à Ct+2 à… are all i-pivotal configurations 
generated using the “easy case,” i’s messages never get delivered 

– fix: modify adversary strategy to crash i at timestep t, act benign thereafter
• other validators can’t tell the difference, protocol behavior unchanged
• now a valid adversary strategy è contradicts liveness of ∏! 70

Completing the Proof



Perspective: impossibility results like the FLP Theorem give 
guidance on how to compromise to make progress.
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Getting Around the FLP Theorem



Perspective: impossibility results like the FLP Theorem give 
guidance on how to compromise to make progress.

Possible compromises: 
1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models
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Perspective: impossibility results like the FLP Theorem give 
guidance on how to compromise to make progress.

Possible compromises: 
1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models
2. Solve a problem easier than SMR (e.g., with relaxed 

consistency requirements).
– agreement on total ordering of txs is overkill in some applications
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Perspective: impossibility results like the FLP Theorem give 
guidance on how to compromise to make progress.

Possible compromises: 
1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models
2. Solve a problem easier than SMR (e.g., with relaxed 

consistency requirements).
– agreement on total ordering of txs is overkill in some applications

3. Use randomized protocols, solve SMR with high probability.
– rich academic literature on this topic 74
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