Bonus Lecture #2: Digital Signatures in Blockchain Protocols (Part 1 of 2)

COMS 4995-001: The Science of Blockchains URL: https://timroughgarden.org/s25/

Tim Roughgarden

Question: in Ethereum, what signature scheme do users use to sign their transactions?

Question: in Ethereum, what signature scheme do users use to sign their transactions?

Answer: "ECDSA with the secp256k1 curve, except with Keccak-256 instead of SHA-256."

Question: in Ethereum, what signature scheme do users use to sign their transactions?

Answer: "ECDSA with the secp256k1 curve, except with Keccak-256 instead of SHA-256." [huh?]

Question: in Ethereum, what signature scheme do users use to sign their transactions?

Answer: "ECDSA with the secp256k1 curve, except with Keccak-256 instead of SHA-256." [huh?]

Question: why not RSA signatures?

Question: in Ethereum, what signature scheme do users use to sign their transactions?

Answer: "ECDSA with the secp256k1 curve, except with Keccak-256 instead of SHA-256." [huh?]

Question: why not RSA signatures?

Answer: "for 128 bits of security, would need keys of length 3072 bits rather than 256 bits."

Question: in Ethereum, what signature scheme do users use to sign their transactions?

Answer: "ECDSA with the secp256k1 curve, except with Keccak-256 instead of SHA-256." [huh?]

Question: why not RSA signatures?

Answer: "for 128 bits of security, would need keys of length 3072 bits rather than 256 bits." [why 128? why 256? why 3072?]

Goals for Bonus Lecture #2

- 1. Bits of security.
 - what does it mean and how much is enough?
- 2. Groups and the discrete logarithm approach to signatures.
 - common to ECDSA, Schnorr, BLS, etc.
- 3. Algorithms for the discrete logarithm problem.
 - the discrete log problem is not as hard as you might have thought!

Digital Signature Schemes in Blockchains

• one of the two most ubiquitous cryptographic primitives used in blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a transaction (e.g., making a payment).

• fundamental to the vision of shared computer in the sky

Application #2: under the hood, allows validators of a blockchain protocol to sign their messages.

• used in most blockchain protocols for this purpose

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

- 1. Key generation algorithm: maps seed $r \rightarrow (pk,sk)$ pair.
 - in some cases, may generate r itself (e.g., ssh-keygen)
- 2. Signing algorithm: maps message + sk \rightarrow signature.
 - signature depends on both sk and the message being signed
- 3. Verification algorithm: maps $msg + sig + pk \rightarrow "yes"/"no"$.
 - anyone who knows pk can verify correctness of an alleged signature

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

- 1. Key generation algorithm: maps seed $r \rightarrow (pk,sk)$ pair.
 - in some cases, may generate r itself (e.g., ssh-keygen)
- 2. Signing algorithm: maps message + sk \rightarrow signature.
 - signature depends on both sk and the message being signed
- 3. Verification algorithm: maps $msg + sig + pk \rightarrow "yes"/"no"$.
 - anyone who knows pk can verify correctness of an alleged signature

Prime considerations: (i) security (how infeasible is it to forge signatures?);

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

- 1. Key generation algorithm: maps seed $r \rightarrow (pk,sk)$ pair.
 - in some cases, may generate r itself (e.g., ssh-keygen)
- 2. Signing algorithm: maps message + sk \rightarrow signature.
 - signature depends on both sk and the message being signed
- 3. Verification algorithm: maps $msg + sig + pk \rightarrow "yes"/"no"$.
 - anyone who knows pk can verify correctness of an alleged signature

Prime considerations: (i) security (how infeasible is it to forge signatures?); (ii) performance (time and space).

Question: how to quantify "degree of infeasibility" of an attack?

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: *t bits of security* \rightarrow successful attack would require $\geq 2^t$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: t bits of security \rightarrow as far as we know, successful attack would require $\geq 2^{t}$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security
 - if there's an attack faster than brute force \rightarrow < t bits of security

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: t bits of security \rightarrow as far as we know, successful attack would require $\geq 2^{t}$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security

Question: how many bits of security are enough?

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: t bits of security \rightarrow as far as we know, successful attack would require $\geq 2^t$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security

Question: how many bits of security are enough?

Cartoon:

difficulty of attack

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: t bits of security \rightarrow as far as we know, successful attack would require $\geq 2^{t}$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security

Question: how many bits of security are enough?

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: t bits of security \rightarrow as far as we know, successful attack would require $\geq 2^{t}$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security

Question: how many bits of security are enough?

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: t bits of security \rightarrow as far as we know, successful attack would require $\geq 2^{t}$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security

Question: how many bits of security are enough? Cartoon:

of bits of security t \rightarrow

Question: how to quantify "degree of infeasibility" of an attack?

Informal definition: t bits of security \rightarrow as far as we know, successful attack would require $\geq 2^{t}$ computer operations.

- example: if need to brute force a t-bit secret key \rightarrow t bits of security

Question: how many bits of security are enough?

Recall:

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations):

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations):

• 1000 seconds \approx 15 minutes

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations):

- 1000 seconds \approx 15 minutes
- one million seconds ≈ 10 days

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations):

- 1000 seconds \approx 15 minutes
- one million seconds \approx 10 days
- one billion seconds ≈ 30 years

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

Computational power: [Moore's Law → doubles every 18 months]

• El Capitan (world's fastest supercomputer): $\approx 2^{60}$ ops/sec

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

- El Capitan (world's fastest supercomputer): $\approx 2^{60}$ ops/sec
- Macbook Pro (M4 Chip): $\approx 2^{45}$ ops/sec

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

- El Capitan (world's fastest supercomputer): $\approx 2^{60}$ ops/sec
- Macbook Pro (M4 Chip): $\approx 2^{45}$ ops/sec
- 1000 Macbook Pros (M4 Chip): $\approx 2^{55}$ ops/sec

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

- El Capitan (world's fastest supercomputer): $\approx 2^{60}$ ops/sec
- Macbook Pro (M4 Chip): $\approx 2^{45}$ ops/sec
- 1000 Macbook Pros (M4 Chip): $\approx 2^{55}$ ops/sec
- Antminer S21 XP: $\approx 2^{45}$ SHA-256 hashes/sec

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

- El Capitan (world's fastest supercomputer): $\approx 2^{60}$ ops/sec
- Macbook Pro (M4 Chip): $\approx 2^{45}$ ops/sec
- 1000 Macbook Pros (M4 Chip): $\approx 2^{55}$ ops/sec
- Antminer S21 XP: $\approx 2^{45}$ SHA-256 hashes/sec
 - all of Bitcoin mining: $\approx 2^{70}$ SHA-256 hashes/sec

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

Computational power: [Moore's Law → doubles every 18 months]

• 2⁴⁵ ops/sec easy, 2⁶⁰ ops/sec expensive but possible
How Many Bits of Security Are Enough?

Recall: $2^{10} \approx 1000$, $2^{20} \approx$ one million, $2^{30} \approx$ one billion, etc.

Time (loose approximations): 1000 seconds \approx 15 minutes, one million seconds \approx 10 days, one billion seconds \approx 30 years.

Computational power: [Moore's Law → doubles every 18 months]

• 2⁴⁵ ops/sec easy, 2⁶⁰ ops/sec expensive but possible

Upshot:

- 80 bits of security fine 20 years ago, not good enough now
- 128 bits regarded as plenty in the short- and medium-term

Question: what do digital signature schemes typically look like?

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]

- note: an unimaginably large number [#atoms in universe $\approx 2^{265}$]

– variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256] – note: an unimaginably large number [#atoms in universe $\approx 2^{265}$] – variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256] – note: an unimaginably large number [#atoms in universe $\approx 2^{265}$] – variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).

• f must be efficiently computable (i.e., in time polynomial in t)

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256] – note: an unimaginably large number [#atoms in universe $\approx 2^{265}$]

– variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

- f must be efficiently computable (i.e., in time polynomial in t)
- f must be invertible (i.e., $sk \neq sk' \rightarrow f(sk) \neq f(sk')$)

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256] – note: an unimaginably large number [#atoms in universe $\approx 2^{265}$]

– variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

- f must be efficiently computable (i.e., in time polynomial in t)
- f must be invertible (i.e., $sk \neq sk' \rightarrow f(sk) \neq f(sk')$)
- f⁻¹ must be hard to compute (ideally, exponential in t)

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]

- note: an unimaginably large number [#atoms in universe $\approx 2^{265}$]
- variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

- f must be efficiently computable (i.e., in time polynomial in t)
- f must be invertible (i.e., $sk \neq sk' \rightarrow f(sk) \neq f(sk')$)
- f⁻¹ must be hard to compute (ideally, exponential in t)
 - otherwise, attacker can reverse engineer sk from pk!

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]

- note: an unimaginably large number [#atoms in universe $\approx 2^{265}$]
- variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

- f must be efficiently computable (i.e., in time polynomial in t)
- f must be invertible (i.e., $sk \neq sk' \rightarrow f(sk) \neq f(sk')$)
- f⁻¹ must be hard to compute (ideally, exponential in t)

- issue: no hope of proving this (would imply $P \neq NP!$)

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]

- note: an unimaginably large number [#atoms in universe $\approx 2^{265}$]
- variation: sk uniformly random from {1,2,...,p-1} for t-bit prime p

- f must be efficiently computable (i.e., in time polynomial in t)
- f must be invertible (i.e., $sk \neq sk' \rightarrow f(sk) \neq f(sk')$)
- as far as we know, f⁻¹ hard to compute (ideally, exponential in t)
 otherwise, attacker can reverse engineer sk from pk!

Attempt #1: for some fixed positive integer a, $f(x) = a \circ x$

• conceptually (not computationally!), add a to itself x times

Attempt #1: for some fixed positive integer a, $f(x) = a \circ x$

- conceptually (not computationally!), add a to itself x times
- easy to evaluate [grade-school multiplication = $O(t^2)$ time]

Attempt #1: for some fixed positive integer a, $f(x) = a \circ x$

- conceptually (not computationally!), add a to itself x times
- easy to evaluate [grade-school multiplication = $O(t^2)$ time]
- issue: easy to invert [long division = $O(t^2)$ time]

Attempt #1: for some fixed positive integer a, $f(x) = a \circ x$

- conceptually (not computationally!), add a to itself x times
- easy to evaluate [grade-school multiplication = $O(t^2)$ time]
- issue: easy to invert [long division = $O(t^2)$ time]

Attempt #2: for some fixed \approx t-bit prime p and a in {2,3,...,p-1}, f(x) = a \circ x \mod p (remainder of a $\circ x$ after discarding multiples of p).

Attempt #1: for some fixed positive integer a, $f(x) = a \circ x$

- conceptually (not computationally!), add a to itself x times
- easy to evaluate [grade-school multiplication = $O(t^2)$ time]
- issue: easy to invert [long division = O(t²) time]

Attempt #2: for some fixed \approx t-bit prime p and a in {2,3,...,p-1}, f(x) = a \circ x \mod p (remainder of a $\circ x$ after discarding multiples of p).

- note: modular arithmetic keeps sizes of all number bounded
 - why use a prime p? ensures that f is invertible (you check)

Attempt #1: for some fixed positive integer a, $f(x) = a \circ x$

- conceptually (not computationally!), add a to itself x times
- easy to evaluate [grade-school multiplication = $O(t^2)$ time]
- issue: easy to invert [long division = O(t²) time]

Attempt #2: for some fixed \approx t-bit prime p and a in {2,3,...,p-1}, f(x) = a \circ x \mod p (remainder of a $\circ x$ after discarding multiples of p).

- note: modular arithmetic keeps sizes of all number bounded
 why use a prime p? ensures that f is invertible (you check)
- issue: easy to invert [extended Euclid's algorithm = $O(t^2)$ time]

Attempt #3: for some fixed integer $a \ge 2$, $f(x) = a^x$.

• conceptually, multiply a by itself x times

- conceptually, multiply a by itself x times
- issue: hard to evaluate [need $x \approx 2^t$ multiplications]

- conceptually, multiply a by itself x times
- issue: hard to evaluate [need $x \approx 2^{t}$ multiplications]
- repeated squaring \rightarrow can evaluate using \leq 2t multiplications

- conceptually, multiply a by itself x times
- issue: hard to evaluate [need $x \approx 2^t$ multiplications]
- repeated squaring \rightarrow can evaluate using \leq 2t multiplications
 - e.g., to compute a^{23}

- conceptually, multiply a by itself x times
- issue: hard to evaluate [need $x \approx 2^{t}$ multiplications]
- repeated squaring \rightarrow can evaluate using \leq 2t multiplications

Attempt #3: for some fixed integer $a \ge 2$, $f(x) = a^x$.

- conceptually, multiply a by itself x times
- issue: hard to evaluate [need $x \approx 2^{t}$ multiplications]
- repeated squaring \rightarrow can evaluate using \leq 2t multiplications

- e.g., to compute a^{23} , compute a, a^2, a^4, a^8, a^{16} , and $a \circ a^2 \circ a^4 \circ a^{16}$ $\leq t$ multiplications $\leq t$ multiplications

- conceptually, multiply a by itself x times
- issue: hard to evaluate [need $x \approx 2^{t}$ multiplications]
- repeated squaring \rightarrow can evaluate using \leq 2t multiplications

- e.g., to compute
$$a^{23}$$
, compute a, a^2, a^4, a^8, a^{16} , and $a \circ a^2 \circ a^4 \circ a^{16}$
 $\leq t$ multiplications $\leq t$ multiplications

- note: can similarly invert f with O(t) multiplications
 - repeatedly square, overshoot the target, divide out, repeat

- conceptually, multiply a by itself x times
- issue: f not one-way (O(t) multiplications to evaluate or invert)

Attempt #3: for some fixed integer $a \ge 2$, $f(x) = a^x$.

- conceptually, multiply a by itself x times
- issue: f not one-way (O(t) multiplications to evaluate or invert)

Attempt #3: for some fixed integer $a \ge 2$, $f(x) = a^x$.

- conceptually, multiply a by itself x times
- issue: f not one-way (O(t) multiplications to evaluate or invert)

- note: modular arithmetic keeps sizes of all number bounded
- evaluating f by repeated squaring \rightarrow O(t³) time

Attempt #3: for some fixed integer $a \ge 2$, $f(x) = a^x$.

- conceptually, multiply a by itself x times
- issue: f not one-way (O(t) multiplications to evaluate or invert)

- note: modular arithmetic keeps sizes of all number bounded
- evaluating f by repeated squaring \rightarrow O(t³) time
- fact: for carefully chosen a and p, not known how to invert this f in polynomial time! (→ candidate for a signature scheme)

- evaluating f by repeated squaring \rightarrow O(t³) time
- fact: for carefully chosen a and p, not known how to invert this f in polynomial time! (→ candidate for a signature scheme)

Attempt #4: for some fixed \approx t-bit prime p and a in {2,3,...,p-1}, f(x) = a^x mod p (remainder of a^x after discarding multiples of p).

- evaluating f by repeated squaring \rightarrow O(t³) time
- fact: for carefully chosen a and p, not known how to invert this f in polynomial time! (→ candidate for a signature scheme)

Question: is f invertible?

Attempt #4: for some fixed \approx t-bit prime p and a in {2,3,...,p-1}, f(x) = a^x mod p (remainder of a^x after discarding multiples of p).

- evaluating f by repeated squaring \rightarrow O(t³) time
- fact: for carefully chosen a and p, not known how to invert this f in polynomial time! (→ candidate for a signature scheme)

Question: is f invertible?

Answer: yes, provided:

• $p \ge 2^t + 1$ [obviously necessary]

Attempt #4: for some fixed \approx t-bit prime p and a in {2,3,...,p-1}, f(x) = a^x mod p (remainder of a^x after discarding multiples of p).

- evaluating f by repeated squaring \rightarrow O(t³) time
- fact: for carefully chosen a and p, not known how to invert this f in polynomial time! (→ candidate for a signature scheme)

Question: is f invertible?

Answer: yes, provided:

- $p \ge 2^t + 1$ [obviously necessary]
- a chosen as a "generator of Z_p^{*}" [explained next]

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$:

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$:

• $3^1 = 3 \pmod{7}$

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$:

- $3^1 = 3 \pmod{7}$
- $3^2 = 2 \pmod{7}$

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$:

- $3^1 = 3 \pmod{7}$
- $3^2 = 2 \pmod{7}$
- $3^3 = 6 \pmod{7}$
Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

- $3^1 = 3 \pmod{7}$
- $3^2 = 2 \pmod{7}$
- $3^3 = 6 \pmod{7}$
- $3^4 = 4 \pmod{7}$

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

- $3^1 = 3 \pmod{7}$
- $3^2 = 2 \pmod{7}$
- $3^3 = 6 \pmod{7}$
- $3^4 = 4 \pmod{7}$
- $3^5 = 5 \pmod{7}$

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

- $3^1 = 3 \pmod{7}$
- $3^2 = 2 \pmod{7}$
- $3^3 = 6 \pmod{7}$
- $3^4 = 4 \pmod{7}$
- $3^5 = 5 \pmod{7}$
- $3^6 = 1 \pmod{7}$

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

- $3^1 = 3 \pmod{7}$
- $3^2 = 2 \pmod{7}$
- $3^3 = 6 \pmod{7}$
- $3^4 = 4 \pmod{7}$
- $3^5 = 5 \pmod{7}$
- $3^6 = 1 \pmod{7}$
- i.e., can relabel elements of Z_7^* as distinct powers of 3

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$. [but 2 is not]

- $3^1 = 3 \pmod{7}$
- $3^2 = 2 \pmod{7}$
- $3^3 = 6 \pmod{7}$ i.e.,
- $3^4 = 4 \pmod{7}$
- $3^5 = 5 \pmod{7}$
- $3^6 = 1 \pmod{7}$
- i.e., can relabel elements of Z_7^* as distinct powers of 3

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

- $2^1 = 2 \pmod{11}$
- $2^2 = 4 \pmod{11}$
- $2^3 = 8 \pmod{11}$
- $2^4 = 5 \pmod{11}$
- $2^5 = 10 \pmod{11}$

Notation: $Z_{p}^{*} = \{1, 2, ..., p-1\}.$

- $2^1 = 2 \pmod{11}$
 - $2^6 = 9 \pmod{11}$
- $2^2 = 4 \pmod{11}$ $2^7 = 7 \pmod{11}$
- $2^3 = 8 \pmod{11}$ $2^8 = 3 \pmod{11}$
- $2^4 = 5 \pmod{11}$
- $2^5 = 10 \pmod{11}$

- $2^9 = 6 \pmod{11}$
- $2^{10} = 1 \pmod{11}$

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

•	$2^1 = 2 \pmod{11}$	•	2 ⁶ = 9 (mod 11)]	
•	$2^2 = 4 \pmod{11}$	•	$2^7 = 7 \pmod{11}$		i.e., can relabel elements of Z ₁₁ * as distinct powers of 2
•	$2^3 = 8 \pmod{11}$	•	2 ⁸ = 3 (mod 11)	┝	
•	2 ⁴ = 5 (mod 11)	•	$2^9 = 6 \pmod{11}$		
•	2 ⁵ = 10 (mod 11)	٠	$2^{10} = 1 \pmod{11}$		

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$. [but 2 is not] **Example:** 2 is a generator of $Z_{11}^* = \{1, 2, ..., 10\}$.

In general: for every prime p, Z_p^* has a generator.

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$. [but 2 is not] Example: 2 is a generator of $Z_{11}^* = \{1, 2, ..., 10\}$.

In general: for every prime p, Z_p^* has a generator.

Terminology: for every prime p, Z_{p}^{*} is a *cyclic group*:

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$. [but 2 is not] Example: 2 is a generator of $Z_{11}^* = \{1, 2, ..., 10\}$.

In general: for every prime p, Z_p^* has a generator.

Terminology: for every prime p, Z_p^* is a *cyclic group*:

- has a well-defined binary operation (here, multiplication mod p)
- each element has an inverse (can always "undo" an operation)

Notation: $Z_p^* = \{1, 2, ..., p-1\}.$

Example: 3 is a generator of $Z_7^* = \{1, 2, ..., 6\}$. [but 2 is not] Example: 2 is a generator of $Z_{11}^* = \{1, 2, ..., 10\}$.

In general: for every prime p, Z_p^* has a generator.

Terminology: for every prime p, Z_p^* is a *cyclic group*:

- has a well-defined binary operation (here, multiplication mod p)
- each element has an inverse (can always "undo" an operation)
- has a generator g (like 3 or 2, above)

Cyclic group:

- has a well-defined binary operation (here, multiplication mod p)
- each element has an inverse (can always "undo" an operation)
- has a generator g (like 3 or 2, above)

General approach to key generation:

Cyclic group:

- has a well-defined binary operation (here, multiplication mod p)
- each element has an inverse (can always "undo" an operation)
- has a generator g (like 3 or 2, above)

General approach to key generation:

- choose G = cyclic group with generator g and order/size $q \ge 2^t$

Cyclic group:

- has a well-defined binary operation (here, multiplication mod p)
- each element has an inverse (can always "undo" an operation)
- has a generator g (like 3 or 2, above)

General approach to key generation:

- choose G = cyclic group with generator g and order/size $q \ge 2^t$
- sk := random t-bit string

Cyclic group:

- has a well-defined binary operation (here, multiplication mod p)
- each element has an inverse (can always "undo" an operation)
- has a generator g (like 3 or 2, above)

General approach to key generation:

- choose G = cyclic group with generator g and order/size $q \ge 2^t$
- sk := random t-bit string
- pk := g^{sk} (can be computed efficiently by repeated squaring)
 conceptually, multiply (i.e., group operation) g by itself sk times

Cyclic group:

- has a well-defined binary operation (here, multiplication mod p)
- each element has an inverse (can always "undo" an operation)
- has a generator g (like 3 or 2, above)

General approach to key generation:

- choose G = cyclic group with generator g and order/size $q \ge 2^t$
- sk := random t-bit string, pk := g^{sk}

Discrete log (DL) assumption for G: there is no (randomized) polynomial-time algorithm that can recover x from g and g^x (with non-negligible probability). [necessary condition for security]

How Hard Is the DL Problem?

Discrete log (DL) assumption for G: there is no (randomized) polynomial-time algorithm that can recover x from g and g^x (with non-negligible probability). [necessary condition for security]

• note: false in some groups (e.g., addition modulo p)

How Hard Is the DL Problem?

Discrete log (DL) assumption for G: there is no (randomized) polynomial-time algorithm that can recover x from g and g^x (with non-negligible probability). [necessary condition for security]

• note: false in some groups (e.g., addition modulo p)

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

How Hard Is the DL Problem?

Discrete log (DL) assumption for G: there is no (randomized) polynomial-time algorithm that can recover x from g and g^x (with non-negligible probability). [necessary condition for security]

• note: false in some groups (e.g., addition modulo p)

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

Consequence: with DL approach, need key size \geq 256 bits to get 128 bits of security [no matter what G is].

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

Idea of algorithm: [given generator g and g^x, need to recover x]

step 1: compute g²,g³,g⁴,...,g^{√q}
 [i.e., all entries in bottom row]

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

- step 1: compute g²,g³,g⁴,...,g^{√q}
 [i.e., all entries in bottom row]
- step 2: compute g^{x-√q}, g^{x-2√q}, g^{x-3√q},... i times until see repeat value g^j from step 1 [i.e., go down from g^x until you hit bottom row]

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

- step 1: compute g²,g³,g⁴,...,g^{√q}
 [i.e., all entries in bottom row]
- step 2: compute g^{x-√q}, g^{x-2√q}, g^{x-3√q},... i times until see repeat value g^j from step 1 [i.e., go down from g^x until you hit bottom row]
 - → x must be $(i\sqrt{q}) + j$

Fact: if the group G has order q, can solve the discrete log problem for G with $O(\sqrt{q})$ group operations.

- step 1: compute g²,g³,g⁴,...,g^{√q}
 [i.e., all entries in bottom row]
- step 2: compute g^{x-√q}, g^{x-2√q}, g^{x-3√q},... i times until see repeat value g^j from step 1 [i.e., go down from g^x until you hit bottom row]
 - → x must be $(i\sqrt{q}) + j$
- \rightarrow uses at most 2 \sqrt{q} group operations!

Fact: "black-box/generic" algorithms cannot solve the discrete log problem with $o(\sqrt{q})$ group operations [where q = order of group].

• i.e., to do better, must exploit the structure of the group

Fact: "black-box/generic" algorithms cannot solve the discrete log problem with $o(\sqrt{q})$ group operations [where q = order of group].

• i.e., to do better, must exploit the structure of the group

Fact: the discrete log problem in Z_p^* can be solved with $\approx \exp\{1.92 \times (\ln p)^{1/3} \times (\ln \ln p)^{2/3}\}$ group operations [where q is the order of group]. (via the "general number field sieve (GNFS)")

Fact: "black-box/generic" algorithms cannot solve the discrete log problem with $o(\sqrt{q})$ group operations [where q = order of group].

• i.e., to do better, must exploit the structure of the group

Fact: the discrete log problem in Z_p^* can be solved with $\approx \exp\{1.92 \times (\ln p)^{1/3} \times (\ln \ln p)^{2/3}\}$ group operations [where q is the order of group]. (via the "general number field sieve (GNFS)")

Consequence: with this group, need key size \geq 3072 bits to get 128 bits of security.

Fact: "black-box/generic" algorithms cannot solve the discrete log problem with $o(\sqrt{q})$ group operations [where q = order of group].

• i.e., to do better, must exploit the structure of the group

Fact: the discrete log problem in Z_p^* can be solved with $\approx \exp\{1.92 \times (\ln p)^{1/3} \times (\ln \ln p)^{2/3}\}$ group operations [where q is the order of group]. (via the "general number field sieve (GNFS)")

Consequence: with this group, need key size \geq 3072 bits to get 128 bits of security. [similar conclusion for RSA signatures]

Fact: if the group G has order q, can solve the discrete log problem for G on a *quantum* computer with $O((\log q)^3)$ group operations. [Shor's algorithm, 1994]

Fact: if the group G has order q, can solve the discrete log problem for G on a *quantum* computer with $O((\log q)^3)$ group operations. [Shor's algorithm, 1994]

Consequence: the DL approach to signatures is fundamentally broken if reasonably large quantum computers are available.

Fact: if the group G has order q, can solve the discrete log problem for G on a *quantum* computer with $O((\log q)^3)$ group operations. [Shor's algorithm, 1994]

Consequence: the DL approach to signatures is fundamentally broken if reasonably large quantum computers are available.

- all blockchain protocols will likely need to upgrade to postquantum-secure signature schemes in the next decade or two
 - arguably, less urgent than for e.g. encryption of sensitive data
 - likely to cause a non-trivial performance hit