
Bonus Lecture #2: Digital
Signatures in Blockchain

Protocols (Part 1 of 2)

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

2

Trying to Make Sense of Cryptography

Question: in Ethereum, what signature scheme do users use to
sign their transactions?

3

Trying to Make Sense of Cryptography

Question: in Ethereum, what signature scheme do users use to
sign their transactions?

Answer: “ECDSA with the secp256k1 curve, except with Keccak-
256 instead of SHA-256.”

4

Trying to Make Sense of Cryptography

Question: in Ethereum, what signature scheme do users use to
sign their transactions?

Answer: “ECDSA with the secp256k1 curve, except with Keccak-
256 instead of SHA-256.” [huh?]

5

Trying to Make Sense of Cryptography

Question: in Ethereum, what signature scheme do users use to
sign their transactions?

Answer: “ECDSA with the secp256k1 curve, except with Keccak-
256 instead of SHA-256.” [huh?]

Question: why not RSA signatures?

6

Trying to Make Sense of Cryptography

Question: in Ethereum, what signature scheme do users use to
sign their transactions?

Answer: “ECDSA with the secp256k1 curve, except with Keccak-
256 instead of SHA-256.” [huh?]

Question: why not RSA signatures?

Answer: “for 128 bits of security, would need keys of length 3072
bits rather than 256 bits.”

7

Trying to Make Sense of Cryptography

Question: in Ethereum, what signature scheme do users use to
sign their transactions?

Answer: “ECDSA with the secp256k1 curve, except with Keccak-
256 instead of SHA-256.” [huh?]

Question: why not RSA signatures?

Answer: “for 128 bits of security, would need keys of length 3072
bits rather than 256 bits.” [why 128? why 256? why 3072?]

8

Trying to Make Sense of Cryptography

1. Bits of security.
– what does it mean and how much is enough?

2. Groups and the discrete logarithm approach to signatures.
– common to ECDSA, Schnorr, BLS, etc.

3. Algorithms for the discrete logarithm problem.
– the discrete log problem is not as hard as you might have thought!

9

Goals for Bonus Lecture #2

• one of the two most ubiquitous cryptographic primitives used in
blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a
transaction (e.g., making a payment).
• fundamental to the vision of shared computer in the sky

Application #2: under the hood, allows validators of a blockchain
protocol to sign their messages.
• used in most blockchain protocols for this purpose

11

Digital Signature Schemes in Blockchains

Digital signature scheme: defined by 3 (efficient) algorithms:
1. Key generation algorithm: maps seed r à (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)
2. Signing algorithm: maps message + sk à signature.

– signature depends on both sk and the message being signed
3. Verification algorithm: maps msg + sig + pk à “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature

12

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:
1. Key generation algorithm: maps seed r à (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)
2. Signing algorithm: maps message + sk à signature.

– signature depends on both sk and the message being signed
3. Verification algorithm: maps msg + sig + pk à “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature

Prime considerations: (i) security (how infeasible is it to forge
signatures?);

13

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:
1. Key generation algorithm: maps seed r à (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)
2. Signing algorithm: maps message + sk à signature.

– signature depends on both sk and the message being signed
3. Verification algorithm: maps msg + sig + pk à “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature

Prime considerations: (i) security (how infeasible is it to forge
signatures?); (ii) performance (time and space).

14

Defining Digital Signature Schemes

Question: how to quantify “degree of infeasibility” of an attack?

15

Bits of Security

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è successful attack would
require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security

16

Bits of Security

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è as far as we know,
successful attack would require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security
• if there’s an attack faster than brute force è < t bits of security

17

Bits of Security

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è as far as we know,
successful attack would require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security

Question: how many bits of security are enough?

18

Bits of Security

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è as far as we know,
successful attack would require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security

Question: how many bits of security are enough?

Cartoon:

19

Bits of Security

of bits of security t à

di
ffi

cu
lty

 o
f a

tta
ck

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è as far as we know,
successful attack would require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security

Question: how many bits of security are enough?

Cartoon:

20

Bits of Security

of bits of security t à

di
ffi

cu
lty

 o
f a

tta
ck

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è as far as we know,
successful attack would require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security

Question: how many bits of security are enough?

Cartoon:

21

Bits of Security

of bits of security t à

di
ffi

cu
lty

 o
f a

tta
ck

trivial

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è as far as we know,
successful attack would require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security

Question: how many bits of security are enough?

Cartoon:

22

Bits of Security

of bits of security t à

di
ffi

cu
lty

 o
f a

tta
ck unimaginable

trivial

Question: how to quantify “degree of infeasibility” of an attack?

Informal definition: t bits of security è as far as we know,
successful attack would require ≥ 2t computer operations.

– example: if need to brute force a t-bit secret key è t bits of security

Question: how many bits of security are enough?

Cartoon:

23

Bits of Security

of bits of security t à

di
ffi

cu
lty

 o
f a

tta
ck unimaginable

trivial

(≈ 30 bits wide)

Recall:

24

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

25

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations):

26

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations):
• 1000 seconds ≈ 15 minutes

27

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations):
• 1000 seconds ≈ 15 minutes
• one million seconds ≈ 10 days

28

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations):
• 1000 seconds ≈ 15 minutes
• one million seconds ≈ 10 days
• one billion seconds ≈ 30 years

29

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

30

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]

31

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]
• El Capitan (world’s fastest supercomputer): ≈ 260 ops/sec

32

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]
• El Capitan (world’s fastest supercomputer): ≈ 260 ops/sec
• Macbook Pro (M4 Chip): ≈ 245 ops/sec

33

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]
• El Capitan (world’s fastest supercomputer): ≈ 260 ops/sec
• Macbook Pro (M4 Chip): ≈ 245 ops/sec
• 1000 Macbook Pros (M4 Chip): ≈ 255 ops/sec

34

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]
• El Capitan (world’s fastest supercomputer): ≈ 260 ops/sec
• Macbook Pro (M4 Chip): ≈ 245 ops/sec
• 1000 Macbook Pros (M4 Chip): ≈ 255 ops/sec
• Antminer S21 XP: ≈ 245 SHA-256 hashes/sec

35

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]
• El Capitan (world’s fastest supercomputer): ≈ 260 ops/sec
• Macbook Pro (M4 Chip): ≈ 245 ops/sec
• 1000 Macbook Pros (M4 Chip): ≈ 255 ops/sec
• Antminer S21 XP: ≈ 245 SHA-256 hashes/sec

– all of Bitcoin mining: ≈ 270 SHA-256 hashes/sec 36

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]
• 245 ops/sec easy, 260 ops/sec expensive but possible

37

How Many Bits of Security Are Enough?

Recall: 210 ≈ 1000, 220 ≈ one million, 230 ≈ one billion, etc.

Time (loose approximations): 1000 seconds ≈ 15 minutes,
one million seconds ≈ 10 days, one billion seconds ≈ 30 years.

Computational power: [Moore’s Law è doubles every 18 months]
• 245 ops/sec easy, 260 ops/sec expensive but possible

Upshot:
• 80 bits of security fine 20 years ago, not good enough now
• 128 bits regarded as plenty in the short- and medium-term

38

How Many Bits of Security Are Enough?

Question: what do digital signature schemes typically look like?

39

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]

40

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

41

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).

42

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).
• f must be efficiently computable (i.e., in time polynomial in t)

43

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).
• f must be efficiently computable (i.e., in time polynomial in t)
• f must be invertible (i.e., sk ≠ sk’ è f(sk) ≠ f(sk’))

44

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).
• f must be efficiently computable (i.e., in time polynomial in t)
• f must be invertible (i.e., sk ≠ sk’ è f(sk) ≠ f(sk’))
• f-1 must be hard to compute (ideally, exponential in t)

45

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).
• f must be efficiently computable (i.e., in time polynomial in t)
• f must be invertible (i.e., sk ≠ sk’ è f(sk) ≠ f(sk’))
• f-1 must be hard to compute (ideally, exponential in t)

– otherwise, attacker can reverse engineer sk from pk! 46

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).
• f must be efficiently computable (i.e., in time polynomial in t)
• f must be invertible (i.e., sk ≠ sk’ è f(sk) ≠ f(sk’))
• f-1 must be hard to compute (ideally, exponential in t)

– issue: no hope of proving this (would imply P ≠ NP!) 47

The Key Generation Algorithm

Question: what do digital signature schemes typically look like?

Idea #1: sk = a uniformly random t-bit string. [e.g., t = 256]
– note: an unimaginably large number [#atoms in universe ≈ 2265]
– variation: sk uniformly random from {1,2,…,p-1} for t-bit prime p

Idea #2: pk = some deterministic function of sk: pk := f(sk).
• f must be efficiently computable (i.e., in time polynomial in t)
• f must be invertible (i.e., sk ≠ sk’ è f(sk) ≠ f(sk’))
• as far as we know, f-1 hard to compute (ideally, exponential in t)

– otherwise, attacker can reverse engineer sk from pk! 48

The Key Generation Algorithm

Attempt #1: for some fixed positive integer a, f(x) = a∘x
• conceptually (not computationally!), add a to itself x times

49

Easy to Evaluate, Hard to Invert?

Attempt #1: for some fixed positive integer a, f(x) = a∘x
• conceptually (not computationally!), add a to itself x times
• easy to evaluate [grade-school multiplication = O(t2) time]

50

Easy to Evaluate, Hard to Invert?

Attempt #1: for some fixed positive integer a, f(x) = a∘x
• conceptually (not computationally!), add a to itself x times
• easy to evaluate [grade-school multiplication = O(t2) time]
• issue: easy to invert [long division = O(t2) time]

51

Easy to Evaluate, Hard to Invert?

Attempt #1: for some fixed positive integer a, f(x) = a∘x
• conceptually (not computationally!), add a to itself x times
• easy to evaluate [grade-school multiplication = O(t2) time]
• issue: easy to invert [long division = O(t2) time]

Attempt #2: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = a∘x mod p (remainder of a∘x after discarding multiples of p).

52

Easy to Evaluate, Hard to Invert?

Attempt #1: for some fixed positive integer a, f(x) = a∘x
• conceptually (not computationally!), add a to itself x times
• easy to evaluate [grade-school multiplication = O(t2) time]
• issue: easy to invert [long division = O(t2) time]

Attempt #2: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = a∘x mod p (remainder of a∘x after discarding multiples of p).
• note: modular arithmetic keeps sizes of all number bounded

– why use a prime p? ensures that f is invertible (you check)

53

Easy to Evaluate, Hard to Invert?

Attempt #1: for some fixed positive integer a, f(x) = a∘x
• conceptually (not computationally!), add a to itself x times
• easy to evaluate [grade-school multiplication = O(t2) time]
• issue: easy to invert [long division = O(t2) time]

Attempt #2: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = a∘x mod p (remainder of a∘x after discarding multiples of p).
• note: modular arithmetic keeps sizes of all number bounded

– why use a prime p? ensures that f is invertible (you check)
• issue: easy to invert [extended Euclid’s algorithm = O(t2) time]

54

Easy to Evaluate, Hard to Invert?

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times

55

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: hard to evaluate [need x ≈ 2t multiplications]

56

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: hard to evaluate [need x ≈ 2t multiplications]
• repeated squaring è can evaluate using ≤ 2t multiplications

57

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: hard to evaluate [need x ≈ 2t multiplications]
• repeated squaring è can evaluate using ≤ 2t multiplications

– e.g., to compute a23

58

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: hard to evaluate [need x ≈ 2t multiplications]
• repeated squaring è can evaluate using ≤ 2t multiplications

– e.g., to compute a23, compute a, a2, a4, a8, a16,

59

Easy to Evaluate, Hard to Invert? (con’d)

≤ t multiplications

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: hard to evaluate [need x ≈ 2t multiplications]
• repeated squaring è can evaluate using ≤ 2t multiplications

– e.g., to compute a23, compute a, a2, a4, a8, a16, and a ∘ a2 ∘ a4 ∘ a16

60

Easy to Evaluate, Hard to Invert? (con’d)

≤ t multiplications ≤ t multiplications

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: hard to evaluate [need x ≈ 2t multiplications]
• repeated squaring è can evaluate using ≤ 2t multiplications

– e.g., to compute a23, compute a, a2, a4, a8, a16, and a ∘ a2 ∘ a4 ∘ a16

• note: can similarly invert f with O(t) multiplications
– repeatedly square, overshoot the target, divide out, repeat

61

Easy to Evaluate, Hard to Invert? (con’d)

≤ t multiplications ≤ t multiplications

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: f not one-way (O(t) multiplications to evaluate or invert)

62

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: f not one-way (O(t) multiplications to evaluate or invert)

Attempt #4: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = ax mod p (remainder of ax after discarding multiples of p).

63

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: f not one-way (O(t) multiplications to evaluate or invert)

Attempt #4: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = ax mod p (remainder of ax after discarding multiples of p).
• note: modular arithmetic keeps sizes of all number bounded
• evaluating f by repeated squaring è O(t3) time

64

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #3: for some fixed integer a ≥ 2, f(x) = ax.
• conceptually, multiply a by itself x times
• issue: f not one-way (O(t) multiplications to evaluate or invert)

Attempt #4: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = ax mod p (remainder of ax after discarding multiples of p).
• note: modular arithmetic keeps sizes of all number bounded
• evaluating f by repeated squaring è O(t3) time
• fact: for carefully chosen a and p, not known how to invert this f

in polynomial time! (è candidate for a signature scheme)
65

Easy to Evaluate, Hard to Invert? (con’d)

Attempt #4: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = ax mod p (remainder of ax after discarding multiples of p).
• evaluating f by repeated squaring è O(t3) time
• fact: for carefully chosen a and p, not known how to invert this f

in polynomial time! (è candidate for a signature scheme)

66

A Candidate One-Way Function

Attempt #4: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = ax mod p (remainder of ax after discarding multiples of p).
• evaluating f by repeated squaring è O(t3) time
• fact: for carefully chosen a and p, not known how to invert this f

in polynomial time! (è candidate for a signature scheme)

Question: is f invertible?

67

A Candidate One-Way Function

Attempt #4: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = ax mod p (remainder of ax after discarding multiples of p).
• evaluating f by repeated squaring è O(t3) time
• fact: for carefully chosen a and p, not known how to invert this f

in polynomial time! (è candidate for a signature scheme)

Question: is f invertible?

Answer: yes, provided:
• p ≥ 2t + 1 [obviously necessary]

68

A Candidate One-Way Function

Attempt #4: for some fixed ≈t-bit prime p and a in {2,3,…,p-1},
f(x) = ax mod p (remainder of ax after discarding multiples of p).
• evaluating f by repeated squaring è O(t3) time
• fact: for carefully chosen a and p, not known how to invert this f

in polynomial time! (è candidate for a signature scheme)

Question: is f invertible?

Answer: yes, provided:
• p ≥ 2t + 1 [obviously necessary]
• a chosen as a “generator of Zp

*” [explained next] 69

A Candidate One-Way Function

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

70

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

• 31 = 3 (mod 7)

71

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

• 31 = 3 (mod 7)
• 32 = 2 (mod 7)

72

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

• 31 = 3 (mod 7)
• 32 = 2 (mod 7)
• 33 = 6 (mod 7)

73

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

• 31 = 3 (mod 7)
• 32 = 2 (mod 7)
• 33 = 6 (mod 7)
• 34 = 4 (mod 7)

74

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

• 31 = 3 (mod 7)
• 32 = 2 (mod 7)
• 33 = 6 (mod 7)
• 34 = 4 (mod 7)
• 35 = 5 (mod 7)

75

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

• 31 = 3 (mod 7)
• 32 = 2 (mod 7)
• 33 = 6 (mod 7)
• 34 = 4 (mod 7)
• 35 = 5 (mod 7)
• 36 = 1 (mod 7)

76

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}:

• 31 = 3 (mod 7)
• 32 = 2 (mod 7)
• 33 = 6 (mod 7)
• 34 = 4 (mod 7)
• 35 = 5 (mod 7)
• 36 = 1 (mod 7)

77

Generators of Cyclic Groups

i.e., can relabel
elements of Z7

* as
distinct powers of 3

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

• 31 = 3 (mod 7)
• 32 = 2 (mod 7)
• 33 = 6 (mod 7)
• 34 = 4 (mod 7)
• 35 = 5 (mod 7)
• 36 = 1 (mod 7)

78

Generators of Cyclic Groups

i.e., can relabel
elements of Z7

* as
distinct powers of 3

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}:

79

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}:

• 21 = 2 (mod 11)
• 22 = 4 (mod 11)
• 23 = 8 (mod 11)
• 24 = 5 (mod 11)
• 25 = 10 (mod 11)

80

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}:

• 21 = 2 (mod 11)
• 22 = 4 (mod 11)
• 23 = 8 (mod 11)
• 24 = 5 (mod 11)
• 25 = 10 (mod 11)

81

Generators of Cyclic Groups

• 26 = 9 (mod 11)
• 27 = 7 (mod 11)
• 28 = 3 (mod 11)
• 29 = 6 (mod 11)
• 210 = 1 (mod 11)

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}:

• 21 = 2 (mod 11)
• 22 = 4 (mod 11)
• 23 = 8 (mod 11)
• 24 = 5 (mod 11)
• 25 = 10 (mod 11)

82

Generators of Cyclic Groups

i.e., can relabel
elements of Z11

* as
distinct powers of 2

• 26 = 9 (mod 11)
• 27 = 7 (mod 11)
• 28 = 3 (mod 11)
• 29 = 6 (mod 11)
• 210 = 1 (mod 11)

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}.

In general: for every prime p, Zp
* has a generator.

83

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}.

In general: for every prime p, Zp
* has a generator.

Terminology: for every prime p, Zp
* is a cyclic group:

84

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}.

In general: for every prime p, Zp
* has a generator.

Terminology: for every prime p, Zp
* is a cyclic group:

• has a well-defined binary operation (here, multiplication mod p)
• each element has an inverse (can always “undo” an operation)

85

Generators of Cyclic Groups

Notation: Zp
* = {1,2,…,p-1}.

Example: 3 is a generator of Z7
* = {1,2,…,6}. [but 2 is not]

Example: 2 is a generator of Z11
* = {1,2,…,10}.

In general: for every prime p, Zp
* has a generator.

Terminology: for every prime p, Zp
* is a cyclic group:

• has a well-defined binary operation (here, multiplication mod p)
• each element has an inverse (can always “undo” an operation)
• has a generator g (like 3 or 2, above) 86

Generators of Cyclic Groups

Cyclic group:
• has a well-defined binary operation (here, multiplication mod p)
• each element has an inverse (can always “undo” an operation)
• has a generator g (like 3 or 2, above)

General approach to key generation:

87

The Discrete Logarithm (DL) Approach

Cyclic group:
• has a well-defined binary operation (here, multiplication mod p)
• each element has an inverse (can always “undo” an operation)
• has a generator g (like 3 or 2, above)

General approach to key generation:
• choose G = cyclic group with generator g and order/size q ≥ 2t

88

The Discrete Logarithm (DL) Approach

Cyclic group:
• has a well-defined binary operation (here, multiplication mod p)
• each element has an inverse (can always “undo” an operation)
• has a generator g (like 3 or 2, above)

General approach to key generation:
• choose G = cyclic group with generator g and order/size q ≥ 2t

• sk := random t-bit string

89

The Discrete Logarithm (DL) Approach

Cyclic group:
• has a well-defined binary operation (here, multiplication mod p)
• each element has an inverse (can always “undo” an operation)
• has a generator g (like 3 or 2, above)

General approach to key generation:
• choose G = cyclic group with generator g and order/size q ≥ 2t

• sk := random t-bit string
• pk := gsk (can be computed efficiently by repeated squaring)

– conceptually, multiply (i.e., group operation) g by itself sk times

90

The Discrete Logarithm (DL) Approach

Cyclic group:
• has a well-defined binary operation (here, multiplication mod p)
• each element has an inverse (can always “undo” an operation)
• has a generator g (like 3 or 2, above)

General approach to key generation:
• choose G = cyclic group with generator g and order/size q ≥ 2t

• sk := random t-bit string, pk := gsk
»

Discrete log (DL) assumption for G: there is no (randomized)
polynomial-time algorithm that can recover x from g and gx (with
non-negligible probability). [necessary condition for security] 91

The Discrete Logarithm (DL) Approach

Discrete log (DL) assumption for G: there is no (randomized)
polynomial-time algorithm that can recover x from g and gx (with
non-negligible probability). [necessary condition for security]
• note: false in some groups (e.g., addition modulo p)

92

How Hard Is the DL Problem?

Discrete log (DL) assumption for G: there is no (randomized)
polynomial-time algorithm that can recover x from g and gx (with
non-negligible probability). [necessary condition for security]
• note: false in some groups (e.g., addition modulo p)

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

93

How Hard Is the DL Problem?

Discrete log (DL) assumption for G: there is no (randomized)
polynomial-time algorithm that can recover x from g and gx (with
non-negligible probability). [necessary condition for security]
• note: false in some groups (e.g., addition modulo p)

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

Consequence: with DL approach, need key size ≥ 256 bits to get
128 bits of security [no matter what G is].

94

How Hard Is the DL Problem?

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

Idea of algorithm: [given generator g and gx, need to recover x]

95

A Black-Box Discrete Log Algorithm

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

Idea of algorithm: [given generator g and gx, need to recover x]

96

A Black-Box Discrete Log Algorithm

……………..
……………..
……………..
……………..

…
…

…
..

……………..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

√q rows

√q columns

g

gx

1

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

Idea of algorithm: [given generator g and gx, need to recover x]
• step 1: compute g2,g3,g4,…,g√q

[i.e., all entries in bottom row]

97

A Black-Box Discrete Log Algorithm

……………..
……………..
……………..
……………..

…
…

…
..

……………..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

√q rows

√q columns

g

gx

g2 g3

gx

1

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

Idea of algorithm: [given generator g and gx, need to recover x]
• step 1: compute g2,g3,g4,…,g√q

[i.e., all entries in bottom row]
• step 2: compute gx-√q, gx-2√q,

gx-3√q,… i times until see repeat
value gj from step 1 [i.e., go down
from gx until you hit bottom row]

98

A Black-Box Discrete Log Algorithm

……………..
……………..
……………..

…
…

…
..

……………..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

√q rows

√q columns

g g2 g3 gj

gx

1

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

Idea of algorithm: [given generator g and gx, need to recover x]
• step 1: compute g2,g3,g4,…,g√q

[i.e., all entries in bottom row]
• step 2: compute gx-√q, gx-2√q,

gx-3√q,… i times until see repeat
value gj from step 1 [i.e., go down
from gx until you hit bottom row]
– è x must be (i√q) + j

99

A Black-Box Discrete Log Algorithm

……………..
……………..
……………..

…
…

…
..

……………..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

√q rows

√q columns

g g2 g3 gj

gx

1

Fact: if the group G has order q, can solve the discrete log
problem for G with 𝑂 𝑞 group operations.

Idea of algorithm: [given generator g and gx, need to recover x]
• step 1: compute g2,g3,g4,…,g√q

[i.e., all entries in bottom row]
• step 2: compute gx-√q, gx-2√q,

gx-3√q,… i times until see repeat
value gj from step 1 [i.e., go down
from gx until you hit bottom row]
– è x must be (i√q) + j

è uses at most 2√q group operations!
100

A Black-Box Discrete Log Algorithm

……………..
……………..
……………..

…
…

…
..

……………..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

…
…

…
..

√q rows

√q columns

g g2 g3 gj

Fact: “black-box/generic” algorithms cannot solve the discrete log
problem with o 𝑞 group operations [where q = order of group].
• i.e., to do better, must exploit the structure of the group

101

How Hard Is the DL Problem? (con’d)

Fact: “black-box/generic” algorithms cannot solve the discrete log
problem with o 𝑞 group operations [where q = order of group].
• i.e., to do better, must exploit the structure of the group

Fact: the discrete log problem in 𝑍!∗ can be solved with
≈ exp{1.92 × (ln 𝑝) ⁄$ % ×(ln ln 𝑝) ⁄& %} group operations [where q is
the order of group]. (via the “general number field sieve (GNFS)”)

102

How Hard Is the DL Problem? (con’d)

Fact: “black-box/generic” algorithms cannot solve the discrete log
problem with o 𝑞 group operations [where q = order of group].
• i.e., to do better, must exploit the structure of the group

Fact: the discrete log problem in 𝑍!∗ can be solved with
≈ exp{1.92 × (ln 𝑝) ⁄$ % ×(ln ln 𝑝) ⁄& %} group operations [where q is
the order of group]. (via the “general number field sieve (GNFS)”)

Consequence: with this group, need key size ≥ 3072 bits to get
128 bits of security.

103

How Hard Is the DL Problem? (con’d)

Fact: “black-box/generic” algorithms cannot solve the discrete log
problem with o 𝑞 group operations [where q = order of group].
• i.e., to do better, must exploit the structure of the group

Fact: the discrete log problem in 𝑍!∗ can be solved with
≈ exp{1.92 × (ln 𝑝) ⁄$ % ×(ln ln 𝑝) ⁄& %} group operations [where q is
the order of group]. (via the “general number field sieve (GNFS)”)

Consequence: with this group, need key size ≥ 3072 bits to get
128 bits of security. [similar conclusion for RSA signatures]

104

How Hard Is the DL Problem? (con’d)

Fact: if the group G has order q, can solve the discrete log
problem for G on a quantum computer with 𝑂((log 𝑞)%) group
operations. [Shor’s algorithm, 1994]

105

How Hard Is the DL Problem? (con’d)

Fact: if the group G has order q, can solve the discrete log
problem for G on a quantum computer with 𝑂((log 𝑞)%) group
operations. [Shor’s algorithm, 1994]

Consequence: the DL approach to signatures is fundamentally
broken if reasonably large quantum computers are available.

106

How Hard Is the DL Problem? (con’d)

Fact: if the group G has order q, can solve the discrete log
problem for G on a quantum computer with 𝑂((log 𝑞)%) group
operations. [Shor’s algorithm, 1994]

Consequence: the DL approach to signatures is fundamentally
broken if reasonably large quantum computers are available.
• all blockchain protocols will likely need to upgrade to post-

quantum-secure signature schemes in the next decade or two
– arguably, less urgent than for e.g. encryption of sensitive data
– likely to cause a non-trivial performance hit

107

How Hard Is the DL Problem? (con’d)

