Bonus Lecture #3: Digital Signatures in Blockchain Protocols (Part 2 of 2)

COMS 4995-001: The Science of Blockchains URL: https://timroughgarden.org/s25/

Tim Roughgarden

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

- 1. Key generation algorithm: maps seed $r \rightarrow (pk,sk)$ pair.
 - in some cases, may generate r itself (e.g., ssh-keygen)
- 2. Signing algorithm: maps message + sk \rightarrow signature.
 - signature depends on both sk and the message being signed
- 3. Verification algorithm: maps $msg + sig + pk \rightarrow "yes"/"no"$.
 - anyone who knows pk can verify correctness of an alleged signature

Goals for Bonus Lecture #3

- 1. Schnorr signatures.
 - used in Bitcoin since the Taproot upgrade in 2021, EdDSA in Solana
- 2. tl;dr of elliptic curves.
 - groups where discrete log appears harder than in Z_p^*
 - basis of all signature schemes used in blockchain protocols
- 3. tl;dr of ECDSA signatures.
 - what users use to sign transactions in Bitcoin and Ethereum
- 4. tl;dr of BLS signatures.
 - used by Ethereum validators to sign consensus-layer messages

Signatures Based on Exponentiation

General approach to key generation:

• sk := random t-bit string, pk := g^{sk}

- repeated squaring \rightarrow can compute pk from sk with \leq 2t group operations

Signatures Based on Exponentiation

General approach to key generation:

• sk := random t-bit string, pk := g^{sk}

– repeated squaring \rightarrow can compute pk from sk with \leq 2t group operations

- g is generator of a cyclic group with order/size $q \ge 2^t$
 - group: has a well-defined binary operation, each element has inverse
 - ex: each element of Z_7^* a power of 3, each element of Z_{11}^* a power of 2

Signatures Based on Exponentiation

General approach to key generation:

• sk := random t-bit string, pk := g^{sk}

– repeated squaring \rightarrow can compute pk from sk with \leq 2t group operations

- g is generator of a cyclic group with order/size $q \ge 2^t$
 - group: has a well-defined binary operation, each element has inverse
 - ex: each element of Z_7^* a power of 3, each element of Z_{11}^* a power of 2

Discrete log (DL) assumption: there is no (randomized) polynomial-time algorithm that can recover x from g and g^x (with non-negligible probability). [necessary condition for security]

Problem: recover x from g and g^x.

- note: can be done efficiently in some groups (e.g., addition modulo p)

Problem: recover x from g and g^x.

- note: can be done efficiently in some groups (e.g., addition modulo p)

Facts: solvable with $O(\sqrt{q})$ group operations (q = order of G)

- to get 128 bits of security (standard target), need \geq 256-bit private keys

Problem: recover x from g and g^x.

- note: can be done efficiently in some groups (e.g., addition modulo p)
- **Facts:** solvable with $O(\sqrt{q})$ group operations (q = order of G)
 - to get 128 bits of security (standard target), need \geq 256-bit private keys
- solvable with $O((\ln q)^3)$ group operations on quantum computer
 - big quantum computers \rightarrow discrete log approach to signatures broken

Problem: recover x from g and g^x.

- note: can be done efficiently in some groups (e.g., addition modulo p)

Facts: solvable with $O(\sqrt{q})$ group operations (q = order of G)

- to get 128 bits of security (standard target), need \geq 256-bit private keys
- solvable with $O((\ln q)^3)$ group operations on quantum computer
 - big quantum computers \rightarrow discrete log approach to signatures broken
- in Z_p^* , can solve with $\approx \exp\{1.92 \times (\ln p)^{1/3} \times (\ln \ln p)^{2/3}\}$ ops
 - for 128 bits of security, need \geq 3072-bit private keys
 - same story for RSA signatures (can use GNFS for factoring, as well)

- 1. can extract pk from sk
 - silly example: if G = addition modulo p
 - address by choosing group where the discrete log problem is hard

- 1. can extract pk from sk
 - silly example: if G = addition modulo p
 - address by choosing group where the discrete log problem is hard
- 2. can compute signatures without knowing sk
 - silly example: signature = message (or f(message))

- 1. can extract pk from sk
 - silly example: if G = addition modulo p
 - address by choosing group where the discrete log problem is hard
- 2. can compute signatures without knowing sk
 - silly example: signature = message (or f(message))
- 3. signature leaks (computationally recoverable) info about sk
 - silly example: signature = sk
 - or anything from which sk can be easily extracted

Schnorr Signatures

Schnorr Signatures (in One Slide)

- let G = cyclic group with generator g, prime order $q\approx 2^t$
- key generation:
 - $sk = random x in \{0, 1, 2, ..., q-1\}$
 - $pk = g^x$
- to sign:
 - choose random b in {0,1,2,...,q-1}
 - set a := $h(m | I | g^b)$ [h = cryptographic hash function, acts like random]
 - output as signature (r:= g^b ,s:=(ax+b) mod q) [\approx 2t bits]
- to verify: accept signature (r,s) \Leftrightarrow $g^s = (pk)^{h(m || r)} \cdot r$

- let G = cyclic group with generator g, prime order $q \approx 2^t$
- key generation:
 - $sk = random x in \{0, 1, 2, ..., q-1\}$
 - $pk = g^x$

- let G = cyclic group with generator g, prime order $q\approx 2^t$
- key generation:
 - $sk = random x in \{0, 1, 2, ..., q-1\}$
 - $pk = g^x$
- to sign/verify: let m = message
 - goal: design a signing function f(x,m) such that:

- let G = cyclic group with generator g, prime order $q\approx 2^t$
- key generation:
 - $sk = random x in \{0, 1, 2, ..., q-1\}$
 - $pk = g^x$
- to sign/verify: let m = message
 - goal: design a signing function f(x,m) such that:
 - given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - even though it only knows g^x and not x itself

- let G = cyclic group with generator g, prime order $q\approx 2^t$
- key generation:
 - $sk = random x in \{0, 1, 2, ..., q-1\}$
 - $pk = g^x$
- to sign/verify: let m = message
 - goal: design a signing function f(x,m) such that:
 - given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - even though it only knows g^x and not x itself
 - can't reverse engineer x from s=f(x,m) (and m, and g^x)

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows g^x and not x itself

2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

Starting point:

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows g^x and not x itself

2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows g^x and not x itself

2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

Starting point: $f(x,m) := m \cdot x \pmod{q}$.

• bad news: (2) fails [given s:=f(x,m) and m, can extract $x = s/m \pmod{q}$

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows g^x and not x itself

2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- bad news: (2) fails [given s:=f(x,m) and m, can extract $x = s/m \pmod{q}$]
- good news: (1) holds (i.e., can verify using g^x but not x):

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows g^x and not x itself

2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- bad news: (2) fails [given s:=f(x,m) and m, can extract $x = s/m \pmod{q}$]
- good news: (1) holds (i.e., can verify using g^x but not x):
 - $s = m \cdot x \pmod{q} \Leftrightarrow g^s = g^{m \cdot x}$

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows g^x and not x itself

2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- bad news: (2) fails [given s:=f(x,m) and m, can extract $x = s/m \pmod{q}$]
- good news: (1) holds (i.e., can verify using g^x but not x):
 - $s = m \cdot x \pmod{q} \Leftrightarrow g^s = g^{m \cdot x}$
 - verification algorithm accepts \Leftrightarrow g^s = (pk)^m

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

Starting point: $f(x,m) := m \cdot x \pmod{q}$.

- bad news: (2) fails [given s:=f(x,m) and m, can extract $x = s/m \pmod{q}$]
- good news: (1) holds (i.e., can verify using g^x but not x):
 - $\quad s = m \cdot x \pmod{q} \Leftrightarrow g^s = g^{m \cdot x}$
 - verification algorithm accepts \Leftrightarrow g^s = (pk)^m

Note: if m a multiple of q, 0 always a valid signature (for any sk).

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

Starting point: $f(x,m) := m \cdot x \pmod{q}$.

- bad news: (2) fails [given s:=f(x,m) and m, can extract $x = s/m \pmod{q}$]
- good news: (1) holds (i.e., can verify using g^x but not x):
 - $\quad s = m \cdot x \pmod{q} \Leftrightarrow g^s = g^{m \cdot x}$
 - verification algorithm accepts \Leftrightarrow g^s = (pk)^m

Note: if m a multiple of q, 0 always a valid signature (for any sk).

• fix: use h(m) instead of m, where h = a cryptographic hash function 28

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

Revised starting point: $f(x,m) := h(m) \cdot x \pmod{q}$. [h = CHF]

- bad news: (2) fails [given s:=f(x,m) and m, can extract $x = s/h(m) \pmod{q}$]
- good news: (1) holds (i.e., can verify using g^x but not x):
 - $\quad s = m \cdot x \pmod{q} \Leftrightarrow g^s = g^{h(m) \cdot x}$
 - verification algorithm accepts \Leftrightarrow g^s = (pk)^{h(m)}

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

Next idea: $f(x,m) := (h(m) \cdot x + b) \mod q$. [h = CHF]

b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]
- so choose b at random from {0,1,2,...,q-1}
 - called a "nonce" [for "number used once"]

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]
- so choose b at random from {0,1,2,...,q-1}
 - called a "nonce" [for "number used once"]
- question: how can verification algorithm check that s = f(x,m)?

- goal: design a signing function f(x,m) such that:
 - 1. given $pk = g^x$, m, and s, verification algorithm can check if s = f(x,m)
 - 2. can't reverse engineer x from s=f(x,m) (and m, and g^x)

- b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]
- so choose b at random from {0,1,2,...,q-1}
 - called a "nonce" [for "number used once"]
- question: how can verification algorithm check that s = f(x,m)?
 - insight: using that s = h(m) x + b (mod q) ⇔ g^s = g^{h(m)•x+b}, see that verification algorithm only needs to know g^b, not b itself

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where:

Proposed signing algorithm: [m = message, x = private key, h = CHF]

choose b at random from {0,1,2,...,q-1}

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where:
 - $r := g^{b}$

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where:
 - $r := g^b$
 - s := (h(m) x + b) mod q
 - intuitively, not enough info to extract x from s (one equation, two unknowns)

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where:
 - $r := g^{b}$
 - s := (h(m) x + b) mod q
 - intuitively, not enough info to extract x from s (one equation, two unknowns)

Proposed verification algorithm: [given m, pk, and (r,s)]

• accept \Leftrightarrow $g^s = (pk)^{h(m)} \cdot r$

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

Notes:

signatures not unique (one per choice of nonce)

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

- signatures not unique (one per choice of nonce)
- signature size = 2 group elements (q $\approx 2^{256}$ \rightarrow signature ≈ 512 bits)

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

- signatures not unique (one per choice of nonce)
- signature size = 2 group elements (q $\approx 2^{256}$ \rightarrow signature ≈ 512 bits)
- reuse a nonce \rightarrow can extract x (two equations, two unknowns)

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

- signatures not unique (one per choice of nonce)
- signature size = 2 group elements (q $\approx 2^{256}$ \rightarrow signature ≈ 512 bits)
- reuse a nonce → can extract x (two equations, two unknowns)
- $h(m_1)=h(m_2) \rightarrow \text{same signatures (r,s) valid for both } m_1 \text{ and } m_2$

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

Issue:

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

Issue: For any m, pk, and s, can forge a valid signature (r,s) by taking $r = g^{-x \cdot h(m)+s}$. [can compute r without knowing x, why?]

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

Issue: For any m, pk, and s, can forge a valid signature (r,s) by taking $r = g^{-x \cdot h(m)+s}$. [can compute r without knowing x, why?]

Fix: Use h(m II r) instead of h(m).

Proposed signing algorithm: [m = message, x = private key, h = CHF]

- choose b at random from {0,1,2,...,q-1}
- signature := (r,s), where $r := g^b$ and $s := (h(m) \cdot x + b) \mod q$

Proposed verification algorithm: accept \Leftrightarrow g^s = (pk)^{h(m)} • r

Issue: For any m, pk, and s, can forge a valid signature (r,s) by taking $r = g^{-x \cdot h(m)+s}$. [can compute r without knowing x, why?]

Fix: Use h(m II r) instead of h(m).

• h CHF (as good as random) \rightarrow infeasible to find r satisfying r = g^{-x•h(m || r)+s}

Schnorr Signatures (in One Slide)

- let G = cyclic group with generator g, prime order $q\approx 2^t$
- key generation:
 - $sk = random x in \{0, 1, 2, ..., q-1\}$
 - $pk = g^x$
- to sign:
 - choose random b in {0,1,2,...,q-1}
 - set a := $h(m | I | g^b)$ [h = cryptographic hash function, acts like random]
 - output as signature (r:= g^b , s:=(ax+b) mod q) [\approx 2t bits]
- to verify: accept signature (r,s) \Leftrightarrow $g^s = (pk)^{h(m || r)} \cdot r$

Elliptic Curves

Approximate definition: an *elliptic curve* is the set of solutions (x,y) to an equation of the form $y^2 = x^3 + ax + b$ (for some a,b).

Elliptic Curves (over Finite Fields)

Approximate definition: an *elliptic curve* is the set of solutions (x,y) to an equation of the form $y^2 = x^3+ax+b$ (mod p) (for some a,b).

Elliptic Curves (over Finite Fields)

Approximate definition: an *elliptic curve* is the set of solutions (x,y) to an equation of the form $y^2 = x^3+ax+b$ (mod p) (for some a,b).

Non-obvious fact: the points of an elliptic curve form a group under a suitable operation (would take 10-20 minutes to explain).

Elliptic Curves (over Finite Fields)

Approximate definition: an *elliptic curve* is the set of solutions (x,y) to an equation of the form $y^2 = x^3+ax+b$ (mod p) (for some a,b).

Non-obvious fact: the points of an elliptic curve form a group under a suitable operation (would take 10-20 minutes to explain).

Example: secp256k1. [used in Bitcoin and Ethereum]

- defining equation: $y^2 = x^3 + 7 \mod (2^{256} 2^{32} 977)$
- group of prime order (→ cyclic), canonical generator

- 1. start from $f(x) = (x + h(m)) \mod q$ rather than $f(x) = (h(m) \cdot x) \mod q$
 - same chain of reasoning leads to a different verification equation (from ElGamal)

- 1. start from $f(x) = (x + h(m)) \mod q$ rather than $f(x) = (h(m) \cdot x) \mod q$
 - same chain of reasoning leads to a different verification equation (from ElGamal)
- 2. instead of $r = g^a$, use r = x-coordinate of g^a
 - note: only makes sense if G = elliptic curve (over some Z_p)

- 1. start from $f(x) = (x + h(m)) \mod q$ rather than $f(x) = (h(m) \cdot x) \mod q$
 - same chain of reasoning leads to a different verification equation (from ElGamal)
- 2. instead of $r = g^a$, use r = x-coordinate of g^a
 - note: only makes sense if G = elliptic curve (over some Z_p)
- to sign: [some details omitted]
 - choose random a in $\{0, 1, 2, \dots, q-1\}$, r := x-coordinate of g^a
 - $\operatorname{set} s := a^{-1}(r \cdot x + h(m)) \mod q$

- 1. start from $f(x) = (x + h(m)) \mod q$ rather than $f(x) = (h(m) \cdot x) \mod q$
 - same chain of reasoning leads to a different verification equation (from ElGamal)
- 2. instead of $r = g^a$, use r = x-coordinate of g^a
 - note: only makes sense if G = elliptic curve (over some Z_p)
- to sign: [some details omitted]
 - choose random a in $\{0, 1, 2, \dots, q-1\}$, r := x-coordinate of g^a
 - $\operatorname{set} s := a^{-1}(r \cdot x + h(m)) \mod q$
- to verify: accept signature (r,s) \Leftrightarrow r = x-coordinate of $(g^{h(m)} \cdot (pk)^r)^{s^{-1}}$

- famous for signature aggregation properties
 - can combine many signatures (for different pks) into one, verify the aggregate
 - used by Ethereum validators (for quorum certificates, effectively)

- famous for signature aggregation properties
 - can combine many signatures (for different pks) into one, verify the aggregate
 - used by Ethereum validators (for quorum certificates, effectively)

- messages and signatures live in an elliptic curve group G₁ (prime order q)
- public keys live in an elliptic curve group G₂ (prime order q)

- famous for signature aggregation properties
 - can combine many signatures (for different pks) into one, verify the aggregate
 - used by Ethereum validators (for quorum certificates, effectively)

- messages and signatures live in an elliptic curve group G_1 (prime order q)
- public keys live in an elliptic curve group G₂ (prime order q)
- sk := random x in $\{1, 2, ..., q-1\}$, pk := $(g_2)^x$

- famous for signature aggregation properties
 - can combine many signatures (for different pks) into one, verify the aggregate
 - used by Ethereum validators (for quorum certificates, effectively)

- messages and signatures live in an elliptic curve group G₁ (prime order q)
- public keys live in an elliptic curve group G₂ (prime order q)
- sk := random x in $\{1, 2, ..., q-1\}$, pk := $(g_2)^x$
- pairing: bilinear map e(.,.) from $G_1 \times G_2$ to a target group G_T

- famous for signature aggregation properties
 - can combine many signatures (for different pks) into one, verify the aggregate
 - used by Ethereum validators (for quorum certificates, effectively)

- messages and signatures live in an elliptic curve group G_1 (prime order q)
- public keys live in an elliptic curve group G₂ (prime order q)
- sk := random x in $\{1, 2, ..., q-1\}$, pk := $(g_2)^x$
- pairing: bilinear map e(.,.) from $G_1 \times G_2$ to a target group G_T
- signature on m := $h(m)^{x}$ [h = hash function from msg space to G₁]

- famous for signature aggregation properties
 - can combine many signatures (for different pks) into one, verify the aggregate
 - used by Ethereum validators (for quorum certificates, effectively)

- messages and signatures live in an elliptic curve group G_1 (prime order q)
- public keys live in an elliptic curve group G₂ (prime order q)
- sk := random x in {1,2,...,q-1}, pk := $(g_2)^x$
- pairing: bilinear map e(.,.) from $G_1 \times G_2$ to a target group G_T
- signature on m := $h(m)^{x}$ [h = hash function from msg space to G₁]
- to verify (m,pk,sig): accept \Leftrightarrow e(H(m),pk) = e(sig, g₂)