
Bonus Lecture #3: Digital
Signatures in Blockchain

Protocols (Part 2 of 2)

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

Digital signature scheme: defined by 3 (efficient) algorithms:
1. Key generation algorithm: maps seed r à (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)
2. Signing algorithm: maps message + sk à signature.

– signature depends on both sk and the message being signed
3. Verification algorithm: maps msg + sig + pk à “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature

2

Defining Digital Signature Schemes

1. Schnorr signatures.
– used in Bitcoin since the Taproot upgrade in 2021, EdDSA in Solana

2. tl;dr of elliptic curves.
– groups where discrete log appears harder than in 𝑍!∗

– basis of all signature schemes used in blockchain protocols
3. tl;dr of ECDSA signatures.

– what users use to sign transactions in Bitcoin and Ethereum
4. tl;dr of BLS signatures.

– used by Ethereum validators to sign consensus-layer messages
3

Goals for Bonus Lecture #3

General approach to key generation:
• sk := random t-bit string, pk := gsk

– repeated squaringècan compute pk from sk with ≤ 2t group operations

4

Signatures Based on Exponentiation

General approach to key generation:
• sk := random t-bit string, pk := gsk

– repeated squaringècan compute pk from sk with ≤ 2t group operations
• g is generator of a cyclic group with order/size q ≥ 2t

– group: has a well-defined binary operation, each element has inverse
– ex: each element of 𝑍#∗ a power of 3, each element of 𝑍$$∗ a power of 2

5

Signatures Based on Exponentiation

General approach to key generation:
• sk := random t-bit string, pk := gsk

– repeated squaringècan compute pk from sk with ≤ 2t group operations
• g is generator of a cyclic group with order/size q ≥ 2t

– group: has a well-defined binary operation, each element has inverse
– ex: each element of 𝑍#∗ a power of 3, each element of 𝑍$$∗ a power of 2

Discrete log (DL) assumption: there is no (randomized)
polynomial-time algorithm that can recover x from g and gx (with
non-negligible probability). [necessary condition for security]

6

Signatures Based on Exponentiation

Problem: recover x from g and gx.
– note: can be done efficiently in some groups (e.g., addition modulo p)

7

Computing Discrete Logarithms

Problem: recover x from g and gx.
– note: can be done efficiently in some groups (e.g., addition modulo p)

Facts: solvable with 𝑂 𝑞 group operations (q = order of G)
– to get 128 bits of security (standard target), need ≥ 256-bit private keys

8

Computing Discrete Logarithms

Problem: recover x from g and gx.
– note: can be done efficiently in some groups (e.g., addition modulo p)

Facts: solvable with 𝑂 𝑞 group operations (q = order of G)
– to get 128 bits of security (standard target), need ≥ 256-bit private keys

• solvable with 𝑂((ln 𝑞)!) group operations on quantum computer
– big quantum computers è discrete log approach to signatures broken

9

Computing Discrete Logarithms

Problem: recover x from g and gx.
– note: can be done efficiently in some groups (e.g., addition modulo p)

Facts: solvable with 𝑂 𝑞 group operations (q = order of G)
– to get 128 bits of security (standard target), need ≥ 256-bit private keys

• solvable with 𝑂((ln 𝑞)!) group operations on quantum computer
– big quantum computers è discrete log approach to signatures broken

• in 𝑍"∗ , can solve with ≈ exp{1.92 × (ln 𝑝) ⁄% ! ×(ln ln 𝑝) ⁄& !} ops
– for 128 bits of security, need ≥ 3072-bit private keys
– same story for RSA signatures (can use GNFS for factoring, as well)

10

Computing Discrete Logarithms

Failure modes for signature schemes:

11

What Could Go Wrong?

Failure modes for signature schemes:
1. can extract pk from sk

– silly example: if G = addition modulo p
– address by choosing group where the discrete log problem is hard

12

What Could Go Wrong?

Failure modes for signature schemes:
1. can extract pk from sk

– silly example: if G = addition modulo p
– address by choosing group where the discrete log problem is hard

2. can compute signatures without knowing sk
– silly example: signature = message (or f(message))

13

What Could Go Wrong?

Failure modes for signature schemes:
1. can extract pk from sk

– silly example: if G = addition modulo p
– address by choosing group where the discrete log problem is hard

2. can compute signatures without knowing sk
– silly example: signature = message (or f(message))

3. signature leaks (computationally recoverable) info about sk
– silly example: signature = sk

• or anything from which sk can be easily extracted

14

What Could Go Wrong?

15

Schnorr Signatures

• let G = cyclic group with generator g, prime order q ≈ 2t

• key generation:
– sk = random x in {0,1,2,…,q-1}
– pk = gx

• to sign:
– choose random b in {0,1,2,…,q-1}
– set a := h(m || gb) [h = cryptographic hash function, acts like random]
– output as signature (r:=gb,s:=(ax+b) mod q) [≈ 2t bits]

• to verify: accept signature (r,s) ó gs = (pk)h(m || r) • r
16

Schnorr Signatures (in One Slide)

• let G = cyclic group with generator g, prime order q ≈ 2t

• key generation:
– sk = random x in {0,1,2,…,q-1}
– pk = gx

17

Deriving Schnorr Signatures

• let G = cyclic group with generator g, prime order q ≈ 2t

• key generation:
– sk = random x in {0,1,2,…,q-1}
– pk = gx

• to sign/verify: let m = message
– goal: design a signing function f(x,m) such that:

18

Deriving Schnorr Signatures

• let G = cyclic group with generator g, prime order q ≈ 2t

• key generation:
– sk = random x in {0,1,2,…,q-1}
– pk = gx

• to sign/verify: let m = message
– goal: design a signing function f(x,m) such that:

• given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
– even though it only knows gx and not x itself

19

Deriving Schnorr Signatures

• let G = cyclic group with generator g, prime order q ≈ 2t

• key generation:
– sk = random x in {0,1,2,…,q-1}
– pk = gx

• to sign/verify: let m = message
– goal: design a signing function f(x,m) such that:

• given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
– even though it only knows gx and not x itself

• can’t reverse engineer x from s=f(x,m) (and m, and gx)
20

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows gx and not x itself

2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point:

21

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows gx and not x itself

2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point: f(x,m) := m • x (mod q).

22

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows gx and not x itself

2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point: f(x,m) := m • x (mod q).
• bad news: (2) fails [given s:=f(x,m) and m, can extract x = s/m (mod q)]

23

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows gx and not x itself

2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point: f(x,m) := m • x (mod q).
• bad news: (2) fails [given s:=f(x,m) and m, can extract x = s/m (mod q)]
• good news: (1) holds (i.e., can verify using gx but not x):

24

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows gx and not x itself

2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point: f(x,m) := m • x (mod q).
• bad news: (2) fails [given s:=f(x,m) and m, can extract x = s/m (mod q)]
• good news: (1) holds (i.e., can verify using gx but not x):

– s = m • x (mod q) ó gs = gm•x

25

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)

– even though it only knows gx and not x itself

2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point: f(x,m) := m • x (mod q).
• bad news: (2) fails [given s:=f(x,m) and m, can extract x = s/m (mod q)]
• good news: (1) holds (i.e., can verify using gx but not x):

– s = m • x (mod q) ó gs = gm•x

– verification algorithm accepts ó gs = (pk)m

26

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point: f(x,m) := m • x (mod q).
• bad news: (2) fails [given s:=f(x,m) and m, can extract x = s/m (mod q)]
• good news: (1) holds (i.e., can verify using gx but not x):

– s = m • x (mod q) ó gs = gm•x

– verification algorithm accepts ó gs = (pk)m

Note: if m a multiple of q, 0 always a valid signature (for any sk).
27

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Starting point: f(x,m) := m • x (mod q).
• bad news: (2) fails [given s:=f(x,m) and m, can extract x = s/m (mod q)]
• good news: (1) holds (i.e., can verify using gx but not x):

– s = m • x (mod q) ó gs = gm•x

– verification algorithm accepts ó gs = (pk)m

Note: if m a multiple of q, 0 always a valid signature (for any sk).
• fix: use h(m) instead of m, where h = a cryptographic hash function 28

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Revised starting point: f(x,m) := h(m) • x (mod q). [h = CHF]
• bad news: (2) fails [given s:=f(x,m) and m, can extract x = s/h(m) (mod q)]
• good news: (1) holds (i.e., can verify using gx but not x):

– s = m • x (mod q) ó gs = gh(m)•x

– verification algorithm accepts ó gs = (pk)h(m)

29

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Next idea: f(x,m) := (h(m) • x + b) mod q. [h = CHF]

30

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Next idea: f(x,m) := (h(m) • x + b) mod q. [h = CHF]
• b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]

31

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Next idea: f(x,m) := (h(m) • x + b) mod q. [h = CHF]
• b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]
• so choose b at random from {0,1,2,…,q-1}

– called a “nonce” [for “number used once”]

32

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Next idea: f(x,m) := (h(m) • x + b) mod q. [h = CHF]
• b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]
• so choose b at random from {0,1,2,…,q-1}

– called a “nonce” [for “number used once”]

• question: how can verification algorithm check that s = f(x,m)?

33

Deriving Schnorr Signatures

• goal: design a signing function f(x,m) such that:
1. given pk = gx, m, and s, verification algorithm can check if s = f(x,m)
2. can’t reverse engineer x from s=f(x,m) (and m, and gx)

Next idea: f(x,m) := (h(m) • x + b) mod q. [h = CHF]
• b must be secret [else, given s and m, can extract x = (s-b)/h(m) (mod q)]
• so choose b at random from {0,1,2,…,q-1}

– called a “nonce” [for “number used once”]

• question: how can verification algorithm check that s = f(x,m)?
– insight: using that s = h(m) • x + b (mod q) ó gs = gh(m)•x+b, see that verification

algorithm only needs to know gb, not b itself
34

Deriving Schnorr Signatures

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where:

35

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}

36

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where:

– r := gb

37

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where:

– r := gb

– s := (h(m) • x + b) mod q
• intuitively, not enough info to extract x from s (one equation, two unknowns)

38

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where:

– r := gb

– s := (h(m) • x + b) mod q
• intuitively, not enough info to extract x from s (one equation, two unknowns)

Proposed verification algorithm: [given m, pk, and (r,s)]
• accept ó gs = (pk)h(m) • r

39

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Notes:

40

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Notes:
• signatures not unique (one per choice of nonce)

41

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Notes:
• signatures not unique (one per choice of nonce)
• signature size = 2 group elements (q ≈ 2256 è signature ≈ 512 bits)

42

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Notes:
• signatures not unique (one per choice of nonce)
• signature size = 2 group elements (q ≈ 2256 è signature ≈ 512 bits)
• reuse a nonce è can extract x (two equations, two unknowns)

43

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Notes:
• signatures not unique (one per choice of nonce)
• signature size = 2 group elements (q ≈ 2256 è signature ≈ 512 bits)
• reuse a nonce è can extract x (two equations, two unknowns)
• h(m1)=h(m2) è same signatures (r,s) valid for both m1 and m2

44

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Issue:

45

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Issue: For any m, pk, and s, can forge a valid signature (r,s) by
taking r = g-x•h(m)+s. [can compute r without knowing x, why?]

46

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Issue: For any m, pk, and s, can forge a valid signature (r,s) by
taking r = g-x•h(m)+s. [can compute r without knowing x, why?]

Fix: Use h(m || r) instead of h(m).

47

Deriving Schnorr Signatures (con’d)

Proposed signing algorithm: [m = message, x = private key, h = CHF]
• choose b at random from {0,1,2,…,q-1}
• signature := (r,s), where r := gb and s := (h(m) • x + b) mod q

Proposed verification algorithm: accept ó gs = (pk)h(m) • r

Issue: For any m, pk, and s, can forge a valid signature (r,s) by
taking r = g-x•h(m)+s. [can compute r without knowing x, why?]

Fix: Use h(m || r) instead of h(m).
• h CHF (as good as random) è infeasible to find r satisfying r = g-x•h(m || r)+s

48

Deriving Schnorr Signatures (con’d)

• let G = cyclic group with generator g, prime order q ≈ 2t

• key generation:
– sk = random x in {0,1,2,…,q-1}
– pk = gx

• to sign:
– choose random b in {0,1,2,…,q-1}
– set a := h(m || gb) [h = cryptographic hash function, acts like random]
– output as signature (r:=gb, s:=(ax+b) mod q) [≈ 2t bits]

• to verify: accept signature (r,s) ó gs = (pk)h(m || r) • r
49

Schnorr Signatures (in One Slide)

Approximate definition: an elliptic curve is the set of solutions (x,y)
to an equation of the form y2 = x3+ax+b (for some a,b).

50

Elliptic Curves

Approximate definition: an elliptic curve is the set of solutions (x,y)
to an equation of the form y2 = x3+ax+b (mod p) (for some a,b).

51

Elliptic Curves (over Finite Fields)

Approximate definition: an elliptic curve is the set of solutions (x,y)
to an equation of the form y2 = x3+ax+b (mod p) (for some a,b).

Non-obvious fact: the points of an elliptic curve form a group
under a suitable operation (would take 10-20 minutes to explain).

52

Elliptic Curves (over Finite Fields)

Approximate definition: an elliptic curve is the set of solutions (x,y)
to an equation of the form y2 = x3+ax+b (mod p) (for some a,b).

Non-obvious fact: the points of an elliptic curve form a group
under a suitable operation (would take 10-20 minutes to explain).

Example: secp256k1. [used in Bitcoin and Ethereum]
• defining equation: y2 = x3 + 7 mod (2256-232-977)
• group of prime order (è cyclic), canonical generator

53

Elliptic Curves (over Finite Fields)

tl;dr: like Schnorr signatures, with two changes:
1. start from f(x) = (x + h(m)) mod q rather than f(x)= (h(m) • x) mod q

– same chain of reasoning leads to a different verification equation (from ElGamal)

54

ECDSA Signatures

tl;dr: like Schnorr signatures, with two changes:
1. start from f(x) = (x + h(m)) mod q rather than f(x)= (h(m) • x) mod q

– same chain of reasoning leads to a different verification equation (from ElGamal)

2. instead of r = ga, use r = x-coordinate of ga

– note: only makes sense if G = elliptic curve (over some Zp)

55

ECDSA Signatures

tl;dr: like Schnorr signatures, with two changes:
1. start from f(x) = (x + h(m)) mod q rather than f(x)= (h(m) • x) mod q

– same chain of reasoning leads to a different verification equation (from ElGamal)

2. instead of r = ga, use r = x-coordinate of ga

– note: only makes sense if G = elliptic curve (over some Zp)

• to sign: [some details omitted]
– choose random a in {0,1,2,…,q-1}, r := x-coordinate of ga

– set s := a-1(r • x + h(m)) mod q

56

ECDSA Signatures

tl;dr: like Schnorr signatures, with two changes:
1. start from f(x) = (x + h(m)) mod q rather than f(x)= (h(m) • x) mod q

– same chain of reasoning leads to a different verification equation (from ElGamal)

2. instead of r = ga, use r = x-coordinate of ga

– note: only makes sense if G = elliptic curve (over some Zp)

• to sign: [some details omitted]
– choose random a in {0,1,2,…,q-1}, r := x-coordinate of ga

– set s := a-1(r • x + h(m)) mod q

• to verify: accept signature (r,s) ó r = x-coordinate of (𝑔% & ⋅ (𝑝𝑘)')(!"

57

ECDSA Signatures

• famous for signature aggregation properties
– can combine many signatures (for different pks) into one, verify the aggregate
– used by Ethereum validators (for quorum certificates, effectively)

58

tl;dr of BLS Signatures

• famous for signature aggregation properties
– can combine many signatures (for different pks) into one, verify the aggregate
– used by Ethereum validators (for quorum certificates, effectively)

Details:
• messages and signatures live in an elliptic curve group G1 (prime order q)
• public keys live in an elliptic curve group G2 (prime order q)

59

tl;dr of BLS Signatures

• famous for signature aggregation properties
– can combine many signatures (for different pks) into one, verify the aggregate
– used by Ethereum validators (for quorum certificates, effectively)

Details:
• messages and signatures live in an elliptic curve group G1 (prime order q)
• public keys live in an elliptic curve group G2 (prime order q)
• sk := random x in {1,2,...,q-1}, pk := (g2)x

60

tl;dr of BLS Signatures

• famous for signature aggregation properties
– can combine many signatures (for different pks) into one, verify the aggregate
– used by Ethereum validators (for quorum certificates, effectively)

Details:
• messages and signatures live in an elliptic curve group G1 (prime order q)
• public keys live in an elliptic curve group G2 (prime order q)
• sk := random x in {1,2,...,q-1}, pk := (g2)x

• pairing: bilinear map e(.,.) from G1 x G2 to a target group GT

61

tl;dr of BLS Signatures

• famous for signature aggregation properties
– can combine many signatures (for different pks) into one, verify the aggregate
– used by Ethereum validators (for quorum certificates, effectively)

Details:
• messages and signatures live in an elliptic curve group G1 (prime order q)
• public keys live in an elliptic curve group G2 (prime order q)
• sk := random x in {1,2,...,q-1}, pk := (g2)x

• pairing: bilinear map e(.,.) from G1 x G2 to a target group GT

• signature on m := h(m)x [h = hash function from msg space to G1]

62

tl;dr of BLS Signatures

• famous for signature aggregation properties
– can combine many signatures (for different pks) into one, verify the aggregate
– used by Ethereum validators (for quorum certificates, effectively)

Details:
• messages and signatures live in an elliptic curve group G1 (prime order q)
• public keys live in an elliptic curve group G2 (prime order q)
• sk := random x in {1,2,...,q-1}, pk := (g2)x

• pairing: bilinear map e(.,.) from G1 x G2 to a target group GT

• signature on m := h(m)x [h = hash function from msg space to G1]
• to verify (m,pk,sig): accept ó e(H(m),pk) = e(sig, g2)

63

tl;dr of BLS Signatures

