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1. Fun facts about polynomials.

– roots of polynomials, encoding data with a polynomial

2. KZG commitments: the basic idea.

– commitment, proofs via polynomial evaluation

3. Making it real: structured reference string + group pairings.

– implementing the idea of “evaluation at an unknown random input”

4. Trusted setup ceremonies.

– where does the structured reference string come from?
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Goals for Bonus Lecture #4



Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.
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Roots of Polynomials



Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 1: if polynomial f has the form 𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q 

is a degree-(d-1) polynomial, then 𝑓 𝑟 = 0. 
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Roots of Polynomials



Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 1: if polynomial f has the form 𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q 

is a degree-(d-1) polynomial, then 𝑓 𝑟 = 0. 

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form 

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

– example: can write 𝑥3 − 6𝑥2 + 11𝑥 − 6 as (𝑥 − 1)(𝑥2 − 5𝑥 + 6)

– for proof(s), see “polynomial factor theorem” (e.g., use long division)
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Roots of Polynomials



Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form 

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.
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Roots of Polynomials



Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form 

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has ≤ d roots.

– after applying Fact 2 d times, left with a (non-zero) constant 
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Roots of Polynomials



Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form 

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has ≤ d roots.

– after applying Fact 2 d times, left with a (non-zero) constant 

Corollary 2: if p,q are distinct degree-d polynomials, then 

p(x)=q(x) for at most d points x.  [because p-q has ≤ d roots]
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Roots of Polynomials



Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form 

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has ≤ d roots.

– after applying Fact 2 d times, left with a (non-zero) constant 

Corollary 2: if p,q are distinct degree-d polynomials, then 

p(x)=q(x) for at most d points x.  [because p-q has ≤ d roots]

– for randomly chosen x (from big set), p(x),q(x) almost certainly differ 9

Roots of Polynomials



Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily 

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.
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Polynomial Interpolation



Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily 

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.
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Polynomial Interpolation



Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily 

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.
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Polynomial Interpolation



Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily 

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form    

  𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑)  [for scalar c]
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Polynomial Interpolation



Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily 

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form    

  𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑)  [for scalar c]

• for 𝑓 𝑥0 = 1, take 𝑐 = 1/[ 𝑥0 − 𝑥1 ⋅ 𝑥0 − 𝑥2 ⋅ … ⋅ 𝑥0 − 𝑥𝑑 ]
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Polynomial Interpolation



Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily 

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form    

  𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑)  [for scalar c]

• for 𝑓 𝑥0 = 1, take 𝑐 = 1/[ 𝑥0 − 𝑥1 ⋅ 𝑥0 − 𝑥2 ⋅ … ⋅ 𝑥0 − 𝑥𝑑 ]

Note: can interpolate arbitrary points via linear combinations 

𝑓 𝑥 = σ𝑖=0
𝑑 𝑦𝑖 ⋅ 𝐿𝑖(𝑥) of these “Lagrange basis functions.”
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Polynomial Interpolation



Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily 

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form    

  𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑)  [for scalar c]

• for 𝑓 𝑥0 = 1, take 𝑐 = 1/[ 𝑥0 − 𝑥1 ⋅ 𝑥0 − 𝑥2 ⋅ … ⋅ 𝑥0 − 𝑥𝑑 ]

Note: can interpolate arbitrary points via linear combinations 

𝑓 𝑥 = σ𝑖=0
𝑑 𝑦𝑖 ⋅ 𝐿𝑖(𝑥) of these “Lagrange basis functions.”

– also: can redundantly encode polynomial via > d+1 evaluations
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Polynomial Interpolation



Idea: encode list of objects as evaluations of a polynomial.

– cf., Merkle trees: encode (hashes of) objects as leaves of a tree 

17

Encoding Data as a Polynomial



Idea: encode list of objects as evaluations of a polynomial.

– cf., Merkle trees: encode (hashes of) objects as leaves of a tree 

Example: list 𝑎0, 𝑎1, … , 𝑎𝑑 of objects, each 𝑎𝑖  with length 256 bits.

– interpret as elements 𝑦0, 𝑦1, … , 𝑦𝑑 of 𝑍𝑝={0,1,…,p-1} for ≈256-bit prime p

– can compute degree-d polynomial f s.t. f(i)=yi for all i=0,1,2,…,d

• all arithmetic (including division) done modulo p

18

Encoding Data as a Polynomial



Idea: encode list of objects as evaluations of a polynomial.

– cf., Merkle trees: encode (hashes of) objects as leaves of a tree 

Example: list 𝑎0, 𝑎1, … , 𝑎𝑑 of objects, each 𝑎𝑖  with length 256 bits.

– interpret as elements 𝑦0, 𝑦1, … , 𝑦𝑑 of 𝑍𝑝={0,1,…,p-1} for ≈256-bit prime p

– can compute degree-d polynomial f s.t. f(i)=yi for all i=0,1,2,…,d

• all arithmetic (including division) done modulo p

Ethereum blob: as above, with d = 4096 (size ≈ 125 Kb).

– validators store blobs for 2 weeks, (KZG) commitments to blobs forever
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Encoding Data as a Polynomial



Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)
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KZG Commitments (v1)



Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?
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KZG Commitments (v1)



Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:
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KZG Commitments (v1)



Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

23

KZG Commitments (v1)



Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏 24

KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋    [question: isn’t 𝜏 unknown?]

Correctness: 
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋    [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏)
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋    [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏) 

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏)
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋    [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏) 

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣  [no matter what 𝜏 is]
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋    [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏) 

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣  [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣
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KZG Commitments (v1)



Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋    [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏) 

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣  [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣 ➔ for any w, 𝑥 − 𝑧 ⋅ 𝑤 𝑥 ≠ 𝑓 𝑥 − 𝑣
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Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋    [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏) 

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣  [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣 ➔ for any w, 𝑥 − 𝑧 ⋅ 𝑤 𝑥 ≠ 𝑓 𝑥 − 𝑣 ➔ 

for almost all 𝜏, 𝜏 − 𝑧 ⋅ 𝑤(𝜏) ≠ 𝑓 𝜏 − 𝑣 [Corollary 2]
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Note: if 𝜏 is known, easy to forge false proofs!

• to “prove” that 𝑓 𝑧 = 𝑣, just set 𝜋 = (𝑓 𝜏 − 𝑣)/(𝜏 − 𝑧)
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Note: if 𝜏 is known, easy to forge false proofs!

• to “prove” that 𝑓 𝑧 = 𝑣, just set 𝜋 = (𝑓 𝜏 − 𝑣)/(𝜏 − 𝑧)

Question: how to compute 𝑓 𝜏  without knowing 𝜏?
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Note: if 𝜏 is known, easy to forge false proofs!

• to “prove” that 𝑓 𝑧 = 𝑣, just set 𝜋 = (𝑓 𝜏 − 𝑣)/(𝜏 − 𝑧)

Question: how to compute 𝑓 𝜏  without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

– e.g., of an elliptic curve group

– i.e., compute 𝑓 𝜏  only in “encrypted form” (i.e., in exponent)

– cf., Schnorr signatures
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Recall: given generator g of a cyclic group G (of known order):
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Recall: given generator g of a cyclic group G (of known order):

• given x, computing gx ?
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• given gx, computing x?
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• computing gx+y from gx and gy ?

44

Aside: Computing in the Exponent



Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• computing gax from a and gx ?
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx

• computing gxy from gx and gy?
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx

• generally hard to compute gxy from gx and gy

– “computational Diffie-Hellman (CDH)” assumption
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Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx  [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx

• generally hard to compute gxy from gx and gy

– “computational Diffie-Hellman (CDH)” assumption

Tl;dr: easy to add or scale in the exponent, but hard to multiply.
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Question: how to compute 𝑓 𝜏  without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.
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Question: how to compute 𝑓 𝜏  without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

• write 𝑔𝑓(𝜏) = 𝑔𝑎𝑑𝜏𝑑+𝑎𝑑−1𝜏𝑑−1+⋯+𝑎1𝜏+𝑎0
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Question: how to compute 𝑓 𝜏  without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

• write 𝑔𝑓(𝜏) = 𝑔𝑎𝑑𝜏𝑑+𝑎𝑑−1𝜏𝑑−1+⋯+𝑎1𝜏+𝑎0

• issue: easy to add/scale in exponent, but hard to multiply
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Question: how to compute 𝑓 𝜏  without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

• write 𝑔𝑓(𝜏) = 𝑔𝑎𝑑𝜏𝑑+𝑎𝑑−1𝜏𝑑−1+⋯+𝑎1𝜏+𝑎0

• issue: easy to add/scale in exponent, but hard to multiply

• solution: assume “powers of tau” 𝜎 = (𝑔𝜏, 𝑔𝜏2
, 𝑔𝜏2

,…, 𝑔𝜏𝑑
) are 

known (e.g., part of description of commitment scheme)

– 𝜎 called a “structured reference string,” a form of “trusted setup”
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 
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Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 

Correctness: (i)
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Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =
𝑤(𝜏)
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Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢  [no matter what 𝜏 is]
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Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢  [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣
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Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢  [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣, would need to compute 𝜋 = 𝑔(𝑓 𝜏 −𝑣)/(𝜏−𝑧) 

knowing only 𝜎 66
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Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢  [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣, would need to compute 𝜋 = 𝑔(𝑓 𝜏 −𝑣)/(𝜏−𝑧) 

knowing only 𝜎, which seems hard (dividing by 𝜏 in exponent) 67
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏  (commitment)
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏  (commitment), can compute 𝑔𝑓 𝜏 −𝑣
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏  (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string)
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏  (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏  (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

• know 𝜋 = 𝑔𝑢 (alleged proof)
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏  (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

• know 𝜋 = 𝑔𝑢 (alleged proof), but how to compute 𝑔 𝜏−𝑧 ⋅𝑢?
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Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏  (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

• know 𝜋 = 𝑔𝑢 (alleged proof), but how to compute 𝑔 𝜏−𝑧 ⋅𝑢?

Key insight: don’t need to compute 𝑔 𝜏−𝑧 ⋅𝑢 from 𝑔(𝜏−𝑧) and 𝑔𝑢 

(hard by CDH), only to verify whether 𝑔𝑓 𝜏 −𝑣 is in fact what you’d 

get if you could “multiply in the exponent” starting from 𝑔(𝜏−𝑧), 𝑔𝑢 !
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Issue: in verification, how check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

– know 𝑔𝑓 𝜏  (commitment), can compute 𝑔𝑓 𝜏 −𝑣

– know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

– know 𝜋 = 𝑔𝑢 (alleged proof), but how to compute 𝑔 𝜏−𝑧 ⋅𝑢?

Key insight: don’t need to compute 𝑔 𝜏−𝑧 ⋅𝑢 from 𝑔(𝜏−𝑧) and 𝑔𝑢 (hard by 

CDH), only to verify whether 𝑔𝑓 𝜏 −𝑣 is in fact what you’d get if you could 

“multiply in the exponent” starting from 𝑔(𝜏−𝑧), 𝑔𝑢 !

Fact: there exist groups (“elliptic curve groups with pairings”) in 

which can efficiently verify multiplication in the exponent.

– given input 𝑥 = 𝑔𝑎, 𝑦 = 𝑔𝑏, 𝑧 = 𝑔𝑐, reports whether 𝑐 = 𝑎 ⋅ 𝑏
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Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏)  [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥)  [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 

– check with one pairing operation (w/inputs 𝑔 𝜏−𝑧 , 𝜋, and 𝑔𝑓 𝜏 −𝑣) 77
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Question: where does structured reference string 𝜎 come from?
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Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)
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Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form
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Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form

• participant #2 chooses 𝜏2, publishes 𝜎2 =

(𝑔(𝜏1𝜏2), 𝑔 𝜏1𝜏2
2
, … 𝑔 𝜏1𝜏2

𝑑
)  [note: possible knowing only 𝜎1]
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Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form

• participant #2 chooses 𝜏2, publishes 𝜎2 =

(𝑔(𝜏1𝜏2), 𝑔 𝜏1𝜏2
2
, … 𝑔 𝜏1𝜏2

𝑑
)  [note: possible knowing only 𝜎1]

• etc.  [final 𝜏 = 𝜏1 ⋅ 𝜏2 ⋅ ⋯ ⋅ 𝜏𝑁]
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Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form

• participant #2 chooses 𝜏2, publishes 𝜎2 = (𝑔(𝜏1𝜏2), 𝑔 𝜏1𝜏2
2
, … 𝑔 𝜏1𝜏2

𝑑
)  [note: possible 

knowing only 𝜎1]

• etc.  [final 𝜏 = 𝜏1 ⋅ 𝜏2 ⋅ ⋯ ⋅ 𝜏𝑁]

Guarantee: ≥ 1 honest participant (i.e., chooses its 𝜏𝑖 randomly 

and deletes it forever) ➔ 𝜏 is effectively random and unknown!
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