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Goals for Bonus Lecture #4

1. Fun facts about polynomials.
— roots of polynomials, encoding data with a polynomial

2. KZG commitments: the basic idea.
— commitment, proofs via polynomial evaluation

3. Making it real: structured reference string + group pairings.
— implementing the idea of “evaluation at an unknown random input

4. Trusted setup ceremonies.
— where does the structured reference string come from?



Roots of Polynomials

Recall: a (degree-d) polynomial has the form
f(x) =agx®+ag_x¥ 1+ +a;x+ay =%, a;xt.
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IS a degree-(d-1) polynomial, then f(r) = 0.



Roots of Polynomials

Recall: a (degree-d) polynomial has the form
f(x) =agx®+ag_x¥ 1+ +a;x+ay =%, a;xt.

Fact 1: if polynomial f has the form f(x) = (x —r) - g(x), where g
IS a degree-(d-1) polynomial, then f(r) = 0.

Fact 2: if polynomial f satisfies f(r) = 0, then f has the form
f(x) =(x—r)-q(x), where g is a degree-(d-1) polynomial.

— example: can write x3 — 6x% + 11x — 6 as (x — 1)(x? — 5x + 6)

— for proof(s), see “polynomial factor theorem” (e.g., use long division)
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Corollary 1: a (non-zero) degree-d polynomial has < d roots.
— after applying Fact 2 d times, left with a (non-zero) constant
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Recall: a (degree-d) polynomial has the form
f(x) =agx®+ag_x¥ 1+ +a;x+ay =%, a;xt.

Fact 2: if polynomial f satisfies f(r) = 0, then f has the form
f(x) =((x—71)-q(x), where g is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has < d roots.
— after applying Fact 2 d times, left with a (non-zero) constant

Corollary 2: if p,q are distinct degree-d polynomials, then
P(X)=qg(x) for at most d points X. [because p-g has < d roots]



Roots of Polynomials

Recall: a (degree-d) polynomial has the form
f(x) =agx®+ag_x¥ 1+ +a;x+ay =%, a;xt.

Fact 2: if polynomial f satisfies f(r) = 0, then f has the form
f(x) =((x—71)-q(x), where g is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has < d roots.
— after applying Fact 2 d times, left with a (non-zero) constant

Corollary 2: if p,q are distinct degree-d polynomials, then
P(X)=qg(x) for at most d points X. [because p-g has < d roots]

— for randomly chosen x (from big set), p(x),qg(x) almost certainly differ



Polynomial Interpolation

Fact 3: given points (xq, ¥o), (x1,¥1), ..., (x4, V4), can easily
compute a degree-d polynomial f s.t. f(x;) = y; for all i=0,1,..,d.
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Polynomial Interpolation

Fact 3: given points (xq, ¥o), (x1,¥1), ..., (x4, V4), can easily
compute a degree-d polynomial f s.t. f(x;) = y; for all i=0,1,..,d.

Example:yo =1,y =y, = =y; = 0.
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Polynomial Interpolation

Fact 3: given points (xq, ¥o), (x1,¥1), ..., (x4, V4), can easily
compute a degree-d polynomial f s.t. f(x;) = y; for all i=0,1,..,d.

Example:yo =1,y =y, ==y, = 0.
* Interpolating function should have form
fx)=c-(x—xy) (x—x5)...- (x —xy4) [forscalar ]
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Polynomial Interpolation

Fact 3: given points (xq, ¥o), (x1,¥1), ..., (x4, V4), can easily
compute a degree-d polynomial f s.t. f(x;) = y; for all i=0,1,..,d.

Example:yo =1,y =y, ==y, = 0.
* Interpolating function should have form
f(x)=c-(x—xy) (x—x5) - ...- (x —x,) [forscalar c]

o for f(xy) =1,take c = 1/[(xg —x1) - (xg —x5) « oov (xg — x4) |
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Polynomial Interpolation

Fact 3: given points (xq, ¥o), (x1,¥1), ..., (x4, V4), can easily
compute a degree-d polynomial f s.t. f(x;) = y; for all i=0,1,..,d.

Example:yo =1,y =y, ==y, = 0.
* Interpolating function should have form
f(x)=c-(x—xy) (x—x5) - ...- (x —x,) [forscalar c]

o for f(xy) =1,take c = 1/[(xg —x1) - (xg —x5) « oov (xg — x4) |

Note: can interpolate arbitrary points via linear combinations
f(x) =YY%,y L;i(x) of these “Lagrange basis functions.”
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Polynomial Interpolation

Fact 3: given points (xq, ¥o), (x1,¥1), ..., (x4, V4), can easily
compute a degree-d polynomial f s.t. f(x;) = y; for all i=0,1,..,d.

Example:yo =1,y =y, ==y, = 0.
* Interpolating function should have form
f(x)=c-(x—xy) (x—x5) - ...- (x —x,) [forscalar c]

o for f(xy) =1,take c = 1/[(xg —x1) - (xg —x5) « oov (xg — x4) |

Note: can interpolate arbitrary points via linear combinations
f(x) =YY%,y L;i(x) of these “Lagrange basis functions.”

— also: can redundantly encode polynomial via > d+1 evaluations 6



Encoding Data as a Polynomial

Idea: encode list of objects as evaluations of a polynomial.
— cf., Merkle trees: encode (hashes of) objects as leaves of a tree
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Encoding Data as a Polynomial

Idea: encode list of objects as evaluations of a polynomial.
— cf., Merkle trees: encode (hashes of) objects as leaves of a tree

Example: list ay, a4, ..., ag Of objects, each a; with length 256 bits.
— Interpret as elements y,, vy, ..., y4 of Z,={0,1,...,p-1} for =256-bit prime p
— can compute degree-d polynomial f s.t. f(i)=y; for all 1=0,1,2,...,d
« all arithmetic (including division) done modulo p
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Encoding Data as a Polynomial

Idea: encode list of objects as evaluations of a polynomial.
— cf., Merkle trees: encode (hashes of) objects as leaves of a tree

Example: list ay, a4, ..., ag Of objects, each a; with length 256 bits.
— Interpret as elements y,, vy, ..., y4 of Z,={0,1,...,p-1} for =256-bit prime p
— can compute degree-d polynomial f s.t. f(i)=y; for all 1=0,1,2,...,d
« all arithmetic (including division) done modulo p

Ethereum blob: as above, with d = 4096 (size = 125 Kb).
— validators store blobs for 2 weeks, (KZG) commitments to blobs forever
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KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.
— where evaluations of f on 0,1,...,d correspond to list of d+1 objects
— cf., guarantees provided by a Merkle tree (no false positives/negatives)
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KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.
— where evaluations of f on 0,1,...,d correspond to list of d+1 objects
— cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = f(t) on unknown random input .
— note: t generally >> d, does not correspond to one of encoded objects
— commitment clearly short, but how to compute f(7) If T Is unknown?
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KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.
— where evaluations of f on 0,1,...,d correspond to list of d+1 objects
— cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = f(t) on unknown random input .
— note: t generally >> d, does not correspond to one of encoded objects
— commitment clearly short, but how to compute f(7) If T Is unknown?

Key idea #2: to prove that f(z) = v:
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KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.

— where evaluations of f on 0,1,...,d correspond to list of d+1 objects
— cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = f(t) on unknown random input .
— note: t generally >> d, does not correspond to one of encoded objects
— commitment clearly short, but how to compute f(7) If T Is unknown?

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x —z) -w(x) [w="“witness polynomial” (Fact 2)]
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KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.

— where evaluations of f on 0,1,...,d correspond to list of d+1 objects
— cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = f(t) on unknown random input .
— note: t generally >> d, does not correspond to one of encoded objects
— commitment clearly short, but how to compute f(7) If T Is unknown?

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x —z) -w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input ¢ 2



KZG Commitments (v1)

Key idea #1: commitment = f(r) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x—2z)- -w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input t
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KZG Commitments (v1)

Key idea #1: commitment = f(r) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x—2z)- -w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input t

Verification: given commitment f(t), alleged proof « that f(z) = v:
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KZG Commitments (v1)

Key idea #1: commitment = f(r) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x—2z)- -w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input t

Verification: given commitment f(t), alleged proof « that f(z) = v:
« acceptproof & f(r)—v=(t—-2) 71
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KZG Commitments (v1)

Key idea #1: commitment = f(r) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x—2z)- -w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input t

Verification: given commitment f(t), alleged proof « that f(z) = v:
« accept proof < f(1t) —v = (t — z) - ™ [question: isn’'t T unknown?]
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KZG Commitments (v1)

Key idea #1: commitment = f(7) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input t

Verification: given commitment f (1), alleged proof « that f(z) = v:
« accept proof & f(t) —v=(t—2) -7 [question: isn’'t T unknown?]

Correctness:
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KZG Commitments (v1)

Key idea #1: commitment = f(7) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input t

Verification: given commitment f (1), alleged proof « that f(z) = v:
« accept proof & f(t) —v=(t—2) -7 [question: isn’'t T unknown?]

Correctness: ) if f(z) =v, f(x) —v=(x—2)-w(x), and T = w(1)
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KZG Commitments (v1)

Key idea #1: commitment = f(7) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas(x—2z)- w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input ¢

Verification: given commitment f (1), alleged proof « that f(z) = v:
« accept proof & f(t) —v=(t—2) -7 [question: isn’'t T unknown?]

Correctness: ) if f(z) =v, f(x) —v=(x—2)-w(x), and T = w(1)
2> (T—2z)-m=(—2) w(r)

31



KZG Commitments (v1)

Key idea #1: commitment = f(7) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas(x—2z)- w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input ¢

Verification: given commitment f (1), alleged proof « that f(z) = v:
accept proof & f(1) —v=(tr—2z)-m [question: isn't T unknown?]

Correctness: ) if f(z) =v, f(x) —v=(x—2)-w(x), and T = w(1)
2> (t—2z)-m=(—2) -w(r)=f(r) —v [no matter what 7 is]
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KZG Commitments (v1)

Key idea #1: commitment = f(7) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas(x—2z)- w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input ¢

Verification: given commitment f (1), alleged proof « that f(z) = v:
« accept proof & f(t) —v=(t—2) -7 [question: isn’'t T unknown?]

Correctness: ) if f(z) =v, f(x) —v=(x—2)-w(x), and T = w(1)
2> (t—2z)-m=(—2) -w(r)=f(r) —v [no matter what 7 is]
(i) [intuition] if f(z) # v
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KZG Commitments (v1)

Key idea #1: commitment = f(7) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas(x—2z)- w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input ¢

Verification: given commitment f (1), alleged proof « that f(z) = v:
« accept proof & f(t) —v=(t—2) -7 [question: isn’'t T unknown?]

Correctness: ) if f(z) =v, f(x) —v=(x—2)-w(x), and T = w(1)
2> (t—2z)-m=(—2) -w(r)=f(r) —v [no matter what 7 is]
(i) [intuition] if f(z) # v =>» foranyw, (x —z) -w(x) # f(x) — v
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KZG Commitments (v1)

Key idea #1: commitment = f(7) on unknown random input .

Key idea #2: to prove that f(z) = v:
1. write f(x) —vas(x—2z)- w(x) [w="“witness polynomial” (Fact 2)]
2. proof = w(t) on same unknown random input ¢

Verification: given commitment f (1), alleged proof « that f(z) = v:
« accept proof & f(t) —v=(t—2) -7 [question: isn’'t T unknown?]

Correctness: ) if f(z) =v, f(x) —v=(x—2)-w(x), and T = w(1)
2> (t—2z)-m=(—2) -w(r)=f(r) —v [no matter what 7 is]

(i) [intuition] if f(z) # v => foranyw, (x —z) -w(x) # f(x) —v =
for almost all 7, (t — z) - w(7) # f(tr) — v [Corollary 2]
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Structured Reference String

Note: If T Is known, easy to forge false proofs!
* to “prove” that f(z) = v, justsetm = (f(r) —v)/(t — 2)
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Structured Reference String

Note: If T Is known, easy to forge false proofs!
* to “prove” that f(z) = v, justsetm = (f(r) —v)/(t — 2)

Question: how to compute f () without knowing t7?
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Structured Reference String

Note: If T Is known, easy to forge false proofs!
* to “prove” that f(z) = v, justsetm = (f(r) —v)/(t — 2)

Question: how to compute f () without knowing t7?

Idea: compute g/, where g = generator of some cyclic group.

— e.g., of an elliptic curve group
— i.e., compute f(t) only in “encrypted form” (i.e., in exponent)
— cf., Schnorr signatures
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given x, computing g* ?
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
* given X, easy to compute g* [repeated squaring]
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]
* given g%, computing Xx?
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]
« [if discrete log is hard] given g%, hard to compute x
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]

« [if discrete log is hard] given g%, hard to compute x

e computing g**¥ from g* and g¥ ?
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]

« [if discrete log is hard] given g%, hard to compute x

« easy to compute g**¥ from g* and gY
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]

« [if discrete log is hard] given g%, hard to compute x

« easy to compute g**¥ from g* and gY

e computing g& from a and g* ?
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]

« [if discrete log is hard] given g%, hard to compute x

« easy to compute g**¥ from g* and gY

e easy to compute g& from a and g*
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]

« [if discrete log is hard] given g%, hard to compute x

« easy to compute g**¥ from g* and gY

e easy to compute g& from a and g*

e computing g*¥ from gx and g¥?
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]

« [if discrete log is hard] given g%, hard to compute x

« easy to compute g**¥ from g* and gY

e easy to compute g& from a and g*

« generally hard to compute g*¥ from g* and g¥
— “computational Diffie-Hellman (CDH)” assumption
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Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):
e given X, easy to compute g* [repeated squaring]

[Iif discrete log Is hard] given g%, hard to compute X

easy to compute g**¥ from g* and g¥

easy to compute g& from a and g*

generally hard to compute g from g* and gY
— “computational Diffie-Hellman (CDH)” assumption

Tl,dr: easy to add or scale in the exponent, but hard to multiply.
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Structured Reference String

Question: how to compute f () without knowing t7?

ldea: compute g/ (), where g = generator of some cyclic group.
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Structured Reference String

Question: how to compute f () without knowing t7?

ldea: compute g/ (), where g = generator of some cyclic group.

e \Write gf(r) — gadrd+ad_1rd‘1+---+alr+a0
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Structured Reference String

Question: how to compute f () without knowing t7?

ldea: compute g/ (), where g = generator of some cyclic group.

e \Write gf(r) — gadrd+ad_1rd‘1+---+alr+a0

* ISsue: easy to add/scale in exponent, but hard to multiply
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Structured Reference String

Question: how to compute f () without knowing t7?

ldea: compute g/ (), where g = generator of some cyclic group.

e \Write gf(r) — gadrd+ad_1rd‘1+---+alr+a0

* ISsue: easy to add/scale in exponent, but hard to multiply

. 13 11 2 2 d
 solution: assume “powers oftau” o = (g%, g* , 9" ,..., g* ) are

known (e.g., part of description of commitment scheme)
- o called a “structured reference string,” a form of “trusted setup”
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KZG Commitments (v2)

Assume: powers of tau ¢ publicly known, no one knows .

55



KZG Commitments (v2)

Assume: powers of tau ¢ publicly known, no one knows .

Commitment to a polynomial f: g/ [given o, easy to compute]
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KZG Commitments (v2)

Assume: powers of tau ¢ publicly known, no one knows .

Commitment to a polynomial f: g/ [given o, easy to compute]

To prove that f(z) = v:
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KZG Commitments (v2)

Assume: powers of tau ¢ publicly known, no one knows .

Commitment to a polynomial f: g/ [given o, easy to compute]

To prove that f(z) = v:

1. write f(x) —vas (x —z) - w(x) [w="“witness polynomial” (Fact 2)]
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KZG Commitments (v2)

Assume: powers of tau ¢ publicly known, no one knows .

Commitment to a polynomial f: g/ [given o, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x —z) - w(x) [w="“witness polynomial” (Fact 2)]
2. proof = g [given ¢, easy to compute]
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KZG Commitments (v2)

Assume: powers of tau ¢ publicly known, no one knows .

Commitment to a polynomial f: g/ [given o, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x —2z)-w(x) [w=“witness polynomial” (Fact 2)]
2. proof = g [given ¢, easy to compute]

To verify alleged proof m = g* that f(z) = v:
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KZG Commitments (v2)

Assume: powers of tau ¢ publicly known, no one knows .

Commitment to a polynomial f: g/ [given o, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x —2z)-w(x) [w=“witness polynomial” (Fact 2)]
2. proof = g [given ¢, easy to compute]

To verify alleged proof m = g* that f(z) = v:
» accept proof <& gf(D-v= glt-2)u
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KZG Commitments (v2)

Commitment to a polynomial f: g7® [given ¢, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = g¥® [given o, easy to compute]

To verify alleged proof m = g% that f(z) = v:
« accept proof & gf(M-r= glt-2)u

Correctness: (i)
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KZG Commitments (v2)

Commitment to a polynomial f: g7® [given ¢, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = g¥® [given o, easy to compute]

To verify alleged proof m = g% that f(z) = v:
« accept proof & gf(M-r= glt-2)u

Correctness: N if f(z) =v, f(x) —v=(x—2) - w(x), and u =

w(T)
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KZG Commitments (v2)

Commitment to a polynomial f: g7® [given ¢, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = g¥® [given o, easy to compute]

To verify alleged proof m = g% that f(z) = v:
accept proof < gf(D-v= g(T-2)u

Correctness: N if f(z) =v, f(x) —v=(x—2) - w(x), and u =
w(t) ¥ gf@v=g-2u [ng matter what 7 is]
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KZG Commitments (v2)

Commitment to a polynomial f: g7® [given ¢, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = g¥® [given o, easy to compute]

To verify alleged proof m = g% that f(z) = v:

« accept proof & gf(M-r= glt-2)u

Correctness: N if f(z) =v, f(x) —v=(x—2) - w(x), and u =
w(t) ¥ gf@v=g-2u [ng matter what 7 is]

(i) [intuition] if f(z) # v
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KZG Commitments (v2)

Commitment to a polynomial f: g7® [given ¢, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = g¥® [given o, easy to compute]

To verify alleged proof m = g% that f(z) = v:

« accept proof & gf(M-r= glt-2)u

Correctness: N if f(z) =v, f(x) —v=(x—2) - w(x), and u =
w(t) ¥ gf@v=g-2u [ng matter what 7 is]

(ii) [intuition] if f(z) # v, would need to compute & = g/ (D-v)/(T-2)
knowing only o 66



KZG Commitments (v2)

Commitment to a polynomial f: g7® [given ¢, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x—2z) w(x) [w="“witness polynomial” (Fact 2)]
2. proof = g¥® [given o, easy to compute]

To verify alleged proof m = g% that f(z) = v:

« accept proof & gf(M-r= glt-2)u

Correctness: N if f(z) =v, f(x) —v=(x—2) - w(x), and u =
w(t) ¥ gf@v=g-2u [ng matter what 7 is]

(ii) [intuition] if f(z) # v, would need to compute T = g (D=»)/(T=2)
knowing only o, which seems hard (dividing by 7 in exponent) &



Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9
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Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9
« know g/ (commitment)
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Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9
« know g™ (commitment), can compute g/(®-v

70



Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9
« know g™ (commitment), can compute g/(®-v
« know g* (from structured reference string)
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Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9
« know g™ (commitment), can compute g/(®-v
- know g* (from structured reference string), can compute g(*=2)
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Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9

kxnow g7 (commitment), can compute g/ (P~
know g (from structured reference string), can compute g(*=%)

Know T = g* (alleged proof)
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Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9

« know g™ (commitment), can compute g/(®-v

 know g7 (from structured reference string), can compute g(*=2)
 know 1 = g% (alleged proof), but how to compute g{T=24?
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Checking Multiplication in the Exponent

Issue: in verification, how to check if g/(V-v= g(t=2)u9

« know g™ (commitment), can compute g/(®-v

 know g7 (from structured reference string), can compute g(*=2)
 know 1 = g% (alleged proof), but how to compute g{T=24?

Key insight: don’t need to compute g2 from ¢g(*~% and g“
(hard by CDH), only to verify whether g/{®~7 is in fact what you'd
get if you could “multiply in the exponent” starting from g(*=2), g“ |
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Checking Multiplication in the Exponent

Issue: in verification, how check if g/ (P-v= g(r-2)-u7
— know g™ (commitment), can compute g/
— know g7 (from structured reference string), can compute g(*=2)
— know 7 = g* (alleged proof), but how to compute g(T=2)4?

Key insight: don’'t need to compute g2 from ¢g(*=2 and g% (hard by
CDH), only to verify whether g(®-7 is in fact what you’d get if you could
“multiply in the exponent” starting from g*=2), g* |

Fact: there exist groups (“elliptic curve groups with pairings”) in
which can efficiently verify multiplication in the exponent.
— given input x = g%, y = g°, z = g, reports whetherc =a - b
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KZG Commitments
[Kate/Zaverucha/Goldberg 2010}

Assume: powers of tau ¢ publicly known, no one knows .

Commitment to a polynomial f: g/ [given o, easy to compute]

To prove that f(z) = v:
1. write f(x) —vas (x —2z)-w(x) [w=“witness polynomial” (Fact 2)]
2. proof = g [given ¢, easy to compute]

To verify alleged proof m = g* that f(z) = v:
» accept proof <& gf(D-v= glt-2)u

— check with one pairing operation (w/inputs g\*=2, &, and g/(¥=) 7



Trusted Setup Ceremonies

Question: where does structured reference string o come from?
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Trusted Setup Ceremonies

Question: where does structured reference string o come from?

Answer: use a “trusted setup ceremony.”
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Trusted Setup Ceremonies

Question: where does structured reference string o come from?

Answer: use a “trusted setup ceremony.”
« N participants (N = 141000 in Ethereum’s KZG ceremony)
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Trusted Setup Ceremonies

Question: where does structured reference string o come from?

Answer: use a “trusted setup ceremony.”
« N participants (N = 141000 in Ethereum’s KZG ceremony)

. . : d
 participant #1 chooses 74, publishes g; = (gfl,gT%, .. g')
— can use pairings to check that published vector indeed of this form
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Trusted Setup Ceremonies

Question: where does structured reference string o come from?

Answer: use a “trusted setup ceremony.”
« N participants (N = 141000 in Ethereum’s KZG ceremony)

- participant #1 chooses t,, publishes o, = (g™, g™, ... g™1)
— can use pairings to check that published vector indeed of this form
« participant #2 chooses t,, publishes o, =
(g(T172), gmT2)? (172" [note: possible knowing only o]
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Trusted Setup Ceremonies

Question: where does structured reference string o come from?

Answer: use a “trusted setup ceremony.”
« N participants (N = 141000 in Ethereum’s KZG ceremony)
 participant #1 chooses 74, publishes g; = (gfl,gT%, gT?)
— can use pairings to check that published vector indeed of this form
« participant #2 chooses t,, publishes o, =
(g(T172), gmT2)? (172" [note: possible knowing only o]
e etc. [finalt =1y -7y Ty]
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Trusted Setup Ceremonies

Question: where does structured reference string o come from?

Answer: use a “trusted setup ceremony.”
* N participants (N = 141000 in Ethereum’s KZG ceremony)

« participant #1 chooses 74, publishes g; = (gfl,gf%, ng)
— can use pairings to check that published vector indeed of this form

. participant #2 chooses t,, publishes o, = (1%, g(™172)? _ g(®172)%Y [note: possible
knowing only o]

e etc. [finalt =171 -7 Ty]

Guarantee: 2 1 honest participant (i.e., chooses its 7; randomly
and deletes it forever) = 7 is effectively random and unknown!
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