
Bonus Lecture #4:

KZG Commitments

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Fun facts about polynomials.

– roots of polynomials, encoding data with a polynomial

2. KZG commitments: the basic idea.

– commitment, proofs via polynomial evaluation

3. Making it real: structured reference string + group pairings.

– implementing the idea of “evaluation at an unknown random input”

4. Trusted setup ceremonies.

– where does the structured reference string come from?

2

Goals for Bonus Lecture #4

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

3

Roots of Polynomials

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 1: if polynomial f has the form 𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q

is a degree-(d-1) polynomial, then 𝑓 𝑟 = 0.

4

Roots of Polynomials

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 1: if polynomial f has the form 𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q

is a degree-(d-1) polynomial, then 𝑓 𝑟 = 0.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

– example: can write 𝑥3 − 6𝑥2 + 11𝑥 − 6 as (𝑥 − 1)(𝑥2 − 5𝑥 + 6)

– for proof(s), see “polynomial factor theorem” (e.g., use long division)

5

Roots of Polynomials

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

6

Roots of Polynomials

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has ≤ d roots.

– after applying Fact 2 d times, left with a (non-zero) constant

7

Roots of Polynomials

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has ≤ d roots.

– after applying Fact 2 d times, left with a (non-zero) constant

Corollary 2: if p,q are distinct degree-d polynomials, then

p(x)=q(x) for at most d points x. [because p-q has ≤ d roots]
8

Roots of Polynomials

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact 2: if polynomial f satisfies 𝑓 𝑟 = 0, then f has the form

𝑓 𝑥 = 𝑥 − 𝑟 ⋅ 𝑞(𝑥), where q is a degree-(d-1) polynomial.

Corollary 1: a (non-zero) degree-d polynomial has ≤ d roots.

– after applying Fact 2 d times, left with a (non-zero) constant

Corollary 2: if p,q are distinct degree-d polynomials, then

p(x)=q(x) for at most d points x. [because p-q has ≤ d roots]

– for randomly chosen x (from big set), p(x),q(x) almost certainly differ 9

Roots of Polynomials

Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

10

Polynomial Interpolation

Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

11

Polynomial Interpolation

Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

12

Polynomial Interpolation

Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form

 𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑) [for scalar c]

13

Polynomial Interpolation

Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form

 𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑) [for scalar c]

• for 𝑓 𝑥0 = 1, take 𝑐 = 1/[𝑥0 − 𝑥1 ⋅ 𝑥0 − 𝑥2 ⋅ … ⋅ 𝑥0 − 𝑥𝑑]

14

Polynomial Interpolation

Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form

 𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑) [for scalar c]

• for 𝑓 𝑥0 = 1, take 𝑐 = 1/[𝑥0 − 𝑥1 ⋅ 𝑥0 − 𝑥2 ⋅ … ⋅ 𝑥0 − 𝑥𝑑]

Note: can interpolate arbitrary points via linear combinations

𝑓 𝑥 = σ𝑖=0
𝑑 𝑦𝑖 ⋅ 𝐿𝑖(𝑥) of these “Lagrange basis functions.”

15

Polynomial Interpolation

Fact 3: given points 𝑥0, 𝑦0 , 𝑥1, 𝑦1 , … , (𝑥𝑑 , 𝑦𝑑), can easily

compute a degree-d polynomial f s.t. 𝑓 𝑥𝑖 = 𝑦𝑖 for all i=0,1,..,d.

Example: 𝑦0 = 1, 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑑 = 0.

• interpolating function should have form

 𝑓 𝑥 = 𝑐 ⋅ 𝑥 − 𝑥1 ⋅ 𝑥 − 𝑥2 ⋅ … ⋅ (𝑥 − 𝑥𝑑) [for scalar c]

• for 𝑓 𝑥0 = 1, take 𝑐 = 1/[𝑥0 − 𝑥1 ⋅ 𝑥0 − 𝑥2 ⋅ … ⋅ 𝑥0 − 𝑥𝑑]

Note: can interpolate arbitrary points via linear combinations

𝑓 𝑥 = σ𝑖=0
𝑑 𝑦𝑖 ⋅ 𝐿𝑖(𝑥) of these “Lagrange basis functions.”

– also: can redundantly encode polynomial via > d+1 evaluations
16

Polynomial Interpolation

Idea: encode list of objects as evaluations of a polynomial.

– cf., Merkle trees: encode (hashes of) objects as leaves of a tree

17

Encoding Data as a Polynomial

Idea: encode list of objects as evaluations of a polynomial.

– cf., Merkle trees: encode (hashes of) objects as leaves of a tree

Example: list 𝑎0, 𝑎1, … , 𝑎𝑑 of objects, each 𝑎𝑖 with length 256 bits.

– interpret as elements 𝑦0, 𝑦1, … , 𝑦𝑑 of 𝑍𝑝={0,1,…,p-1} for ≈256-bit prime p

– can compute degree-d polynomial f s.t. f(i)=yi for all i=0,1,2,…,d

• all arithmetic (including division) done modulo p

18

Encoding Data as a Polynomial

Idea: encode list of objects as evaluations of a polynomial.

– cf., Merkle trees: encode (hashes of) objects as leaves of a tree

Example: list 𝑎0, 𝑎1, … , 𝑎𝑑 of objects, each 𝑎𝑖 with length 256 bits.

– interpret as elements 𝑦0, 𝑦1, … , 𝑦𝑑 of 𝑍𝑝={0,1,…,p-1} for ≈256-bit prime p

– can compute degree-d polynomial f s.t. f(i)=yi for all i=0,1,2,…,d

• all arithmetic (including division) done modulo p

Ethereum blob: as above, with d = 4096 (size ≈ 125 Kb).

– validators store blobs for 2 weeks, (KZG) commitments to blobs forever

19

Encoding Data as a Polynomial

Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

20

KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?

21

KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

22

KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

23

KZG Commitments (v1)

Goal: short, binding commitment to a polynomial f.

– where evaluations of f on 0,1,…,d correspond to list of d+1 objects

– cf., guarantees provided by a Merkle tree (no false positives/negatives)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

– note: 𝜏 generally >> d, does not correspond to one of encoded objects

– commitment clearly short, but how to compute 𝑓(𝜏) if 𝜏 is unknown?

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏 24

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

25

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

26

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋

27

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

28

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

Correctness:

29

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏)

30

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏)

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏)

31

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏)

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣 [no matter what 𝜏 is]

32

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏)

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣 [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣

33

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏)

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣 [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣 ➔ for any w, 𝑥 − 𝑧 ⋅ 𝑤 𝑥 ≠ 𝑓 𝑥 − 𝑣

34

KZG Commitments (v1)

Key idea #1: commitment = 𝑓(𝜏) on unknown random input 𝜏.

Key idea #2: to prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑤(𝜏) on same unknown random input 𝜏

Verification: given commitment 𝑓(𝜏), alleged proof 𝜋 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑓 𝜏 − 𝑣 = 𝜏 − 𝑧 ⋅ 𝜋 [question: isn’t 𝜏 unknown?]

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝜋 = 𝑤(𝜏)

➔ 𝜏 − 𝑧 ⋅ 𝜋 = 𝜏 − 𝑧 ⋅ 𝑤(𝜏) = 𝑓 𝜏 − 𝑣 [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣 ➔ for any w, 𝑥 − 𝑧 ⋅ 𝑤 𝑥 ≠ 𝑓 𝑥 − 𝑣 ➔

for almost all 𝜏, 𝜏 − 𝑧 ⋅ 𝑤(𝜏) ≠ 𝑓 𝜏 − 𝑣 [Corollary 2]
35

KZG Commitments (v1)

Note: if 𝜏 is known, easy to forge false proofs!

• to “prove” that 𝑓 𝑧 = 𝑣, just set 𝜋 = (𝑓 𝜏 − 𝑣)/(𝜏 − 𝑧)

36

Structured Reference String

Note: if 𝜏 is known, easy to forge false proofs!

• to “prove” that 𝑓 𝑧 = 𝑣, just set 𝜋 = (𝑓 𝜏 − 𝑣)/(𝜏 − 𝑧)

Question: how to compute 𝑓 𝜏 without knowing 𝜏?

37

Structured Reference String

Note: if 𝜏 is known, easy to forge false proofs!

• to “prove” that 𝑓 𝑧 = 𝑣, just set 𝜋 = (𝑓 𝜏 − 𝑣)/(𝜏 − 𝑧)

Question: how to compute 𝑓 𝜏 without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

– e.g., of an elliptic curve group

– i.e., compute 𝑓 𝜏 only in “encrypted form” (i.e., in exponent)

– cf., Schnorr signatures

38

Structured Reference String

Recall: given generator g of a cyclic group G (of known order):

39

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, computing gx ?

40

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

41

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• given gx, computing x?

42

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

43

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• computing gx+y from gx and gy ?

44

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

45

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• computing gax from a and gx ?

46

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx

47

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx

• computing gxy from gx and gy?

48

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx

• generally hard to compute gxy from gx and gy

– “computational Diffie-Hellman (CDH)” assumption

49

Aside: Computing in the Exponent

Recall: given generator g of a cyclic group G (of known order):

• given x, easy to compute gx [repeated squaring]

• [if discrete log is hard] given gx, hard to compute x

• easy to compute gx+y from gx and gy

• easy to compute gax from a and gx

• generally hard to compute gxy from gx and gy

– “computational Diffie-Hellman (CDH)” assumption

Tl;dr: easy to add or scale in the exponent, but hard to multiply.

50

Aside: Computing in the Exponent

Question: how to compute 𝑓 𝜏 without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

51

Structured Reference String

Question: how to compute 𝑓 𝜏 without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

• write 𝑔𝑓(𝜏) = 𝑔𝑎𝑑𝜏𝑑+𝑎𝑑−1𝜏𝑑−1+⋯+𝑎1𝜏+𝑎0

52

Structured Reference String

Question: how to compute 𝑓 𝜏 without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

• write 𝑔𝑓(𝜏) = 𝑔𝑎𝑑𝜏𝑑+𝑎𝑑−1𝜏𝑑−1+⋯+𝑎1𝜏+𝑎0

• issue: easy to add/scale in exponent, but hard to multiply

53

Structured Reference String

Question: how to compute 𝑓 𝜏 without knowing 𝜏?

Idea: compute 𝑔𝑓(𝜏), where g = generator of some cyclic group.

• write 𝑔𝑓(𝜏) = 𝑔𝑎𝑑𝜏𝑑+𝑎𝑑−1𝜏𝑑−1+⋯+𝑎1𝜏+𝑎0

• issue: easy to add/scale in exponent, but hard to multiply

• solution: assume “powers of tau” 𝜎 = (𝑔𝜏, 𝑔𝜏2
, 𝑔𝜏2

,…, 𝑔𝜏𝑑
) are

known (e.g., part of description of commitment scheme)

– 𝜎 called a “structured reference string,” a form of “trusted setup”

54

Structured Reference String

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

55

KZG Commitments (v2)

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

56

KZG Commitments (v2)

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

57

KZG Commitments (v2)

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

58

KZG Commitments (v2)

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

59

KZG Commitments (v2)

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

60

KZG Commitments (v2)

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

61

KZG Commitments (v2)

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

Correctness: (i)

62

KZG Commitments (v2)

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =
𝑤(𝜏)

63

KZG Commitments (v2)

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 [no matter what 𝜏 is]

64

KZG Commitments (v2)

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣

65

KZG Commitments (v2)

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣, would need to compute 𝜋 = 𝑔(𝑓 𝜏 −𝑣)/(𝜏−𝑧)

knowing only 𝜎 66

KZG Commitments (v2)

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

Correctness: (i) if 𝑓 𝑧 = 𝑣, 𝑓 𝑥 − 𝑣 = 𝑥 − 𝑧 ⋅ 𝑤 𝑥 , and 𝑢 =

𝑤(𝜏) ➔ 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢 [no matter what 𝜏 is]

(ii) [intuition] if 𝑓 𝑧 ≠ 𝑣, would need to compute 𝜋 = 𝑔(𝑓 𝜏 −𝑣)/(𝜏−𝑧)

knowing only 𝜎, which seems hard (dividing by 𝜏 in exponent) 67

KZG Commitments (v2)

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

68

Checking Multiplication in the Exponent

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏 (commitment)

69

Checking Multiplication in the Exponent

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏 (commitment), can compute 𝑔𝑓 𝜏 −𝑣

70

Checking Multiplication in the Exponent

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏 (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string)

71

Checking Multiplication in the Exponent

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏 (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

72

Checking Multiplication in the Exponent

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏 (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

• know 𝜋 = 𝑔𝑢 (alleged proof)

73

Checking Multiplication in the Exponent

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏 (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

• know 𝜋 = 𝑔𝑢 (alleged proof), but how to compute 𝑔 𝜏−𝑧 ⋅𝑢?

74

Checking Multiplication in the Exponent

Issue: in verification, how to check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

• know 𝑔𝑓 𝜏 (commitment), can compute 𝑔𝑓 𝜏 −𝑣

• know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

• know 𝜋 = 𝑔𝑢 (alleged proof), but how to compute 𝑔 𝜏−𝑧 ⋅𝑢?

Key insight: don’t need to compute 𝑔 𝜏−𝑧 ⋅𝑢 from 𝑔(𝜏−𝑧) and 𝑔𝑢

(hard by CDH), only to verify whether 𝑔𝑓 𝜏 −𝑣 is in fact what you’d

get if you could “multiply in the exponent” starting from 𝑔(𝜏−𝑧), 𝑔𝑢 !

75

Checking Multiplication in the Exponent

Issue: in verification, how check if 𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢?

– know 𝑔𝑓 𝜏 (commitment), can compute 𝑔𝑓 𝜏 −𝑣

– know 𝑔𝜏 (from structured reference string), can compute 𝑔(𝜏−𝑧)

– know 𝜋 = 𝑔𝑢 (alleged proof), but how to compute 𝑔 𝜏−𝑧 ⋅𝑢?

Key insight: don’t need to compute 𝑔 𝜏−𝑧 ⋅𝑢 from 𝑔(𝜏−𝑧) and 𝑔𝑢 (hard by

CDH), only to verify whether 𝑔𝑓 𝜏 −𝑣 is in fact what you’d get if you could

“multiply in the exponent” starting from 𝑔(𝜏−𝑧), 𝑔𝑢 !

Fact: there exist groups (“elliptic curve groups with pairings”) in

which can efficiently verify multiplication in the exponent.

– given input 𝑥 = 𝑔𝑎, 𝑦 = 𝑔𝑏, 𝑧 = 𝑔𝑐, reports whether 𝑐 = 𝑎 ⋅ 𝑏
76

Checking Multiplication in the Exponent

Assume: powers of tau 𝜎 publicly known, no one knows 𝜏.

Commitment to a polynomial f: 𝑔𝑓(𝜏) [given 𝜎, easy to compute]

To prove that 𝑓 𝑧 = 𝑣:

1. write 𝑓(𝑥) − 𝑣 as 𝑥 − 𝑧 ⋅ 𝑤(𝑥) [w = “witness polynomial” (Fact 2)]

2. proof = 𝑔𝑤(𝜏) [given 𝜎, easy to compute]

To verify alleged proof 𝜋 = 𝑔𝑢 that 𝑓 𝑧 = 𝑣:

• accept proof  𝑔𝑓 𝜏 −𝑣= 𝑔 𝜏−𝑧 ⋅𝑢

– check with one pairing operation (w/inputs 𝑔 𝜏−𝑧 , 𝜋, and 𝑔𝑓 𝜏 −𝑣) 77

KZG Commitments
[Kate/Zaverucha/Goldberg 2010]

Question: where does structured reference string 𝜎 come from?

78

Trusted Setup Ceremonies

Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

79

Trusted Setup Ceremonies

Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

80

Trusted Setup Ceremonies

Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form

81

Trusted Setup Ceremonies

Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form

• participant #2 chooses 𝜏2, publishes 𝜎2 =

(𝑔(𝜏1𝜏2), 𝑔 𝜏1𝜏2
2
, … 𝑔 𝜏1𝜏2

𝑑
) [note: possible knowing only 𝜎1]

82

Trusted Setup Ceremonies

Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form

• participant #2 chooses 𝜏2, publishes 𝜎2 =

(𝑔(𝜏1𝜏2), 𝑔 𝜏1𝜏2
2
, … 𝑔 𝜏1𝜏2

𝑑
) [note: possible knowing only 𝜎1]

• etc. [final 𝜏 = 𝜏1 ⋅ 𝜏2 ⋅ ⋯ ⋅ 𝜏𝑁]

83

Trusted Setup Ceremonies

Question: where does structured reference string 𝜎 come from?

Answer: use a “trusted setup ceremony.”

• N participants (N ≈ 141000 in Ethereum’s KZG ceremony)

• participant #1 chooses 𝜏1, publishes 𝜎1 = (𝑔𝜏1 , 𝑔𝜏1
2
, … 𝑔𝜏1

𝑑
)

– can use pairings to check that published vector indeed of this form

• participant #2 chooses 𝜏2, publishes 𝜎2 = (𝑔(𝜏1𝜏2), 𝑔 𝜏1𝜏2
2
, … 𝑔 𝜏1𝜏2

𝑑
) [note: possible

knowing only 𝜎1]

• etc. [final 𝜏 = 𝜏1 ⋅ 𝜏2 ⋅ ⋯ ⋅ 𝜏𝑁]

Guarantee: ≥ 1 honest participant (i.e., chooses its 𝜏𝑖 randomly

and deletes it forever) ➔ 𝜏 is effectively random and unknown!

84

Trusted Setup Ceremonies

	Slide 1: Bonus Lecture #4: KZG Commitments
	Slide 2: Goals for Bonus Lecture #4
	Slide 3: Roots of Polynomials
	Slide 4: Roots of Polynomials
	Slide 5: Roots of Polynomials
	Slide 6: Roots of Polynomials
	Slide 7: Roots of Polynomials
	Slide 8: Roots of Polynomials
	Slide 9: Roots of Polynomials
	Slide 10: Polynomial Interpolation
	Slide 11: Polynomial Interpolation
	Slide 12: Polynomial Interpolation
	Slide 13: Polynomial Interpolation
	Slide 14: Polynomial Interpolation
	Slide 15: Polynomial Interpolation
	Slide 16: Polynomial Interpolation
	Slide 17: Encoding Data as a Polynomial
	Slide 18: Encoding Data as a Polynomial
	Slide 19: Encoding Data as a Polynomial
	Slide 20: KZG Commitments (v1)
	Slide 21: KZG Commitments (v1)
	Slide 22: KZG Commitments (v1)
	Slide 23: KZG Commitments (v1)
	Slide 24: KZG Commitments (v1)
	Slide 25: KZG Commitments (v1)
	Slide 26: KZG Commitments (v1)
	Slide 27: KZG Commitments (v1)
	Slide 28: KZG Commitments (v1)
	Slide 29: KZG Commitments (v1)
	Slide 30: KZG Commitments (v1)
	Slide 31: KZG Commitments (v1)
	Slide 32: KZG Commitments (v1)
	Slide 33: KZG Commitments (v1)
	Slide 34: KZG Commitments (v1)
	Slide 35: KZG Commitments (v1)
	Slide 36: Structured Reference String
	Slide 37: Structured Reference String
	Slide 38: Structured Reference String
	Slide 39: Aside: Computing in the Exponent
	Slide 40: Aside: Computing in the Exponent
	Slide 41: Aside: Computing in the Exponent
	Slide 42: Aside: Computing in the Exponent
	Slide 43: Aside: Computing in the Exponent
	Slide 44: Aside: Computing in the Exponent
	Slide 45: Aside: Computing in the Exponent
	Slide 46: Aside: Computing in the Exponent
	Slide 47: Aside: Computing in the Exponent
	Slide 48: Aside: Computing in the Exponent
	Slide 49: Aside: Computing in the Exponent
	Slide 50: Aside: Computing in the Exponent
	Slide 51: Structured Reference String
	Slide 52: Structured Reference String
	Slide 53: Structured Reference String
	Slide 54: Structured Reference String
	Slide 55: KZG Commitments (v2)
	Slide 56: KZG Commitments (v2)
	Slide 57: KZG Commitments (v2)
	Slide 58: KZG Commitments (v2)
	Slide 59: KZG Commitments (v2)
	Slide 60: KZG Commitments (v2)
	Slide 61: KZG Commitments (v2)
	Slide 62: KZG Commitments (v2)
	Slide 63: KZG Commitments (v2)
	Slide 64: KZG Commitments (v2)
	Slide 65: KZG Commitments (v2)
	Slide 66: KZG Commitments (v2)
	Slide 67: KZG Commitments (v2)
	Slide 68: Checking Multiplication in the Exponent
	Slide 69: Checking Multiplication in the Exponent
	Slide 70: Checking Multiplication in the Exponent
	Slide 71: Checking Multiplication in the Exponent
	Slide 72: Checking Multiplication in the Exponent
	Slide 73: Checking Multiplication in the Exponent
	Slide 74: Checking Multiplication in the Exponent
	Slide 75: Checking Multiplication in the Exponent
	Slide 76: Checking Multiplication in the Exponent
	Slide 77: KZG Commitments [Kate/Zaverucha/Goldberg 2010]
	Slide 78: Trusted Setup Ceremonies
	Slide 79: Trusted Setup Ceremonies
	Slide 80: Trusted Setup Ceremonies
	Slide 81: Trusted Setup Ceremonies
	Slide 82: Trusted Setup Ceremonies
	Slide 83: Trusted Setup Ceremonies
	Slide 84: Trusted Setup Ceremonies

