Bonus Lecture #6: Secret Leader Selection and Verifiable Random Functions

COMS 4995-001: The Science of Blockchains URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Bonus Lecture #6

- 1. Verifiable random functions (VRFs).
 - how validators can obtain private and verifiable (pseudo)randomness
- 2. Using VRFs for leader selection in proof-of-stake Tendermint.
 - issues to address include unpredictable number of leaders selected

3. Pseudorandomness beacons.

– goal: derive unmanipulatable pseudorandomness from blockchain state

4. Randomly sampled committees.

- scaling Tendermint-style protocols up to 1000s of validators

Given: list $(pk_1,q_1),...,(pk_n,q_n)$ of active validators + stake amounts.

Goal: sample pk from $\{pk_1, \dots, pk_n\}$ with probability proportional to q_i 's.

Solution:

Given: list $(pk_1,q_1),...,(pk_n,q_n)$ of active validators + stake amounts.

Goal: sample pk from $\{pk_1, \dots, pk_n\}$ with probability proportional to q_i 's.

Solution: use epoch of length N views each (N large).

- list of active validators + their stakes changes only at epoch boundaries
- each epoch: use proportionally representative sequence of leaders

Given: list $(pk_1,q_1),...,(pk_n,q_n)$ of active validators + stake amounts.

Goal: sample pk from $\{pk_1, \dots, pk_n\}$ with probability proportional to q_i 's.

Solution: use epoch of length N views each (N large).

- list of active validators + their stakes changes only at epoch boundaries
- each epoch: use proportionally representative sequence of leaders
- ex: $\{(A,2),(B,1),(C,2)\}$ → use leader sequence AABCCAABCCAABCC...

Given: list $(pk_1,q_1),...,(pk_n,q_n)$ of active validators + stake amounts.

Goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's.

Solution: use epoch of length N views each (N large).

- list of active validators + their stakes changes only at epoch boundaries
- each epoch: use proportionally representative sequence of leaders
- ex: $\{(A,2),(B,1),(C,2)\}$ → use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.

Given: list $(pk_1,q_1),...,(pk_n,q_n)$ of active validators + stake amounts.

Goal: sample pk from $\{pk_1, \dots, pk_n\}$ with probability proportional to q_i 's.

Solution: use epoch of length N views each (N large).

- list of active validators + their stakes changes only at epoch boundaries
- each epoch: use proportionally representative sequence of leaders
- ex: $\{(A,2),(B,1),(C,2)\}$ → use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.

Given: list $(pk_1,q_1),...,(pk_n,q_n)$ of active validators + stake amounts.

Goal: sample pk from $\{pk_1, \dots, pk_n\}$ with probability proportional to q_i 's.

Solution: use epoch of length N views each (N large).

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.

- \rightarrow risk of bribery, coercion, DoS attacks
- also has its benefits (e.g., for tx dissemination)

Given: list $(pk_1,q_1),...,(pk_n,q_n)$ of active validators + stake amounts.

Goal: sample pk from $\{pk_1, \dots, pk_n\}$ with probability proportional to q_i 's.

Solution: use epoch of length N views each (N large).

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.

Question: secret (and verifiable) leader selection?

- a la Nakamoto consensus, but with proof-of-stake sybil-resistance

Updated goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's, s.t. result is secret (but verifiable once reported).

Updated goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a "randomness beacon."

- for each view v, produces an independent and uniformly random output r_v (e.g., in $\{0,1\}^{256}$). [known to all validators without any communication]

Updated goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a "randomness beacon."

- for each view v, produces an independent and uniformly random output r_v (e.g., in $\{0,1\}^{256}$). [known to all validators without any communication]

Question: why not use r_v to directly sample leader for view v (HW9)?

Updated goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a "randomness beacon."

- for each view v, produces an independent and uniformly random output r_v (e.g., in $\{0,1\}^{256}$). [known to all validators without any communication]

Question: why not use r_v to directly sample leader for view v (HW9)?

- answer: not secret (leader known to all as soon as r_v drops)
 - even if it's "secret enough," can also use VRFs for other purposes

Updated goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a "randomness beacon."

– for each view v, produces an independent and uniformly random output $r_{\rm v}$

Idea:

Updated goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a "randomness beacon."

– for each view v, produces an independent and uniformly random output $r_{\rm v}$

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader of v \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA)

Updated goal: sample pk from $\{pk_1, ..., pk_n\}$ with probability proportional to q_i 's, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a "randomness beacon."

– for each view v, produces an independent and uniformly random output r_v

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

- i is leader of v \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA)
 - for sybil-proofness, threshold must be increasing in q_i

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

• by assumption, can't manipulate r_v (will revisit assumption later)

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

- by assumption, can't manipulate r_v (will revisit assumption later)
- issue #1: given r_v , could try multiple (a.k.a. "grind") pk/sk pairs – i.e., look for a value of sk that makes $sig_{sk}(r_v)$ as small as possible

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

- by assumption, can't manipulate r_v (will revisit assumption later)
- issue #1: given r_v, could try multiple (a.k.a. "grind") pk/sk pairs
 - i.e., look for a value of sk that makes $sig_{sk}(r_v)$ as small as possible
 - fix: make warm-up period long enough that i commits to sk_i before seeing r_v

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader $\Leftrightarrow sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

- by assumption, can't manipulate r_v (will revisit assumption later)
- issue #1: given r_v , could try multiple (a.k.a. "grind") pk/sk pairs – fix: make warm-up period long enough that i commits to sk_i before seeing r_v

• issue #2:

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader $\Leftrightarrow sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

- by assumption, can't manipulate r_v (will revisit assumption later)
- issue #1: given r_v, could try multiple (a.k.a. "grind") pk/sk pairs
 fix: make warm-up period long enough that i commits to sk_i before seeing r_v
- issue #2: given r_v and sk_i , could try multiple ("grind") $sig_{sk_i}(r_v)$'s
 - signatures not generally unique (e.g. nonces in Schnorr/ECDSA signatures)

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader $\Leftrightarrow sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

- by assumption, can't manipulate r_v (will revisit assumption later)
- issue #1: given r_v, could try multiple (a.k.a. "grind") pk/sk pairs
 fix: make warm-up period long enough that i commits to sk_i before seeing r_v
- issue #2: given r_v and sk_i , could try multiple ("grind") $sig_{sk_i}(r_v)$'s
 - signatures not generally unique (e.g. nonces in Schnorr/ECDSA signatures)
 - fix: use signature scheme with unique signatures (e.g., BLS)

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader $\Leftrightarrow sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

- by assumption, can't manipulate r_v (will revisit assumption later)
- issue #1: given r_v, could try multiple (a.k.a. "grind") pk/sk pairs
 fix: make warm-up period long enough that i commits to sk_i before seeing r_v
- issue #2: given r_v and sk_i , could try multiple ("grind") $sig_{sk_i}(r_v)$'s

fix: use signature scheme with unique signatures (e.g., BLS)

• issue #3: $sig_{sk_i}(r_v)$ may not be uniformly random (even if r_v is) ₂₅

Idea: each view v, each validator i computes $sig_{sk_i}(r_v)$.

• i is leader \Leftrightarrow $sig_{sk_i}(r_v)$ is "sufficiently small" (TBA, depends on q_i)

Question: can a validator influence its selection probability?

- by assumption, can't manipulate r_v (will revisit assumption later)
- issue #1: given r_v, could try multiple (a.k.a. "grind") pk/sk pairs
 fix: make warm-up period long enough that i commits to sk_i before seeing r_v
- issue #2: given r_v and sk_i , could try multiple ("grind") $sig_{sk_i}(r_v)$'s
 - fix: use signature scheme with unique signatures (e.g., BLS)
- issue #3: $sig_{sk_i}(r_v)$ may not be uniformly random (even if r_v is)
 - fix: use $sig_{sk_i}(r_v)$ as input to a cryptographic hash function

Idea (revised): each view v, each validator i computes $h(sig_{sk_i}(r_v))$.

- i is leader $\Leftrightarrow h(sig_{sk_i}(r_v))$ is "sufficiently small" (TBA, depends on q_i)
- -h(.) = CHF, sig(.) = signature scheme w/unique signatures

Idea (revised): each view v, each validator i computes $h(sig_{sk_i}(r_v))$.

- i is leader $\Leftrightarrow h(sig_{sk_i}(r_v))$ is "sufficiently small" (TBA, depends on q_i)
- -h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: $h(sig_{sk_i}(r_v))$ an example of a *verifiable random function*. – will write as $VRF_{sk_i}(\cdot)$

Idea (revised): each view v, each validator i computes $h(sig_{sk_i}(r_v))$.

- i is leader $\Leftrightarrow h(sig_{sk_i}(r_v))$ is "sufficiently small" (TBA, depends on q_i)
- -h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: $h(sig_{sk_i}(r_v))$ an example of a *verifiable random function*. – will write as $VRF_{sk_i}(\cdot)$

1. given sk_i , easy to compute $VRF_{sk_i}(\cdot)$

Idea (revised): each view v, each validator i computes $h(sig_{sk_i}(r_v))$.

- i is leader $\Leftrightarrow h(sig_{sk_i}(r_v))$ is "sufficiently small" (TBA, depends on q_i)
- -h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: $h(sig_{sk_i}(r_v))$ an example of a verifiable random function.

- will write as $VRF_{sk_i}(\cdot)$
- 1. given sk_i , easy to compute $VRF_{sk_i}(\cdot)$
- 2. knowing only pk_i and not sk_i , hard to compute $VRF_{sk_i}(\cdot)$

Idea (revised): each view v, each validator i computes $h(sig_{sk_i}(r_v))$.

- i is leader $\Leftrightarrow h(sig_{sk_i}(r_v))$ is "sufficiently small" (TBA, depends on q_i)
- -h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: $h(sig_{sk_i}(r_v))$ an example of a verifiable random function.

- will write as $VRF_{sk_i}(\cdot)$
- 1. given sk_i , easy to compute $VRF_{sk_i}(\cdot)$
- 2. knowing only pk_i and not sk_i , hard to compute $VRF_{sk_i}(\cdot)$
- 3. given pk_i and alleged VRF output on some input, easy to check

Idea (revised): each view v, each validator i computes $h(sig_{sk_i}(r_v))$.

- i is leader $\Leftrightarrow h(sig_{sk_i}(r_v))$ is "sufficiently small" (TBA, depends on q_i)
- -h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: $h(sig_{sk_i}(r_v))$ an example of a verifiable random function.

- will write as $VRF_{sk_i}(\cdot)$
- 1. given sk_i, easy to compute $VRF_{sk_i}(\cdot)$
- 2. knowing only pk_i and not sk_i , hard to compute $VRF_{sk_i}(\cdot)$
- 3. given pk_i and alleged VRF output on some input, easy to check
- 4. output indistinguishable from random

Idea (revised): each view v, each validator i computes $VRF_{sk_i}(r_v)$.

– i is leader $\Leftrightarrow VRF_{sk_i}(r_v)$ is "sufficiently small" (at most some threshold τ_i)

Issue #5:

» '

Idea (revised): each view v, each validator i computes $VRF_{sk_i}(r_v)$.

- i is leader $\Leftrightarrow VRF_{sk_i}(r_v)$ is "sufficiently small" (at most some threshold τ_i)

Issue #5: how to set the thresholds (the τ_i 's)?

- e.g., to guarantee one leader in expectation, but also sybil-proof

Idea (revised): each view v, each validator i computes $VRF_{sk_i}(r_v)$.

- i is leader $\Leftrightarrow VRF_{sk_i}(r_v)$ is "sufficiently small" (at most some threshold τ_i)

Issue #5: how to set the thresholds (the τ_i 's)?

- e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose q_i=1 for all i=1,2,...,n. [easiest case]

Idea (revised): each view v, each validator i computes $VRF_{sk_i}(r_v)$.

- i is leader $\Leftrightarrow VRF_{sk_i}(r_v)$ is "sufficiently small" (at most some threshold τ_i)

Issue #5: how to set the thresholds (the τ_i 's)?

- e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose q_i=1 for all i=1,2,...,n. [easiest case]

- if set (common) threshold of τ , Pr[i a leader]= τ for all i=1,2,...,n
 - since VRF output acts like a uniformly random number from [0,1]

Setting the Thresholds

Idea (revised): each view v, each validator i computes $VRF_{sk_i}(r_v)$.

- i is leader $\Leftrightarrow VRF_{sk_i}(r_v)$ is "sufficiently small" (at most some threshold τ_i)

Issue #5: how to set the thresholds (the τ_i 's)?

- e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose q_i=1 for all i=1,2,...,n. [easiest case]

- if set (common) threshold of τ , Pr[i a leader]= τ for all i=1,2,...,n
 - expected number of leaders = $\tau \cdot n$, set $\tau = 1/n$ for one leader in expectation

Idea: i is leader of view v \Leftrightarrow VRF_{sk_i}(r_v) < τ_i .

- how to set the τ_i 's, e.g., for one leader in expectation, but also sybil-proof?
 - all q_i 's = 1 \rightarrow set $\tau = 1/n$ for one leader in expectation

Intuition: if $q_i > 1, ...$

Idea: i is leader of view $v \Leftrightarrow VRF_{sk_i}(r_v) < \tau_i$.

– how to set the τ_i 's, e.g., for one leader in expectation, but also sybil-proof?

• all q_i 's = 1 \rightarrow set $\tau = 1/n$ for one leader in expectation

Intuition: if $q_i > 1$, adjust $VRF_{sk_i}(r_v)$ s.t. it has same distribution as the minimum of q_i i.i.d. uniform samples from [0,1]. (for sybil-proofness)

- in effect, treat i *as if* it was using q_i sybils with one coin each

Idea: i is leader of view $v \Leftrightarrow VRF_{sk_i}(r_v) < \tau_i$.

– how to set the τ_i 's, e.g., for one leader in expectation, but also sybil-proof?

• all q_i 's = 1 \rightarrow set $\tau = 1/n$ for one leader in expectation

Intuition: if $q_i > 1$, adjust $VRF_{sk_i}(r_v)$ s.t. it has same distribution as the minimum of q_i i.i.d. uniform samples from [0,1]. (for sybil-proofness)

- in effect, treat i *as if* it was using q_i sybils with one coin each

• first guess: if $q_i > 1$, use $\frac{1}{q_i} VRF_{sk_i}(r_v)$ instead of $VRF_{sk_i}(r_v)$

- compare versus the threshold $\tau = 1/Q$, where $Q = \sum_{i=1}^{n} q_i$

Idea: i is leader of view $v \Leftrightarrow VRF_{sk_i}(r_v) < \tau_i$.

– how to set the τ_i 's, e.g., for one leader in expectation, but also sybil-proof?

• all q_i 's = 1 \rightarrow set $\tau = 1/n$ for one leader in expectation

Intuition: if $q_i > 1$, adjust $VRF_{sk_i}(r_v)$ s.t. it has same distribution as the minimum of q_i i.i.d. uniform samples from [0,1]. (for sybil-proofness)

- in effect, treat i *as if* it was using q_i sybils with one coin each

• first guess: if $q_i > 1$, use $\frac{1}{q_i} VRF_{sk_i}(r_v)$ instead of $VRF_{sk_i}(r_v)$

- compare versus the threshold $\tau = 1/Q$, where $Q = \sum_{i=1}^{n} q_i$

• you check: not quite right

Idea: i is leader of view v \Leftrightarrow "adjusted $VRF_{sk_i}(r_v)$ " < τ . (*)

Idea: i is leader of view v \Leftrightarrow "adjusted $VRF_{sk_i}(r_v)$ " < τ . (*)

• rewrite RHS of (*) for
$$q_i = 1$$
 as $\ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau})$

Idea: i is leader of view v \Leftrightarrow "adjusted $VRF_{sk_i}(r_v)$ " < τ . (*)

• rewrite RHS of (*) for
$$q_i = 1$$
 as $\ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau})$

•
$$q_i > 1 \rightarrow i \text{ leader} \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau})$$

Idea: i is leader of view v \Leftrightarrow "adjusted $VRF_{sk_i}(r_v)$ " < τ . (*)

- rewrite RHS of (*) for $q_i = 1$ as $\ln(\frac{1}{1 VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 \tau})$
- $q_i > 1 \rightarrow i \text{ leader} \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 \tau})$

[&]quot;crediential" of i in view v

Idea: i is leader of view v \Leftrightarrow "adjusted $VRF_{sk_i}(r_v)$ " < τ . (*)

- rewrite RHS of (*) for $q_i = 1$ as $\ln(\frac{1}{1 VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 \tau})$
- $q_i > 1 \rightarrow i \text{ leader} \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 \tau})$
 - for one leader in expectation, use $\tau = 1/Q$, where $Q = \sum_{i=1}^{n} q_i$

Idea: i is leader of view v \Leftrightarrow "adjusted $VRF_{sk_i}(r_v)$ " < τ . (*)

- rewrite RHS of (*) for $q_i = 1$ as $\ln(\frac{1}{1 VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 \tau})$
- $q_i > 1 \rightarrow i \text{ leader} \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 \tau})$ "crediential" of i in view v
 - for one leader in expectation, use $\tau = 1/Q$, where $Q = \sum_{i=1}^{n} q_i$
 - you check: sybil-proof (# of pks doesn't change selection probability)

From VRFs to Consensus Protocols

Final version of idea: i is leader of view v 👄

To use in a blockchain protocol, need:

From VRFs to Consensus Protocols

Final version of idea: i is leader of view v ⇔

To use in a blockchain protocol, need:

- 1. Concrete implementation of randomness beacon.
 - i.e., what are the r_v 's, exactly?

From VRFs to Consensus Protocols

Final version of idea: i is leader of view v ⇔

To use in a blockchain protocol, need:

- 1. Concrete implementation of randomness beacon.
 - i.e., what are the r_v 's, exactly?
- 2. Modifications to consensus protocol to handle bad cases #1 + 2.
 - if no leader or multiple leaders selected in a view

Proof-of-Stake Tendermint Revisited

Last time: modified Tendermint so that:

- 1. uses epoch-based weighted round-robin leader selection
 - validators only allowed to join/leave at epoch boundaries
- 2. redefine quorum certificate = signatures by distinct public keys that collectively represent more than 2/3rds of the overall stake
- 3. add logic to update validator set at epoch boundaries

Result: consistent and (eventually) live in partial synchrony (assuming < 33% Byzantine stake), in the quasi-permissionless setting (i.e., honest validators always online).

Proof-of-Stake Tendermint Revisited

Last time: modified Tendermint so that:

- 1. uses epoch-based weighted round-robin leader selection
- 2. redefine quorum certificate = signatures by distinct public keys that collectively represent more than 2/3rds of the overall stake
- 3. add logic to update validator set at epoch boundaries

Here: keep (2) and (3), but replace (1) with VRF-based sampling: i is leader of view $v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1-VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1-\tau}).$

"crediential" of i in view v

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

• e.g., to target one leader, use $\tau = 1/(\text{total stake})$

Question:

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

• e.g., to target one leader, use $\tau = 1/(\text{total stake})$

Question: what if a view has no leaders?

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

• e.g., to target one leader, use $\tau = 1/(\text{total stake})$

Question: what if a view has no leaders?

• answer: nothing happens, as if leader crashed

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what if a view has no leaders?

• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what if a view has no leaders?

• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

• answer: honest validators vote, among all block proposals seen, for the one accompanied by the smallest leader credential

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what if a view has no leaders?

• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

- answer: honest validators vote, among all block proposals seen, for the one accompanied by the smallest leader credential
 - you check: Tendermint retains its consistency and liveness guarantees

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what if a view has no leaders?

• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

- answer: honest validators vote, among all block proposals seen, for the one accompanied by the smallest leader credential
 - you check: Tendermint retains its consistency and liveness guarantees
 - you check: Pr[i has smallest credential] = $q_i/(\sum_{j=1}^n q_j)$

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

Now: i is leader of view
$$\mathsf{v} \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• idea: output of a cryptographic hash function h

Now: i is leader of view
$$\mathsf{v} \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

- idea: output of a cryptographic hash function h
 - question: what's the input?

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

- idea: output of a cryptographic hash function h
 - question: what's the input?
- idea: some function f(.) of blockchain state σ_v at start of view v

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

- idea: output of a cryptographic hash function h
 - question: what's the input?
- idea: some function f(.) of blockchain state σ_v at start of view v

Minor issue: blockchain state may not change between views.

• e.g., if leader of last view crashed

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

- idea: output of a cryptographic hash function h
 question: what's the input?
- idea: some function f(.) of blockchain state σ_v at start of view v

Minor issue: blockchain state may not change between views.

• solution: use $r_v = h(f(\sigma_v)||v)$ rather than $r_v = h(f(\sigma_v))$

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

– h = cryptographic hash function, f = some function of blockchain state σ_v

Major issue: validators can manipulate σ_v (and therefore r_v).

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

– h = cryptographic hash function, f = some function of blockchain state σ_v

Major issue: validators can manipulate σ_v (and therefore r_v).

• solution: choose function f to minimize manipulability

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

- h = cryptographic hash function, f = some function of blockchain state σ_v

Major issue: validators can manipulate σ_v (and therefore r_v).

• solution: choose function f to minimize manipulability

- bad choice: $f(\sigma_v)$ = most recently finalized block

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

- h = cryptographic hash function, f = some function of blockchain state σ_v

Major issue: validators can manipulate σ_v (and therefore r_v).

- solution: choose function f to minimize manipulability
 - bad choice: $f(\sigma_v)$ = most recently finalized block
 - incentivizes leader of view v-1 to grind over blocks to minimize its view-v credential (turns PoS into PoW!)

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

- h = cryptographic hash function, f = some function of blockchain state σ_v

Major issue: validators can manipulate σ_v (and therefore r_v).

- solution: choose function f to minimize manipulability
- example: $f(\sigma_v)$ = leader credential in most recently finalized block
 - assuming warm-up period, no grinding over sk_i's credential possible

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

– h = CHF, $f(\sigma_v)$ = leader credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the r_v 's.

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

– h = CHF, $f(\sigma_v)$ = leader credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the r_v 's.

- suppose validator i controls $pk_1 + pk_2$, leaders of view $v = \{pk_1, pk_2\}$
The (Pseudo)Randomness Beacon (con'd)

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

– h = CHF, $f(\sigma_v)$ = leader credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the r_v 's.

- suppose validator i controls $pk_1 + pk_2$, leaders of view $v = \{pk_1, pk_2\}$
- incentivized to propose block with whichever of pk₁,pk₂ results in smaller view-(v+1) credentials for it (as opposed to smallest view-v credential)

The (Pseudo)Randomness Beacon (con'd)

Now: i is leader of view
$$v \Leftrightarrow \frac{1}{q_i} \ln(\frac{1}{1 - VRF_{sk_i}(r_v)}) < \ln(\frac{1}{1 - \tau}).$$

Question: what is r_v ?

• proposal:
$$r_v = h(f(\sigma_v)||v)$$

-h = CHF, $f(\sigma_v) = leader$ credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the r_v 's.

- suppose validator i controls $pk_1 + pk_2$, leaders of view $v = \{pk_1, pk_2\}$
- incentivized to propose block with whichever of pk₁,pk₂ results in smaller view-(v+1) credentials for it (as opposed to smallest view-v credential)
- in practice, generally willing to live with this

Issue: too many validators \rightarrow bad performance in Tendermint.

• solution #1: cap number of validators, explicitly or implicitly

- solution #1: cap number of validators, explicitly or implicitly
- solution #2: combine Tendermint with some aspects of longestchain consensus (which scales well with # of validators)

- solution #1: cap number of validators, explicitly or implicitly
- solution #2: combine Tendermint with some aspects of longestchain consensus (which scales well with # of validators)
- solution #3: use randomly sampled "committees" of validators

- solution #1: cap number of validators, explicitly or implicitly
- solution #2: combine Tendermint with some aspects of longestchain consensus (which scales well with # of validators)
- solution #3: use randomly sampled "committees" of validators
 - tricky but solvable: sample committee in sybil-proof way

- solution #1: cap number of validators, explicitly or implicitly
- solution #2: combine Tendermint with some aspects of longestchain consensus (which scales well with # of validators)
- solution #3: use randomly sampled "committees" of validators
 - tricky but solvable: sample committee in sybil-proof way
 - bigger issue: unlucky sample \rightarrow committee could be > 33% Byzantine

- solution #1: cap number of validators, explicitly or implicitly
- solution #2: combine Tendermint with some aspects of longestchain consensus (which scales well with # of validators)
- solution #3: use randomly sampled "committees" of validators
 - tricky but solvable: sample committee in sybil-proof way
 - bigger issue: unlucky sample \rightarrow committee could be > 33% Byzantine
 - fix #1: make stronger assumption about fraction of honest stake

- solution #1: cap number of validators, explicitly or implicitly
- solution #2: combine Tendermint with some aspects of longestchain consensus (which scales well with # of validators)
- solution #3: use randomly sampled "committees" of validators
 - tricky but solvable: sample committee in sybil-proof way
 - bigger issue: unlucky sample \rightarrow committee could be > 33% Byzantine
 - fix #1: make stronger assumption about fraction of honest stake
 - fix #2: make committee sizes sufficiently big

- solution #1: cap number of validators, explicitly or implicitly
- solution #2: combine Tendermint with some aspects of longestchain consensus (which scales well with # of validators)
- solution #3: use randomly sampled "committees" of validators
 - tricky but solvable: sample committee in sybil-proof way
 - bigger issue: unlucky sample \rightarrow committee could be > 33% Byzantine
 - fix #1: make stronger assumption about fraction of honest stake
 - fix #2: make committee sizes sufficiently big
 - fix #3: emergency procedure in case of forks by bad committees