
Bonus Lecture #6:
Secret Leader Selection and
Verifiable Random Functions

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Verifiable random functions (VRFs).
– how validators can obtain private and verifiable (pseudo)randomness

2. Using VRFs for leader selection in proof-of-stake Tendermint.
– issues to address include unpredictable number of leaders selected

3. Pseudorandomness beacons.
– goal: derive unmanipulatable pseudorandomness from blockchain state

4. Randomly sampled committees.
– scaling Tendermint-style protocols up to 1000s of validators

2

Goals for Bonus Lecture #6

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution:

3

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders

4

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

5

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.

6

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance. 7

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.
– è risk of bribery, coercion, DoS attacks
– also has its benefits (e.g., for tx dissemination)

8

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.

Question: secret (and verifiable) leader selection?
– a la Nakamoto consensus, but with proof-of-stake sybil-resistance

9

Weighted Round Robin

Updated goal: sample pk from {pk1,…,pkn} with probability
proportional to qi’s, s.t. result is secret (but verifiable once reported).

10

Secretly Selecting a Leader

Updated goal: sample pk from {pk1,…,pkn} with probability
proportional to qi’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
– for each view v, produces an independent and uniformly random output

rv (e.g., in 0,1 !"#). [known to all validators without any communication]

11

Secretly Selecting a Leader

Updated goal: sample pk from {pk1,…,pkn} with probability
proportional to qi’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
– for each view v, produces an independent and uniformly random output

rv (e.g., in 0,1 !"#). [known to all validators without any communication]

Question: why not use rv to directly sample leader for view v (HW9)?

12

Secretly Selecting a Leader

Updated goal: sample pk from {pk1,…,pkn} with probability
proportional to qi’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
– for each view v, produces an independent and uniformly random output

rv (e.g., in 0,1 !"#). [known to all validators without any communication]

Question: why not use rv to directly sample leader for view v (HW9)?
– answer: not secret (leader known to all as soon as rv drops)

• even if it’s “secret enough,” can also use VRFs for other purposes

13

Secretly Selecting a Leader

Updated goal: sample pk from {pk1,…,pkn} with probability
proportional to qi’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
– for each view v, produces an independent and uniformly random output rv

Idea:

14

Secretly Selecting a Leader

Updated goal: sample pk from {pk1,…,pkn} with probability
proportional to qi’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
– for each view v, produces an independent and uniformly random output rv

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader of v ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA)

15

Secretly Selecting a Leader

Updated goal: sample pk from {pk1,…,pkn} with probability
proportional to qi’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
– for each view v, produces an independent and uniformly random output rv

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader of v ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA)

– for sybil-proofness, threshold must be increasing in qi

16

Secretly Selecting a Leader

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

17

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?

18

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
• by assumption, can’t manipulate rv (will revisit assumption later)

19

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
• by assumption, can’t manipulate rv (will revisit assumption later)
• issue #1: given rv, could try multiple (a.k.a. "grind”) pk/sk pairs

– i.e., look for a value of sk that makes 𝑠𝑖𝑔$% 𝑟& as small as possible

20

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
• by assumption, can’t manipulate rv (will revisit assumption later)
• issue #1: given rv, could try multiple (a.k.a. "grind”) pk/sk pairs

– i.e., look for a value of sk that makes 𝑠𝑖𝑔$% 𝑟& as small as possible
– fix: make warm-up period long enough that i commits to ski before seeing rv

21

Preventing Grinding Over Signatures

warm
up

cool
down

actively validatingdeposit withdraw

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
– by assumption, can’t manipulate rv (will revisit assumption later)

• issue #1: given rv, could try multiple (a.k.a. "grind”) pk/sk pairs
– fix: make warm-up period long enough that i commits to ski before seeing rv

• issue #2:

22

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
– by assumption, can’t manipulate rv (will revisit assumption later)

• issue #1: given rv, could try multiple (a.k.a. "grind”) pk/sk pairs
– fix: make warm-up period long enough that i commits to ski before seeing rv

• issue #2: given rv and ski, could try multiple ("grind”) 𝑠𝑖𝑔!"! 𝑟# ’s
– signatures not generally unique (e.g. nonces in Schnorr/ECDSA signatures)

23

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
– by assumption, can’t manipulate rv (will revisit assumption later)

• issue #1: given rv, could try multiple (a.k.a. "grind”) pk/sk pairs
– fix: make warm-up period long enough that i commits to ski before seeing rv

• issue #2: given rv and ski, could try multiple ("grind”) 𝑠𝑖𝑔!"! 𝑟# ’s
– signatures not generally unique (e.g. nonces in Schnorr/ECDSA signatures)
– fix: use signature scheme with unique signatures (e.g., BLS)

24

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
– by assumption, can’t manipulate rv (will revisit assumption later)

• issue #1: given rv, could try multiple (a.k.a. "grind”) pk/sk pairs
– fix: make warm-up period long enough that i commits to ski before seeing rv

• issue #2: given rv and ski, could try multiple ("grind”) 𝑠𝑖𝑔!"! 𝑟# ’s
– fix: use signature scheme with unique signatures (e.g., BLS)

• issue #3: 𝑠𝑖𝑔!"! 𝑟# may not be uniformly random (even if rv is) 25

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes 𝑠𝑖𝑔!"! 𝑟# .
• i is leader ó 𝑠𝑖𝑔!"! 𝑟# is “sufficiently small” (TBA, depends on qi)

Question: can a validator influence its selection probability?
– by assumption, can’t manipulate rv (will revisit assumption later)

• issue #1: given rv, could try multiple (a.k.a. "grind”) pk/sk pairs
– fix: make warm-up period long enough that i commits to ski before seeing rv

• issue #2: given rv and ski, could try multiple ("grind”) 𝑠𝑖𝑔!"! 𝑟# ’s
– fix: use signature scheme with unique signatures (e.g., BLS)

• issue #3: 𝑠𝑖𝑔!"! 𝑟# may not be uniformly random (even if rv is)
– fix: use 𝑠𝑖𝑔$%! 𝑟& as input to a cryptographic hash function 26

Preventing Grinding Over Signatures

Idea (revised): each view v, each validator i computes ℎ(𝑠𝑖𝑔!"! 𝑟#).
– i is leader ó ℎ(𝑠𝑖𝑔$%! 𝑟&) is “sufficiently small” (TBA, depends on qi)
– h(.) = CHF, sig(.) = signature scheme w/unique signatures

27

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes ℎ(𝑠𝑖𝑔!"! 𝑟#).
– i is leader ó ℎ(𝑠𝑖𝑔$%! 𝑟&) is “sufficiently small” (TBA, depends on qi)
– h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: ℎ(𝑠𝑖𝑔!"! 𝑟#) an example of a verifiable random function.
– will write as 𝑉𝑅𝐹$%! ⋅

28

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes ℎ(𝑠𝑖𝑔!"! 𝑟#).
– i is leader ó ℎ(𝑠𝑖𝑔$%! 𝑟&) is “sufficiently small” (TBA, depends on qi)
– h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: ℎ(𝑠𝑖𝑔!"! 𝑟#) an example of a verifiable random function.
– will write as 𝑉𝑅𝐹$%! ⋅

1. given ski, easy to compute 𝑉𝑅𝐹!"! ⋅

29

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes ℎ(𝑠𝑖𝑔!"! 𝑟#).
– i is leader ó ℎ(𝑠𝑖𝑔$%! 𝑟&) is “sufficiently small” (TBA, depends on qi)
– h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: ℎ(𝑠𝑖𝑔!"! 𝑟#) an example of a verifiable random function.
– will write as 𝑉𝑅𝐹$%! ⋅

1. given ski, easy to compute 𝑉𝑅𝐹!"! ⋅
2. knowing only pki and not ski, hard to compute 𝑉𝑅𝐹!"! ⋅

30

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes ℎ(𝑠𝑖𝑔!"! 𝑟#).
– i is leader ó ℎ(𝑠𝑖𝑔$%! 𝑟&) is “sufficiently small” (TBA, depends on qi)
– h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: ℎ(𝑠𝑖𝑔!"! 𝑟#) an example of a verifiable random function.
– will write as 𝑉𝑅𝐹$%! ⋅

1. given ski, easy to compute 𝑉𝑅𝐹!"! ⋅
2. knowing only pki and not ski, hard to compute 𝑉𝑅𝐹!"! ⋅
3. given pki and alleged VRF output on some input, easy to check

31

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes ℎ(𝑠𝑖𝑔!"! 𝑟#).
– i is leader ó ℎ(𝑠𝑖𝑔$%! 𝑟&) is “sufficiently small” (TBA, depends on qi)
– h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: ℎ(𝑠𝑖𝑔!"! 𝑟#) an example of a verifiable random function.
– will write as 𝑉𝑅𝐹$%! ⋅

1. given ski, easy to compute 𝑉𝑅𝐹!"! ⋅
2. knowing only pki and not ski, hard to compute 𝑉𝑅𝐹!"! ⋅
3. given pki and alleged VRF output on some input, easy to check
4. output indistinguishable from random 32

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes 𝑉𝑅𝐹!"! 𝑟# .
– i is leader ó 𝑉𝑅𝐹$%! 𝑟& is “sufficiently small” (at most some threshold 𝜏+)

» ‘

Issue #5:

33

Setting the Thresholds

Idea (revised): each view v, each validator i computes 𝑉𝑅𝐹!"! 𝑟# .
– i is leader ó 𝑉𝑅𝐹$%! 𝑟& is “sufficiently small” (at most some threshold 𝜏+)

» ‘

Issue #5: how to set the thresholds (the 𝜏$ ’s)?
– e.g., to guarantee one leader in expectation, but also sybil-proof

34

Setting the Thresholds

Idea (revised): each view v, each validator i computes 𝑉𝑅𝐹!"! 𝑟# .
– i is leader ó 𝑉𝑅𝐹$%! 𝑟& is “sufficiently small” (at most some threshold 𝜏+)

» ‘

Issue #5: how to set the thresholds (the 𝜏$ ’s)?
– e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose qi=1 for all i=1,2,…,n. [easiest case]

35

Setting the Thresholds

Idea (revised): each view v, each validator i computes 𝑉𝑅𝐹!"! 𝑟# .
– i is leader ó 𝑉𝑅𝐹$%! 𝑟& is “sufficiently small” (at most some threshold 𝜏+)

» ‘

Issue #5: how to set the thresholds (the 𝜏$ ’s)?
– e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose qi=1 for all i=1,2,…,n. [easiest case]
• if set (common) threshold of 𝜏, Pr[i a leader]= 𝜏 for all i=1,2,..,n

– since VRF output acts like a uniformly random number from [0,1]

36

Setting the Thresholds

0

1 − 𝜏𝜏

1𝜏
leader not a leader

Idea (revised): each view v, each validator i computes 𝑉𝑅𝐹!"! 𝑟# .
– i is leader ó 𝑉𝑅𝐹$%! 𝑟& is “sufficiently small” (at most some threshold 𝜏+)

» ‘

Issue #5: how to set the thresholds (the 𝜏$ ’s)?
– e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose qi=1 for all i=1,2,…,n. [easiest case]
• if set (common) threshold of 𝜏, Pr[i a leader]= 𝜏 for all i=1,2,..,n

– expected number of leaders = 𝜏 ⋅ 𝑛, set 𝜏 = 1/𝑛 for one leader in expectation

37

Setting the Thresholds

Idea: i is leader of view v ó 𝑉𝑅𝐹!"! 𝑟# < 𝜏$.
– how to set the 𝜏+’s, e.g., for one leader in expectation, but also sybil-proof?

• all qi’s = 1 è set 𝜏 = 1/𝑛 for one leader in expectation

Intuition: if qi > 1, …

38

Setting the Thresholds (con’d)

Idea: i is leader of view v ó 𝑉𝑅𝐹!"! 𝑟# < 𝜏$.
– how to set the 𝜏+’s, e.g., for one leader in expectation, but also sybil-proof?

• all qi’s = 1 è set 𝜏 = 1/𝑛 for one leader in expectation

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)

– in effect, treat i as if it was using qi sybils with one coin each

39

Setting the Thresholds (con’d)

Idea: i is leader of view v ó 𝑉𝑅𝐹!"! 𝑟# < 𝜏$.
– how to set the 𝜏+’s, e.g., for one leader in expectation, but also sybil-proof?

• all qi’s = 1 è set 𝜏 = 1/𝑛 for one leader in expectation

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)

– in effect, treat i as if it was using qi sybils with one coin each

• first guess: if qi > 1, use %
&!
𝑉𝑅𝐹!"! 𝑟# instead of 𝑉𝑅𝐹!"! 𝑟#

– compare versus the threshold 𝜏 = 1/𝑄, where 𝑄 = ∑+-./ 𝑞+

40

Setting the Thresholds (con’d)

Idea: i is leader of view v ó 𝑉𝑅𝐹!"! 𝑟# < 𝜏$.
– how to set the 𝜏+’s, e.g., for one leader in expectation, but also sybil-proof?

• all qi’s = 1 è set 𝜏 = 1/𝑛 for one leader in expectation

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)

– in effect, treat i as if it was using qi sybils with one coin each

• first guess: if qi > 1, use %
&!
𝑉𝑅𝐹!"! 𝑟# instead of 𝑉𝑅𝐹!"! 𝑟#

– compare versus the threshold 𝜏 = 1/𝑄, where 𝑄 = ∑+-./ 𝑞+
• you check: not quite right 41

Setting the Thresholds (con’d)

Idea: i is leader of view v ó “adjusted 𝑉𝑅𝐹!"! 𝑟# ” < 𝜏. (*)

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)

42

Setting the Thresholds (con’d)

Idea: i is leader of view v ó “adjusted 𝑉𝑅𝐹!"! 𝑟# ” < 𝜏. (*)

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)
• rewrite RHS of (*) for qi = 1 as ln(%

%'()*"#! +$
) < ln(%

%',
)

43

Setting the Thresholds (con’d)

Idea: i is leader of view v ó “adjusted 𝑉𝑅𝐹!"! 𝑟# ” < 𝜏. (*)

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)
• rewrite RHS of (*) for qi = 1 as ln(%

%'()*"#! +$
) < ln(%

%',
)

• qi > 1è i leader ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
)

44

Setting the Thresholds (con’d)

Idea: i is leader of view v ó “adjusted 𝑉𝑅𝐹!"! 𝑟# ” < 𝜏. (*)

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)
• rewrite RHS of (*) for qi = 1 as ln(%

%'()*"#! +$
) < ln(%

%',
)

• qi > 1è i leader ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
)

45

Setting the Thresholds (con’d)

“crediential” of i in view v

Idea: i is leader of view v ó “adjusted 𝑉𝑅𝐹!"! 𝑟# ” < 𝜏. (*)

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)
• rewrite RHS of (*) for qi = 1 as ln(%

%'()*"#! +$
) < ln(%

%',
)

• qi > 1è i leader ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
)

– for one leader in expectation, use 𝜏 = 1/𝑄, where 𝑄 = ∑+-./ 𝑞+

46

Setting the Thresholds (con’d)

“crediential” of i in view v

Idea: i is leader of view v ó “adjusted 𝑉𝑅𝐹!"! 𝑟# ” < 𝜏. (*)

Intuition: if qi > 1, adjust 𝑉𝑅𝐹!"! 𝑟# s.t. it has same distribution as the
minimum of qi i.i.d. uniform samples from [0,1]. (for sybil-proofness)
• rewrite RHS of (*) for qi = 1 as ln(%

%'()*"#! +$
) < ln(%

%',
)

• qi > 1è i leader ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
)

– for one leader in expectation, use 𝜏 = 1/𝑄, where 𝑄 = ∑+-./ 𝑞+
– you check: sybil-proof (# of pks doesn’t change selection probability)

47

Setting the Thresholds (con’d)

“crediential” of i in view v

Final version of idea: i is leader of view v ó
%
&!
ln(%

%'()*"#! +$
) < ln(%

%',
)

To use in a blockchain protocol, need:

48

From VRFs to Consensus Protocols

“crediential” of i in view v

to target one leader, use
𝜏 = 1/(total stake)

Final version of idea: i is leader of view v ó
%
&!
ln(%

%'()*"#! +$
) < ln(%

%',
)

To use in a blockchain protocol, need:
1. Concrete implementation of randomness beacon.

– i.e., what are the rv’s, exactly?

49

From VRFs to Consensus Protocols

“crediential” of i in view v

to target one leader, use
𝜏 = 1/(total stake)

Final version of idea: i is leader of view v ó
%
&!
ln(%

%'()*"#! +$
) < ln(%

%',
)

To use in a blockchain protocol, need:
1. Concrete implementation of randomness beacon.

– i.e., what are the rv’s, exactly?
2. Modifications to consensus protocol to handle bad cases #1 + 2.

– if no leader or multiple leaders selected in a view
50

From VRFs to Consensus Protocols

“crediential” of i in view v

to target one leader, use
𝜏 = 1/(total stake)

Last time: modified Tendermint so that:
1. uses epoch-based weighted round-robin leader selection

– validators only allowed to join/leave at epoch boundaries
2. redefine quorum certificate = signatures by distinct public keys

that collectively represent more than 2/3rds of the overall stake
3. add logic to update validator set at epoch boundaries

Result: consistent and (eventually) live in partial synchrony
(assuming < 33% Byzantine stake), in the quasi-permissionless
setting (i.e., honest validators always online).

51

Proof-of-Stake Tendermint Revisited

Last time: modified Tendermint so that:
1. uses epoch-based weighted round-robin leader selection
2. redefine quorum certificate = signatures by distinct public keys that

collectively represent more than 2/3rds of the overall stake
3. add logic to update validator set at epoch boundaries

Here: keep (2) and (3), but replace (1) with VRF-based sampling:
i is leader of view v ó %

&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

52

Proof-of-Stake Tendermint Revisited

“crediential” of i in view v

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

• e.g., to target one leader, use 𝜏 = 1/(total stake)

Question:

53

Handling the Two Bad Cases

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

• e.g., to target one leader, use 𝜏 = 1/(total stake)

Question: what if a view has no leaders?

54

Handling the Two Bad Cases

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

• e.g., to target one leader, use 𝜏 = 1/(total stake)

Question: what if a view has no leaders?
• answer: nothing happens, as if leader crashed

55

Handling the Two Bad Cases

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what if a view has no leaders?
• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

56

Handling the Two Bad Cases

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what if a view has no leaders?
• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?
• answer: honest validators vote, among all block proposals seen,

for the one accompanied by the smallest leader credential

57

Handling the Two Bad Cases

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what if a view has no leaders?
• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?
• answer: honest validators vote, among all block proposals seen,

for the one accompanied by the smallest leader credential
– you check: Tendermint retains its consistency and liveness guarantees

58

Handling the Two Bad Cases

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what if a view has no leaders?
• answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?
• answer: honest validators vote, among all block proposals seen,

for the one accompanied by the smallest leader credential
– you check: Tendermint retains its consistency and liveness guarantees
– you check: Pr[i has smallest credential] = ⁄𝑞+ (∑0-./ 𝑞0)

59

Handling the Two Bad Cases

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?

60

The (Pseudo)Randomness Beacon

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• idea: output of a cryptographic hash function h

61

The (Pseudo)Randomness Beacon

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• idea: output of a cryptographic hash function h

– question: what’s the input?

62

The (Pseudo)Randomness Beacon

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• idea: output of a cryptographic hash function h

– question: what’s the input?
• idea: some function f(.) of blockchain state 𝜎# at start of view v

63

The (Pseudo)Randomness Beacon

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• idea: output of a cryptographic hash function h

– question: what’s the input?
• idea: some function f(.) of blockchain state 𝜎# at start of view v

Minor issue: blockchain state may not change between views.
• e.g., if leader of last view crashed

64

The (Pseudo)Randomness Beacon

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• idea: output of a cryptographic hash function h

– question: what’s the input?
• idea: some function f(.) of blockchain state 𝜎# at start of view v

Minor issue: blockchain state may not change between views.
• solution: use 𝑟# = ℎ(𝑓 𝜎# ||𝑣) rather than 𝑟# = ℎ(𝑓 𝜎#)

65

The (Pseudo)Randomness Beacon

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = cryptographic hash function, f = some function of blockchain state 𝜎&

Major issue: validators can manipulate 𝜎# (and therefore 𝑟#).

66

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = cryptographic hash function, f = some function of blockchain state 𝜎&

Major issue: validators can manipulate 𝜎# (and therefore 𝑟#).
• solution: choose function f to minimize manipulability

67

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = cryptographic hash function, f = some function of blockchain state 𝜎&

Major issue: validators can manipulate 𝜎# (and therefore 𝑟#).
• solution: choose function f to minimize manipulability

– bad choice: 𝑓 𝜎& = most recently finalized block

68

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = cryptographic hash function, f = some function of blockchain state 𝜎&

Major issue: validators can manipulate 𝜎# (and therefore 𝑟#).
• solution: choose function f to minimize manipulability

– bad choice: 𝑓 𝜎& = most recently finalized block
• incentivizes leader of view v-1 to grind over blocks to minimize

its view-v credential (turns PoS into PoW!) 69

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = cryptographic hash function, f = some function of blockchain state 𝜎&

Major issue: validators can manipulate 𝜎# (and therefore 𝑟#).
• solution: choose function f to minimize manipulability
• example: 𝑓 𝜎# = leader credential in most recently finalized block

– assuming warm-up period, no grinding over ski’s credential possible
70

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = CHF, 𝑓 𝜎& = leader credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the 𝑟# ’s.

71

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = CHF, 𝑓 𝜎& = leader credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the 𝑟# ’s.
– suppose validator i controls pk1 + pk2, leaders of view v = {pk1,pk2}

72

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = CHF, 𝑓 𝜎& = leader credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the 𝑟# ’s.
– suppose validator i controls pk1 + pk2, leaders of view v = {pk1,pk2}
– i incentivized to propose block with whichever of pk1,pk2 results in smaller

view-(v+1) credentials for it (as opposed to smallest view-v credential)
73

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v ó %
&!
ln(%

%'()*"#! +$
) < ln(%

%',
).

Question: what is rv?
• proposal: 𝑟# = ℎ(𝑓 𝜎# ||𝑣)

– h = CHF, 𝑓 𝜎& = leader credential in most recently finalized block

Issue: validators can still (to some extent) manipulate the 𝑟# ’s.
– suppose validator i controls pk1 + pk2, leaders of view v = {pk1,pk2}
– i incentivized to propose block with whichever of pk1,pk2 results in smaller

view-(v+1) credentials for it (as opposed to smallest view-v credential)
– in practice, generally willing to live with this 74

The (Pseudo)Randomness Beacon (con’d)

Issue: too many validators è bad performance in Tendermint.

75

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly

76

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)

77

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)
• solution #3: use randomly sampled “committees” of validators

78

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)
• solution #3: use randomly sampled “committees” of validators

– tricky but solvable: sample committee in sybil-proof way

79

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)
• solution #3: use randomly sampled “committees” of validators

– tricky but solvable: sample committee in sybil-proof way
– bigger issue: unlucky sample è committee could be > 33% Byzantine

80

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)
• solution #3: use randomly sampled “committees” of validators

– tricky but solvable: sample committee in sybil-proof way
– bigger issue: unlucky sample è committee could be > 33% Byzantine

• fix #1: make stronger assumption about fraction of honest stake

81

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)
• solution #3: use randomly sampled “committees” of validators

– tricky but solvable: sample committee in sybil-proof way
– bigger issue: unlucky sample è committee could be > 33% Byzantine

• fix #1: make stronger assumption about fraction of honest stake
• fix #2: make committee sizes sufficiently big

82

Randomly Sampled Committees

Issue: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)
• solution #3: use randomly sampled “committees” of validators

– tricky but solvable: sample committee in sybil-proof way
– bigger issue: unlucky sample è committee could be > 33% Byzantine

• fix #1: make stronger assumption about fraction of honest stake
• fix #2: make committee sizes sufficiently big
• fix #3: emergency procedure in case of forks by bad committees

83

Randomly Sampled Committees

