Bonus Lecture #6:
Secret Leader Selection and
Verifiable Random Functions

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Bonus Lecture #6

1. Verifiable random functions (VRFs).
— how validators can obtain private and verifiable (pseudo)randomness

2. Using VRFs for leader selection in proof-of-stake Tendermint.
— issues to address include unpredictable number of leaders selected

3. Pseudorandomness beacons.
— goal: derive unmanipulatable pseudorandomness from blockchain state

4. Randomly sampled committees.
— scaling Tendermint-style protocols up to 1000s of validators

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
Goal: sample pk from {pk;,...,pk,} with probability proportional to g;’s.

Solution:

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
Goal: sample pk from {pk;,...,pk,} with probability proportional to g;’s.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
Goal: sample pk from {pk;,...,pk,} with probability proportional to g;’s.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
Goal: sample pk from {pk;,...,pk,} with probability proportional to g;’s.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
Goal: sample pk from {pk;,...,pk,} with probability proportional to g;’s.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance. ;

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
Goal: sample pk from {pk;,...,pk,} with probability proportional to g;’s.
Solution: use epoch of length N views each (N large).

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.

— =» risk of bribery, coercion, DoS attacks
— also has its benefits (e.g., for tx dissemination)

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
Goal: sample pk from {pk;,...,pk,} with probability proportional to g;’s.
Solution: use epoch of length N views each (N large).

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.

Question: secret (and verifiable) leader selection?
— a la Nakamoto consensus, but with proof-of-stake sybil-resistance

Secretly Selecting a Leader

Updated goal: sample pk from {pk,...,pk,} with probability
proportional to qg;’s, s.t. result is secret (but verifiable once reported).

10

Secretly Selecting a Leader

Updated goal: sample pk from {pk,...,pk,} with probability
proportional to qg;’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”

— for each view v, produces an independent and uniformly random output
r, (e.g., in {0,1}2°%). [known to all validators without any communication]

11

Secretly Selecting a Leader

Updated goal: sample pk from {pk,...,pk,} with probability
proportional to qg;’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”

— for each view v, produces an independent and uniformly random output
r, (e.g., in {0,1}2°%). [known to all validators without any communication]

Question: why not use r, to directly sample leader for view v (HW9)?

12

Secretly Selecting a Leader

Updated goal: sample pk from {pk,...,pk,} with probability
proportional to qg;’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”

— for each view v, produces an independent and uniformly random output
r, (e.g., in {0,1}2°%). [known to all validators without any communication]

Question: why not use r, to directly sample leader for view v (HW9)?

— answer: not secret (leader known to all as soon as r, drops)
- even if it’s “secret enough,” can also use VRFs for other purposes

13

Secretly Selecting a Leader

Updated goal: sample pk from {pk,...,pk,} with probability
proportional to qg;’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
— for each view v, produces an independent and uniformly random output r,

|dea:

14

Secretly Selecting a Leader

Updated goal: sample pk from {pk,...,pk,} with probability
proportional to qg;’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
— for each view v, produces an independent and uniformly random output r,

Idea: each view v, each validator i computes sigg, (7).
- iis leader of v & sigg. () is “sufficiently small” (TBA)

15

Secretly Selecting a Leader

Updated goal: sample pk from {pk,...,pk,} with probability
proportional to qg;’s, s.t. result is secret (but verifiable once reported).

Assume for now: existence of a “randomness beacon.”
— for each view v, produces an independent and uniformly random output r,

Idea: each view v, each validator i computes sigg, (7).

- iis leader of v < sigg. () is “sufficiently small” (TBA)
— for sybil-proofness, threshold must be increasing in g

16

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

17

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?

18

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?
« by assumption, can’t manipulate r, (will revisit assumption later)

19

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?
« by assumption, can’t manipulate r, (will revisit assumption later)

- issue #1: given r,, could try multiple (a.k.a. "grind”) pk/sk pairs
— i.e., look for a value of sk that makes sigg;(r;,) as small as possible

20

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?
« by assumption, can’t manipulate r, (will revisit assumption later)

- issue #1: given r,, could try multiple (a.k.a. "grind”) pk/sk pairs

— i.e., look for a value of sk that makes sigg;(r,) as small as possible
— fix: make warm-up period long enough that i commits to sk; before seeingr,

warm cool
L_up_ | | down |

I I : . I I
deposit «——actively validating—— withdraw 71

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?
— by assumption, can’t manipulate r, (will revisit assumption later)

- issue #1: given r,, could try multiple (a.k.a. "grind”) pk/sk pairs
— fix: make warm-up period long enough that i commits to sk; before seeingr,
* ISSuUe #2:

22

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?
— by assumption, can’t manipulate r, (will revisit assumption later)

- issue #1: given r,, could try multiple (a.k.a. "grind”) pk/sk pairs
— fix: make warm-up period long enough that i commits to sk; before seeingr,

- issue #2: given r, and sk;, could try multiple ("grind”) sigg,(r,)’s
— signatures not generally unique (e.g. nonces in Schnorr/ECDSA signatures)

23

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?

— by assumption, can’t manipulate r, (will revisit assumption later)
- issue #1: given r,, could try multiple (a.k.a. "grind”) pk/sk pairs

— fix: make warm-up period long enough that i commits to sk; before seeingr,
- issue #2: given r, and sk;, could try multiple ("grind”) sigg,(r,)’s

— signatures not generally unique (e.g. nonces in Schnorr/ECDSA signatures)

— fix: use signature scheme with unique signatures (e.g., BLS) o

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy (7).
- iis leader < sigg, (1) is “sufficiently small” (TBA, depends on g;)

Question: can a validator influence its selection probability?
— by assumption, can’t manipulate r, (will revisit assumption later)

- issue #1: given r,, could try multiple (a.k.a. "grind”) pk/sk pairs
— fix: make warm-up period long enough that i commits to sk; before seeingr,

- issue #2: given r, and sk;, could try multiple ("grind”) sigg,(r,)’s
— fix: use signature scheme with unique signatures (e.g., BLS)
- issue #3: sigsy,(r,) may not be uniformly random (even if r, is)

Preventing Grinding Over Signatures

Idea: each view v, each validator i computes siggy, (7;,).

| is leader < siggy, (1) is “sufficiently small” (TBA, depends on q;)

Question: can a validator influence its selection probability?
— by assumption, can’t manipulate r, (will revisit assumption later)

- issue #1: given r,, could try multiple (a.k.a. "grind”) pk/sk pairs
— fix: make warm-up period long enough that i commits to sk; before seeingr,

- issue #2: given r, and sk;, could try multiple ("grind”) siggy,(r,)’s
— fix: use signature scheme with unique signatures (e.g., BLS)
- issue #3: siggy,(r,) may not be uniformly random (even if r, is)

— fix: use siggy, (r,) as input to a cryptographic hash function 26

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes h(sigsy, (7).
— iis leader < h(sigg,(1,)) is “sufficiently small” (TBA, depends on q;)
— h(.) = CHF, sig(.) = signature scheme w/unique signatures

27

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes h(sigsy, (7).
— iis leader < h(sigg,(1,)) is “sufficiently small” (TBA, depends on q;)
— h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: h(sigsk,(r,)) an example of a verifiable random function.
— will write as VRFg (-)

28

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes h(sigsy, (7).
— iis leader < h(sigg,(1,)) is “sufficiently small” (TBA, depends on q;)
— h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: h(sigsk,(r,)) an example of a verifiable random function.
— will write as VRFg (-)

1. given sk;, easy to compute VRFg, ()

29

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes h(sigsy, (7).
— iis leader < h(sigg,(1,)) is “sufficiently small” (TBA, depends on q;)
— h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: h(sigsk,(r,)) an example of a verifiable random function.
— will write as VRFg (-)

1. given sk;, easy to compute VRFg, ()
2. knowing only pk; and not sk;, hard to compute VRFg, ()

30

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes h(sigsy, (7).
— iis leader < h(sigg,(1,)) is “sufficiently small” (TBA, depends on q;)
— h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: h(sigsk,(r,)) an example of a verifiable random function.
— will write as VRFg (-)

1. given sk;, easy to compute VRFg, ()
2. knowing only pk; and not sk;, hard to compute VRFg, ()
3. given pk; and alleged VRF output on some input, easy to check

31

Verifiable Random Functions (VRFs)

Idea (revised): each view v, each validator i computes h(sigsy, (7).
— iis leader < h(sigg,(1,)) is “sufficiently small” (TBA, depends on q;)
— h(.) = CHF, sig(.) = signature scheme w/unique signatures

Terminology: h(sigsk,(r,)) an example of a verifiable random function.
— will write as VRFg (-)

given sk;, easy to compute VRF ()
knowing only pk; and not sk;, hard to compute VRF ()

given pk; and alleged VRF output on some input, easy to check
output indistinguishable from random 3

W h o~

Setting the Thresholds

Idea (revised): each view v, each validator i computes VRF (7).

— iis leader & VRFg. (1) is “sufficiently small” (at most some threshold ;)

Issue #5:

33

Setting the Thresholds

Idea (revised): each view v, each validator i computes VRF (7).

— iis leader & VRFg. (1) is “sufficiently small” (at most some threshold ;)

Issue #5: how to set the thresholds (the 7;’s)?
— e.g., to guarantee one leader in expectation, but also sybil-proof

34

Setting the Thresholds

Idea (revised): each view v, each validator i computes VRF (7).

— iis leader & VRFg. (1) is “sufficiently small” (at most some threshold ;)

Issue #5: how to set the thresholds (the 7;’s)?
— e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose gi=1 for all i=1,2,...,n. [easiest case]

35

Setting the Thresholds

Idea (revised): each view v, each validator i computes VRF (7).
— iis leader & VRFg. (1) is “sufficiently small” (at most some threshold ;)

Issue #5: how to set the thresholds (the 7;’s)?
— e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose gi=1 for all i=1,2,...,n. [easiest case]

- if set (common) threshold of t, Pr[i a leader]= 7 for all i=1,2,..,n
— since VRF output acts like a uniformly random number from [0,1]

0 T 1

I Ieaderl not a leader |

|<—1:—>|: 1—1 :I 36

Setting the Thresholds

Idea (revised): each view v, each validator i computes VRF (7).
— iis leader & VRFg. (1) is “sufficiently small” (at most some threshold ;)

Issue #5: how to set the thresholds (the 7;’s)?
— e.g., to guarantee one leader in expectation, but also sybil-proof

Example: suppose gi=1 for all i=1,2,...,n. [easiest case]

- if set (common) threshold of t, Pr[i a leader]= 7 for all i=1,2,..,n
— expected number of leaders = 7 - n, set T = 1/n for one leader in expectation

37

Setting the Thresholds (con’d)

Idea: iis leader of view v & VRFg, (1,) < 7;.

— how to set the 1;’s, e.g., for one leader in expectation, but also sybil-proof?
- allg’s =1 = set T = 1/n for one leader in expectation

Intuition: if g, > 1, ...

38

Setting the Thresholds (con’d)

Idea: iis leader of view v & VRFg, (1,) < 7;.

— how to set the 1;’s, e.g., for one leader in expectation, but also sybil-proof?
- allg’s =1 = set T = 1/n for one leader in expectation

Intuition: if g; > 1, adjust VRF, () s.t. it has same distribution as the
minimum of q; i.i.d. uniform samples from [0,1]. (for sybil-proofness)

— in effect, treat i as if it was using q; sybils with one coin each

39

Setting the Thresholds (con’d)

Idea: iis leader of view v & VRFg, (1,) < 7;.

— how to set the 1;’s, e.g., for one leader in expectation, but also sybil-proof?
- allg’s =1 = set T = 1/n for one leader in expectation

Intuition: if g; > 1, adjust VRF, () s.t. it has same distribution as the
minimum of q;i.i.d. uniform samples from [0,1]. (for sybil-proofness)

— in effect, treat i as if it was using q; sybils with one coin each
- first guess: if g;> 1, use %VRFski(rv) instead of VRF (r;,)
l
— compare versus the threshold T = 1/Q, where Q =)i g;

40

Setting the Thresholds (con’d)

Idea: iis leader of view v & VRFg, (1,) < 7;.

— how to set the 1;’s, e.g., for one leader in expectation, but also sybil-proof?
- allg’s =1 = set T = 1/n for one leader in expectation

Intuition: if g; > 1, adjust VRF, () s.t. it has same distribution as the
minimum of q;i.i.d. uniform samples from [0,1]. (for sybil-proofness)

— in effect, treat i as if it was using q; sybils with one coin each
- first guess: if g;> 1, use $VRFski(rv) instead of VRF (r;,)
l

— compare versus the threshold T = 1/Q, where Q =)i g;
* you check: not quite right u“

Setting the Thresholds (con’d)

Idea: i is leader of view v & “adjusted VRFg (1,)" < 7. (%)

Intuition: if g; > 1, adjust VRF, (7)) s.t. it has same distribution as the
minimum of q;i.i.d. uniform samples from [0,1]. (for sybil-proofness)

42

Setting the Thresholds (con’d)

Idea: i is leader of view v & “adjusted VRFg (1,)" < 7. (%)

Intuition: if g; > 1, adjust VRF, (7)) s.t. it has same distribution as the
minimum of q;i.i.d. uniform samples from [0,1]. (for sybil-proofness)

) <In(—)

 rewrite RHS of (*) forg,=1 as ln(l_V .

RFSki(rU)

43

Setting the Thresholds (con’d)

Idea: i is leader of view v & “adjusted VRFg (1,)" < 7. (%)

Intuition: if g; > 1, adjust VRF, (7)) s.t. it has same distribution as the
minimum of q; i.i.d. uniform samples from [0,1]. (for sybil-proofness)

1
SRR < G

) < In(-—=)

 rewrite RHS of (*) forgq,=1 as ln(1

1
* g;>1=> ileader & q_lln(SV RFo ()

44

Setting the Thresholds (con’d)

Idea: i is leader of view v & “adjusted VRFg (1,)" < 7. (%)

Intuition: if g; > 1, adjust VRF, (7)) s.t. it has same distribution as the
minimum of q;i.i.d. uniform samples from [0,1]. (for sybil-proofness)

1
—VRFg (r,,)) <In(2)

) <In(2)

 rewrite RHS of (*) forgq,=1 as ln(

1
* g;>1=> ileader & q_lln(VRF g

| |
“crediential” of i in view v

45

Setting the Thresholds (con’d)

Idea: i is leader of view v & “adjusted VRFg (1,)" < 7. (%)

Intuition: if g; > 1, adjust VRF, (7)) s.t. it has same distribution as the
minimum of q;i.i.d. uniform samples from [0,1]. (for sybil-proofness)

1
—VRFg (r,,)) <In(2)

) <In(2)

 rewrite RHS of (*) forgq,=1 as ln(

1
* g;>1=> ileader & q_lln(VRF g

| |
“crediential” of i in view v

— for one leader in expectation, use T = 1/Q, where Q = .-, g;

46

Setting the Thresholds (con’d)

Idea: i is leader of view v & “adjusted VRFg (1,)" < 7. (%)

Intuition: if g; > 1, adjust VRF, (7)) s.t. it has same distribution as the
minimum of q;i.i.d. uniform samples from [0,1]. (for sybil-proofness)

* rewrite RHS of (%) for q; =1 as In(— : e)) < ln(llfr)

) < 1n<;>

1
« g;>1=> ileader & q_lln(VRFa)

| |
“crediential” of i in view v

— for one leader in expectation, use T = 1/Q, where Q = .-, g;
— you check: sybil-proof (# of pks doesn’t change selection probability)

From VRFs to Consensus Protocols

Final version of idea: i is Ieader of view v &

to target one leader, use

1 l) <]n (_) / T = 1/(total stake)

qi (1 —VRFgg (Tv)

| |
“crediential” of i in view v

To use in a blockchain protocol, need:

48

From VRFs to Consensus Protocols

Final version of idea: i is Ieader of view v &

to target one leader, use
1 T = 1/(total stake)
—In < In(—
qi (1 VRF gk (Tv)) ()/

| |
“crediential” of i in view v

To use in a blockchain protocol, need:

1. Concrete implementation of randomness beacon.
— i.e., what are the r,’s, exactly?

49

From VRFs to Consensus Protocols

Final version of idea: i is leader of view v &
1

qi

to target one leader, use

1 1 T = 1/(total stake)
ln(l—VRFSki(rv)) < ln(1_—r)/

“crediential” of i in view v

To use in a blockchain protocol, need:
1. Concrete implementation of randomness beacon.
— i.e., what are the r,’s, exactly?

2. Modifications to consensus protocol to handle bad cases #1 + 2.

— if no leader or multiple leaders selected in a view
50

Proof-of-Stake Tendermint Revisited

Last time: modified Tendermint so that:
1. uses epoch-based weighted round-robin leader selection
— validators only allowed to join/leave at epoch boundaries

2. redefine quorum certificate = signatures by distinct public keys
that collectively represent more than 2/3rds of the overall stake

3. add logic to update validator set at epoch boundaries

Result: consistent and (eventually) live in partial synchrony
(assuming < 33% Byzantine stake), in the quasi-permissionless
setting (i.e., honest validators always online).

51

Proof-of-Stake Tendermint Revisited

Last time: modified Tendermint so that:
1. uses epoch-based weighted round-robin leader selection

2. redefine quorum certificate = signatures by distinct public keys that
collectively represent more than 2/3rds of the overall stake

3. add logic to update validator set at epoch boundaries

Here: keep (2) and (3), but replace (1) with VRF-based sampling:

| is leader of view v <& iln(=) < ln(i).
4i “1-VRFsp,(1y)" 1-1

“crediential” of i in view v

52

Handling the Two Bad Cases

.. : 1 1
Now: i is leader of view v & —In(
qi 1_VRFski(7"v)

* e.g., to target one leader, use T = 1/(total stake)

) <In(-—).

Question:

53

Handling the Two Bad Cases

.. : 1 1
Now: i is leader of view v & —In(
qi 1_VRFski(7"v)

* e.g., to target one leader, use T = 1/(total stake)

) <In(-—).

Question: what if a view has no leaders?

54

Handling the Two Bad Cases

.. : 1 1
Now: i is leader of view v & —In(
qi 1_VRFski(7"v)

* e.g., to target one leader, use T = 1/(total stake)

Question: what if a view has no leaders?
- answer: nothing happens, as if leader crashed

) <In(-—).

55

Handling the Two Bad Cases

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what if a view has no leaders?
- answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

56

Handling the Two Bad Cases

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what if a view has no leaders?
- answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

- answer: honest validators vote, among all block proposals seen,
for the one accompanied by the smallest leader credential

57

Handling the Two Bad Cases

Now: i is leader of view v & lln(=) < ln(ﬁ).

qi 1_VRFski(7"v)

Question: what if a view has no leaders?
- answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

- answer: honest validators vote, among all block proposals seen,
for the one accompanied by the smallest leader credential

— you check: Tendermint retains its consistency and liveness guarantees

58

Handling the Two Bad Cases

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what if a view has no leaders?
- answer: nothing happens, as if leader crashed

Question: what if a view has multiple leaders?

- answer: honest validators vote, among all block proposals seen,
for the one accompanied by the smallest leader credential
— you check: Tendermint retains its consistency and liveness guarantees

— you check: Pr[i has smallest credential] = q;/ (271 q;)
59

The (Pseudo)Randomness Beacon

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?

60

The (Pseudo)Randomness Beacon

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?
- idea: output of a cryptographic hash function h

61

The (Pseudo)Randomness Beacon

Now: i is leader of view v & lln(=) < ln(i).
di 1_VRFski(7"v) 1-7

Question: what is r,?

- idea: output of a cryptographic hash function h
— question: what'’s the input?

62

The (Pseudo)Randomness Beacon

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?

- idea: output of a cryptographic hash function h
— question: what'’s the input?
- idea: some function f(.) of blockchain state g, at start of view v

63

The (Pseudo)Randomness Beacon

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?

- idea: output of a cryptographic hash function h
— question: what'’s the input?
- idea: some function f(.) of blockchain state g, at start of view v

Minor issue: blockchain state may not change between views.
* e.g., If leader of last view crashed

64

The (Pseudo)Randomness Beacon

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?

- idea: output of a cryptographic hash function h
— question: what'’s the input?
- idea: some function f(.) of blockchain state g, at start of view v

Minor issue: blockchain state may not change between views.
- solution: use n, = h(f(a,)||v) rather than r,, = h(f(0,))

65

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
di 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = cryptographic hash function, f = some function of blockchain state o,

Major issue: validators can manipulate o, (and therefore r,).

66

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
di 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = cryptographic hash function, f = some function of blockchain state o,

Major issue: validators can manipulate o, (and therefore r,).
- solution: choose function f to minimize manipulability

67

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = cryptographic hash function, f = some function of blockchain state o,

Major issue: validators can manipulate o, (and therefore r,).

- solution: choose function f to minimize manipulability
— bad choice: f(o0,) = most recently finalized block

68

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = cryptographic hash function, f = some function of blockchain state o,

Major issue: validators can manipulate o, (and therefore r,).

- solution: choose function f to minimize manipulability
— bad choice: f(o0,) = most recently finalized block

* incentivizes leader of view v-1 to grind over blocks to minimize
its view-v credential (turns PoS into PoW!) 69

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
di 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = cryptographic hash function, f = some function of blockchain state o,

Major issue: validators can manipulate o, (and therefore r,).
- solution: choose function f to minimize manipulability

- example: f(o,) = leader credential in most recently finalized block

— assuming warm-up period, no grinding over sk;’s credential possible
70

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & lln(=) < ln(i).
di 1_VRFski(7"v) 1-7

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = CHF, f(0,) = leader credential in most recently finalized block

Issue: validators can still (o some extent) manipulate the r,’s.

71

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
di 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = CHF, f(0,) = leader credential in most recently finalized block

Issue: validators can still (o some extent) manipulate the r,’s.
— suppose validator i controls pk, + pk,, leaders of view v ={pk,pks}

72

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
di 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = CHF, f(0,) = leader credential in most recently finalized block

Issue: validators can still (o some extent) manipulate the r,’s.
— suppose validator i controls pk, + pk,, leaders of view v ={pk,pks}

— i incentivized to propose block with whichever of pk4,pk, results in smaller
view-(v+1) credentials for it (as opposed to smallest view-v credential)

73

The (Pseudo)Randomness Beacon (con’d)

Now: i is leader of view v & iln(=

1
qi 1_VRFski(7"v)) < ln(:)

Question: what is r,?

* proposal: r, = h(f(0y,)|[v)
— h = CHF, f(0,) = leader credential in most recently finalized block

Issue: validators can still (o some extent) manipulate the r,’s.
— suppose validator i controls pk, + pk,, leaders of view v ={pk,pks}

— i incentivized to propose block with whichever of pk4,pk, results in smaller
view-(v+1) credentials for it (as opposed to smallest view-v credential)

— In practice, generally willing to live with this 74

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.

75

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.
- solution #1: cap number of validators, explicitly or implicitly

76

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.
- solution #1: cap number of validators, explicitly or implicitly

- solution #2: combine Tendermint with some aspects of longest-
chain consensus (which scales well with # of validators)

77

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.
- solution #1: cap number of validators, explicitly or implicitly

- solution #2: combine Tendermint with some aspects of longest-
chain consensus (which scales well with # of validators)

- solution #3: use randomly sampled “committees” of validators

78

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.

solution #1: cap number of validators, explicitly or implicitly

solution #2: combine Tendermint with some aspects of longest-
chain consensus (which scales well with # of validators)

solution #3: use randomly sampled “committees” of validators
— tricky but solvable: sample committee in sybil-proof way

79

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.

solution #1: cap number of validators, explicitly or implicitly

solution #2: combine Tendermint with some aspects of longest-
chain consensus (which scales well with # of validators)

solution #3: use randomly sampled “committees” of validators
— tricky but solvable: sample committee in sybil-proof way
— bigger issue: unlucky sample =» committee could be > 33% Byzantine

80

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.

solution #1: cap number of validators, explicitly or implicitly

solution #2: combine Tendermint with some aspects of longest-
chain consensus (which scales well with # of validators)

solution #3: use randomly sampled “committees” of validators

— tricky but solvable: sample committee in sybil-proof way

— bigger issue: unlucky sample =» committee could be > 33% Byzantine
- fix #1: make stronger assumption about fraction of honest stake

81

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.

solution #1: cap number of validators, explicitly or implicitly

solution #2: combine Tendermint with some aspects of longest-
chain consensus (which scales well with # of validators)
solution #3: use randomly sampled “committees” of validators
— tricky but solvable: sample committee in sybil-proof way
— bigger issue: unlucky sample =» committee could be > 33% Byzantine
- fix #1: make stronger assumption about fraction of honest stake
- fix #2: make committee sizes sufficiently big

82

Randomly Sampled Committees

Issue: too many validators = bad performance in Tendermint.

solution #1: cap number of validators, explicitly or implicitly

solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)

solution #3: use randomly sampled “committees” of validators

— tricky but solvable: sample committee in sybil-proof way

— bigger issue: unlucky sample =» committee could be > 33% Byzantine
- fix #1: make stronger assumption about fraction of honest stake

- fix #2: make committee sizes sufficiently big
- fix #3: emergency procedure in case of forks by bad committees

