Lecture #10:
Cryptographic Hash Functions

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Lecture #10

1. Short, unigue names that require no coordination.
— e.g., for transactions or blocks

2. Cryptographic hash functions as “random oracles.”
— Ideal hash function = random function, though still has collisions

3. What do cryptographic hash functions actually look like?
— case study: SHA-256 and length-extension attacks

4. Cryptographic commitments.
— reconstructing blocks from hashes; binding and hiding

Short, Unique Names

Cryptography in blockchain protocols: two unavoidable primitives:
digital signatures (lec #5) and cryptographic hash functions (now).

Short, Unique Names

Cryptography in blockchain protocols: two unavoidable primitives:
digital signatures (lec #5) and cryptographic hash functions (now).

Recall: in a blockchain, each block (except 15Y) has a predecessor.

Question: how should a block specify its predecessor?

Short, Unique Names

Cryptography in blockchain protocols: two unavoidable primitives:
digital signatures (lec #5) and cryptographic hash functions (now).

Recall: in a blockchain, each block (except 15Y) has a predecessor.
Question: how should a block specify its predecessor?

ldeally: use some “naming function” h(.) such that:
* his easy to evaluate
 the output of h is short

* never have ambiguous/non-unique names: x # X" = f(x) # f(x) _

Hash Functions and Collisions

Definition: a hash function h maps each finite-length string x to an
element h(x) of some range Y. [canonical example: Y = {0,1}2°°]

— length of x can be as long as you want (e.g., text of War and Peace)

Hash Functions and Collisions

Definition: a hash function h maps each finite-length string x to an
element h(x) of some range Y. [canonical example: Y = {0,1}2°°]

— length of x can be as long as you want (e.g., text of War and Peace)

By Pigeonhole Principle: no matter what h is, will have collisions.
» collision: pair x # x’ for which f(x)=f(x’)

Hash Functions and Collisions

Definition: a hash function h maps each finite-length string x to an
element h(x) of some range Y. [canonical example: Y = {0,1}2°°]

— length of x can be as long as you want (e.g., text of War and Peace)

By Pigeonhole Principle: no matter what h is, will have collisions.
» collision: pair x # x’ for which f(x)=f(x’)
— Pigeonhole: put n+1 pigeons in n holes, some hole has = 2 pigeons

Hash Functions and Collisions

Definition: a hash function h maps each finite-length string x to an
element h(x) of some range Y. [canonical example: Y = {0,1}2°°]

— length of x can be as long as you want (e.g., text of War and Peace)

By Pigeonhole Principle: no matter what h is, will have collisions.
» collision: pair x # x’ for which f(x)=f(x’)
— Pigeonhole: put n+1 pigeons in n holes, some hole has = 2 pigeons

Best-case scenario: a function h for which we’ll never encounter a
collision In practice (no matter how hard an adversary might try).

ldeal Hash Function: A Random Function

Ideal cryptographic hash function: a uniformly random function h:

10

ldeal Hash Function: A Random Function

Ideal cryptographic hash function: a uniformly random function h:
— [a gnome in a box, with a big book and some dice]

e On input x:

11

ldeal Hash Function: A Random Function

Ideal cryptographic hash function: a uniformly random function h:
— [a gnome in a box, with a big book and some dice]

e On input x:
— If h(X) has never been evaluated before:
* flip 256 new random coins and return the result

12

ldeal Hash Function: A Random Function

ldeal cryptographic hash function: a uniformly random function h:
— [a gnome in a box, with a big book and some dice]
e On input x:
— If h(X) has never been evaluated before:
* flip 256 new random coins and return the result
— else
* return the same output as previous evaluations of h at x

13

ldeal Hash Function: A Random Function

ldeal cryptographic hash function: a uniformly random function h:
* oninputx:
— if h(x) has never been evaluated before:
 flip 256 new random coins and return the result
— else
* return the same output as previous evaluations of h at x

14

ldeal Hash Function: A Random Function

ldeal cryptographic hash function: a uniformly random function h:
* oninputx:
— if h(x) has never been evaluated before:
 flip 256 new random coins and return the result
— else
* return the same output as previous evaluations of h at x

Fact: for such a function, don’t expect to see any collisions until
it's been evaluated = 2128 times.

— l.e., for all practical purposes, never!

15

ldeal Hash Function: A Random Function

ldeal cryptographic hash function: a uniformly random function h:
* oninputx:
— if h(x) has never been evaluated before:
 flip 256 new random coins and return the result
— else
* return the same output as previous evaluations of h at x

Fact: for such a function, don’t expect to see any collisions until
it's been evaluated = 2128 times.

— l.e., for all practical purposes, never!

Reason: the “birthday paradox.”

16

The Birthday Paradox

* suppose h a uniformly random function with range Y
e suppose h evaluated at N different points

17

The Birthday Paradox

* suppose h a uniformly random function with range Y

e suppose h evaluated at N different points
— N(N-1)/2 opportunities for a collision (one per pair of points)

18

The Birthday Paradox

* suppose h a uniformly random function with range Y

e suppose h evaluated at N different points
— N(N-1)/2 opportunities for a collision (one per pair of points)
— probability that a given pair of points collide = 1/|Y]|

19

The Birthday Paradox

* suppose h a uniformly random function with range Y

e suppose h evaluated at N different points
— N(N-1)/2 opportunities for a collision (one per pair of points)
— probability that a given pair of points collide = 1/|Y]|
— expect one collision when |Y]| = N(N-1)/2, or N =,/2|Y|

20

The Birthday Paradox

* suppose h a uniformly random function with range Y

e suppose h evaluated at N different points
— N(N-1)/2 opportunities for a collision (one per pair of points)
— probability that a given pair of points collide = 1/|Y]|
— expect one collision when |Y]| = N(N-1)/2, or N =,/2|Y|
— if Y = 256-bit strings, need N = 2256/2 = 2128

21

The Birthday Paradox

* suppose h a uniformly random function with range Y

e suppose h evaluated at N different points
— N(N-1)/2 opportunities for a collision (one per pair of points)
— probability that a given pair of points collide = 1/|Y]|
— expect one collision when |Y]| = N(N-1)/2, or N =,/2|Y|
— if Y = 256-bit strings, need N = 2256/2 = 2128

Also: (more detailed but elementary probability calculations)
— # of evaluations << 2128 =» almost no chance of a collision
— # of evaluations >> 2128 =» almost no chance of no collisions

22

Cryptographic Hash Functions

Informal definition: a function is collision-resistant if it's
computationally infeasible to find collisions.

23

Cryptographic Hash Functions

Informal definition: a function is collision-resistant if it's
computationally infeasible to find collisions.

— Intuitively, as hard as for a random function with the same range
— like signatures, precise security statement involve many nuances
— more common property desired of “cryptographic” hash functions

24

Cryptographic Hash Functions

Informal definition: a function is collision-resistant if it's
computationally infeasible to find collisions.

— Intuitively, as hard as for a random function with the same range
— like signatures, precise security statement involve many nuances
— more common property desired of “cryptographic” hash functions

Birthday paradox: size of range = twice the desired bits of security.

25

Cryptographic Hash Functions

Informal definition: a function is collision-resistant if it's
computationally infeasible to find collisions.

— Intuitively, as hard as for a random function with the same range
— like signatures, precise security statement involve many nuances
— more common property desired of “cryptographic” hash functions

Birthday paradox: size of range = twice the desired bits of security.

Upshot: can use a collision-resistant hash function (with e.g. 256-
bit outputs) to provide objects with names that are short and (for
all practical purposes) unigue. [no coordination necessary!]

26

@ BI k 8 85 0 92 11349af59d8afeSc84289cfea2cealaf52dbf924d01050650c01e84d7cec7540

€330bf80abfbc6934796b6316dc2167c2437ecefSb88e 0.10774214 BTC 16TZSJLLWnwxqyUz5A17PC7X9n25CGVEBFwWZ 1.03230000 BTC

00000000000000000001c9707e9c6f5e867b7818d56fcOb35596¢c59cf3e5a95d | B 4d021729186523fd550:0

05198522581a5f501063eb24dff4599365eadd889240 0.00528848 BTC
07f5¢4512fdd760a836e:194

& PREVIOUS

7bc26bB8c55756644e610d9d582f3427011398a03fdde 016007236 BTC
8841a9afc898a83e59bc:10

166b76eb7bf88c70fdaf0d91b0514d5bea3caeba73cc2 0.11054856 BTC

4eb60812590b2a9e2c0:0
Details +

13d29fda99fd051d4a05065¢caBeee227e4674b46c578 0.21000000 BTC
3080ec5a9b087477ef46:0

885092

addBacb47ec094968f11bb1db0aa20363¢1f593cd0da 0.10998202 BTC
In best chain (2 confirmations) 4626ffc91d643cBc80e:2

83224c4cd662adefa692ccfdbcbebdad¢c43d5c6ec’ed 0.10770619 BTC

2025-02-24 04:29:55 GMT -5 00cfdc71685629c84858:0
1784.384 KB 298d91cc366f0ae82¢59b149591be113972¢db7c08d1b1 01163700 BTC
9eb2833e8b30d12b28:0

999 VKB 688d298054e58c0142bc4fadff33332ebb38b7101aad 010999832 BTC

37315d9199952¢62e3cd:0

3993.575 KWU

1d3d212a533b5a3ac2d4ee4be83891c908636e71e503f8944a3cf641736f6b0a

73019d572b33148283861353d85dc1d7f1f09a6f81ddb 0.20480500 BTC 33Eu3hzSoXxxsmWESreWvGkwpscuUEm2¢x 0.10000000 BTC
0532e164f24c95b695511

2 CONFIRMATIONS 1.03230000 BTC

bclqgx8aypkq6dr936szrva3jxwjekwefp5sykfdffj 0.10459200 BTC

2 CONFIRMATIONS 0.20459200 BTC

Case Study: SHA-256

Note: infeasible to use a random function in practice.
— describing such a function requires an infinite number of bits

28

Case Study: SHA-256

Note: infeasible to use a random function in practice.
— describing such a function requires an infinite number of bits

In practice: use function that is easy to describe + evaluate, but
as unpredictable (for practical purposes) as a random function.

29

Code for SHA-256

Pre-processing (Padding):

begin with the original message of length L bits In%tlallze mesh ralues: . , , Conpression function nain loop:
append a single '1' bit (first 32 bits of the fractional parts of the square roots of the first € primes 2..19) for 1 from 0 to 63
append K '0' bits, where K is the minimum number >= 0 such that L+ 1+ K + 64 is a h0 = Defaldeo? §1 1= (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
multiple of 512 hl i= OxbbGTaeds ch := (e and f) xor ((not e) and g)
append L as a 6d-bit big-endian integer, making the total post-processed length a miltip 02 := 0x3cbefd] templ := h + §1 + ch + k[i] + w[i]
of 512 bits h3 = 0xa54ffda 50 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
hd = 0x510e527f maj := (a and b) xor (a and c) xor (b and c)

Process the message in successive 512-bit chunks: h5 := 0x9b05688¢ temp2 := 50 4 maj
break message into 512-bit chunks 1§ := 0x1£83d9ab
for each chunk \ h7 t= 0xSbedcdly hi=g

createj a §4—entry mes:sage schedule a:rray W[0..63) of 3?:-b1t words_ gi=f

e o o 1o o o s

(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311) e i=d+ templ

Extend the first 16 words into the remaining 48 words w[16..63] of the message schec Ll = di=c
array: 0x42822£98, 0x71374491, OxbScOfbef, OxedbSdbad, 0x3956ec25b, 0x59£111£1, 0x923fd2ad, ci=bh

for i from 16 to 63 (xablc5eds, bi=a

50 := (w[i-15] rightrotate 7) xor (w|i-15] rightrotate 16) xor (w[i-15] rightshi 0xd807aa%8, 0x128350b01, 0x243185be, 0x530c7dc3, 0x72bebd7d, 0xBOdeblfe, 0xSbdelbarl, a i= templ + temp2
3) Dxc19bf17¢,
sl 1= (w[i-2] rightrotate 17) xor (w|i-2] rightrotate 19) xor (w|i-2] rightshift 0xed9b69cl, Oxefbed786, 0x0fcl9dc6, 0x240calce, 0x2dedc6f, 0xia7iBaa, 0xSchladde, Add the compressed chunk to the current hash value:
10) 0x76£988da, h0 :=h0 +a
wli] := wi-16] + 50 + w[i-7] + sl 0x993e3152, Oxablle66d, (xb00327ch, (xbf597fcT, (xcbelObf3l, 0xd5a?dldl, 0x0fcafisl, hl i=hl +b
o . . 0x14292967, h2 i=hl+c

e R e R S 0x27b70a85, 0x2e1b2138, Oxdd2chdfc, 05338013, 0x650a735¢, OT6Galabb, OxBlc2cd2e, h3 &= h3 + d

. 1392122085, h i= hd + e

R OxaZbfeBal, OxaBlabfdb, Oxc24bBb70, Oxe76c5lal, (xd192eBl9, 0xd§990624, 0xfiledsas, h5 i=h5+f

d 1= 13 0x1062a070, h6 i=h6 + g

6= 1d 0x19adcllé, Ox1ed76c08, 0x2748774c, Oxd4blbcbS, 0x391clch3, Oxdedfaada, Ox5bccadf, h7 ¢=h7 +h

£ 1= 15 0x68206£13,

g = ho 0x74Bf82ee, 0x78a5636f, 0xBdcBTB14, 0x8cc70208, (x90befffa, 0xadf06ceb, 0xbef9adf?, Produce the final hash value (big-endian):

hi=h7 (xc67178£2 digest := hash := h0 append hl append h2 append h3 append hé append h5 append hé append h7

30

Case Study: SHA-256

Note: infeasible to use a random function in practice.
— describing such a function requires an infinite number of bits

In practice: use function that is easy to describe + evaluate, but
as unpredictable (for practical purposes) as a random function.

Canonical example: SHA-256 (used in Bitcoin, Solana, etc.).

* based on the Merkle-Damgard approach of iteratively applying
a "compression function” to chunks of the input

31

The Merkle-Damgard Approach

— [assuming target output length = 256 bits]
* break input into chunks x4,X,,...,X,, of 512 bits each
e for1=1,2,....m:

32

The Merkle-Damgard Approach

— [assuming target output length = 256 bits]
* break input into chunks x4,X,,...,X,, of 512 bits each
e for1=1,2,....m:
— h,:=1(x;,h,_ ;) [f ="compression function,” h, = fixed default value (1V)]

33

The Merkle-Damgard Approach

— [assuming target output length = 256 bits]
* break input into chunks x4,X,,...,X,, of 512 bits each
e for1=1,2,....m:

— h,:=1(x;,h,_ ;) [f ="compression function,” h, = fixed default value (1V)]
* return last 256 bits of h,,

34

The Merkle-Damgard Approach

— [assuming target output length = 256 bits]
* break input into chunks x4,X,,...,X,, of 512 bits each

e for1=1,2,....m:

— h,:=1(x;,h,_ ;) [f ="compression function,” h, = fixed default value (1V)]

* return last 256 bits of h,,

Compression function: resembles a block cipher (like AES).

512 bits
\

512 bits =

» 512 bits

35

Case Study: SHA-256

Note: infeasible to use a random function in practice.

In practice: use function that is easy to describe + evaluate, but
as unpredictable (for practical purposes) as a random function.

Canonical example: SHA-256 (used in Bitcoin, Solana, etc.).

— based on the Merkle-Damgard approach of iteratively applying a
"compression function” to chunks of the input

Xq X X3 X4

IV

36

Cryptographic vs. Random Functions

Warning: cryptographic hash functions are not random functions.
— deterministic, often < 100 lines of code
— have detectable properties that random functions don’t have
« does not necessarily contradict collision-resistance

37

Cryptographic vs. Random Functions

Warning: cryptographic hash functions are not random functions.

— deterministic, often < 100 lines of code
— have detectable properties that random functions don’t have
« does not necessarily contradict collision-resistance

Example: length-extension attacks.
— applies to hash functions that use the Merkle-Damgard approach

— given x and h(x), can construct a y:=xz that extends x so that can
compute h(y) from h(x) (rather than recomputing h(y) from scratch)

38

Cryptographic vs. Random Functions

Warning: cryptographic hash functions are not random functions.
— deterministic, often < 100 lines of code
— have detectable properties that random functions don’t have
« does not necessarily contradict collision-resistance

Example: length-extension attacks.
— applies to hash functions that use the Merkle-Damgard approach

— given x and h(x), can construct a y:=xz that extends x so that can
compute h(y) from h(x) (rather than recomputing h(y) from scratch)
« lethal for HMACSs, not obviously relevant to blockchain protocols

« reason why SHA-256 often applied twice in the Bitcoin protocol? .

Cryptographic vs. Random Functions

Warning: cryptographic hash functions are not random functions.

Example: length-extension attacks.
— applies to hash functions that use the Merkle-Damgard approach

— given x and h(x), can construct a y:=xz that extends x so that can
compute h(y) from h(x) (rather than recomputing h(y) from scratch)

Tl;dr: practitioners treat cryptographic hash functions like
SHA-256 as random functions, even though they’'re not.

— typically can get away with it, though beware of important edge cases

40

Compression via Hash Functions

Recall: in e.g. Tendermint, validators pass around entire chains.

41

Protocol D (= Tendermint)

at time 4A - v:
— each validator i sends its current chain A, to v's leader ¢
attime 4A - v + A:
— let A =of the A’s received, the most recently created one; let B := all not-yet-included (in A) valid txs £ knows about
- ¢ sends proposal (A,B) to all other validators
attime 4A - v + 2A:
— if validator i receives a proposal (A,B) from ¢ with A = A; or with A more recent than A; by this time:
« send “(A,B) is up-to-date” message to all validators
at time 4A - v + 3A:
— if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time (a read quorum):
« package these messages into a quorum certificate (QC), Q
» send “ack (A,B,Q)” message to all validators and reset A, := (A,B,Q)
at time 4A - v + 4A:
— if validator i has received > 2n/3 “ack (A,B,Q)” messages (a write quorum):
« reset C;:= (A,B,Q) (and also A := (A,B,Q), if necessary)

42

Compression via Hash Functions

Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:

43

Compression via Hash Functions

Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:

« every block specifies a predecessor via hash of latter
— additional metadata, required for block to be viewed as valid

Bo [

B, [

B, |¢

B;

B,

“hash
pointers”

44

Compression via Hash Functions

Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:

« every block specifies a predecessor via hash of latter
— additional metadata, required for block to be viewed as valid

Bo ¢ B, ¢ B, | B; P ---- «— B,

 leader proposes a block B, not a chain

“hash
pointers”

45

Compression via Hash Functions

Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:

« every block specifies a predecessor via hash of latter
— additional metadata, required for block to be viewed as valid

Bo [

B, [

B, |¢

B;

 leader proposes a block B, not a chain

B,

“hash
pointers”

* “up-to-date” and “"ack” messages reference has h(B), not B
— quorum certificates attest to a blockhash, not a block (or a chain)

46

Protocol D (= Tendermint)

at time 4A - v:
— each validator i sends its current chain A, to v's leader ¢
attime 4A - v + A:
— let A =of the A’s received, the most recently created one; let B := all not-yet-included (in A) valid txs £ knows about
- ¢ sends proposal (A,B) to all other validators
attime 4A - v + 2A:
— if validator i receives a proposal (A,B) from ¢ with A = A; or with A more recent than A; by this time:
« send “(A,B) is up-to-date” message to all validators
at time 4A - v + 3A:
— if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time (a read quorum):
« package these messages into a quorum certificate (QC), Q
» send “ack (A,B,Q)” message to all validators and reset A, := (A,B,Q)
at time 4A - v + 4A:
— if validator i has received > 2n/3 “ack (A,B,Q)” messages (a write quorum):
« reset C;:= (A,B,Q) (and also A := (A,B,Q), if necessary)

47

Compression via Hash Functions

To make practical:

» every block specifies a predecessor via hash of latter
 leader proposes a block B, not a chain

« “up-to-date” and “"ack” messages reference has h(B), not B

48

Compression via Hash Functions

To make practical:

» every block specifies a predecessor via hash of latter
 leader proposes a block B, not a chain

« “up-to-date” and “"ack” messages reference has h(B), not B

Benefit: size of blockhash << size of block << size of chain.

49

Compression via Hash Functions

To make practical:

» every block specifies a predecessor via hash of latter
 leader proposes a block B, not a chain

« “up-to-date” and “"ack” messages reference has h(B), not B

Benefit: size of blockhash << size of block << size of chain.

Issue: validator may know blockhash before corresponding block.
— e.g., the predecessor blockhash in the current leader’s block proposal
— e.g., the blockhash referenced in “up-to-date” and “ack” messages

30

Cryptographic Hashes Are Binding

Issue: validator may know blockhash before corresponding block.

ol

Cryptographic Hashes Are Binding

Issue: validator may know blockhash before corresponding block

Note: collision-resistance of hash fn =» can’t reverse engineer
block from blockhash. [i.e., collision-resistance = one-way function]

* thus: validator must obtain the full block from some other source

52

Cryptographic Hashes Are Binding

Issue: validator may know blockhash before corresponding block.

Note: collision-resistance of hash fn =» can’t reverse engineer
block from blockhash. [i.e., collision-resistance = one-way function]

* thus: validator must obtain the full block from some other source

Worry: could an untrusted source fabricate the block?

53

Cryptographic Hashes Are Binding

Issue: validator may know blockhash before corresponding block.

Note: collision-resistance of hash fn =» can’t reverse engineer
block from blockhash. [i.e., collision-resistance = one-way function]

* thus: validator must obtain the full block from some other source
Worry: could an untrusted source fabricate the block?

Good news: no, would contradict collision-resistance of hash fn.
— collision-resistant = “second pre-image resistant”

o4

Cryptographic Commitments

Terminology: hash h(x) iIs a commitment to x.
» analogy: object in a locked box

55

Cryptographic Commitments

Terminology: hash h(x) is a commitment to x.
» analogy: object in a locked box

 binding: after announcing h(x), can’t later pretend to have
committed to some y +# X (collision-resistance =» h(y) # h(x))

56

Cryptographic Commitments

Terminology: hash h(x) is a commitment to x.
» analogy: object in a locked box

 binding: after announcing h(x), can’t later pretend to have
committed to some y +# X (collision-resistance =» h(y) # h(x))

 hiding: knowing only h(x), don’t know x until it's revealed
— can be important e.g. for privacy in some applications

S7

Cryptographic Commitments

Terminology: hash h(x) is a commitment to x.
» analogy: object in a locked box

 binding: after announcing h(x), can’t later pretend to have
committed to some y +# X (collision-resistance =» h(y) # h(x))

 hiding: knowing only h(x), don’t know x until it's revealed
— can be important e.g. for privacy in some applications

Worry: what if validator can’t find source for block?
* need to ensure this never happens (“data availability”)

58

	Slide 1: Lecture #10: Cryptographic Hash Functions
	Slide 2: Goals for Lecture #10
	Slide 3: Short, Unique Names
	Slide 4: Short, Unique Names
	Slide 5: Short, Unique Names
	Slide 6: Hash Functions and Collisions
	Slide 7: Hash Functions and Collisions
	Slide 8: Hash Functions and Collisions
	Slide 9: Hash Functions and Collisions
	Slide 10: Ideal Hash Function: A Random Function
	Slide 11: Ideal Hash Function: A Random Function
	Slide 12: Ideal Hash Function: A Random Function
	Slide 13: Ideal Hash Function: A Random Function
	Slide 14: Ideal Hash Function: A Random Function
	Slide 15: Ideal Hash Function: A Random Function
	Slide 16: Ideal Hash Function: A Random Function
	Slide 17: The Birthday Paradox
	Slide 18: The Birthday Paradox
	Slide 19: The Birthday Paradox
	Slide 20: The Birthday Paradox
	Slide 21: The Birthday Paradox
	Slide 22: The Birthday Paradox
	Slide 23: Cryptographic Hash Functions
	Slide 24: Cryptographic Hash Functions
	Slide 25: Cryptographic Hash Functions
	Slide 26: Cryptographic Hash Functions
	Slide 27
	Slide 28: Case Study: SHA-256
	Slide 29: Case Study: SHA-256
	Slide 30: Code for SHA-256
	Slide 31: Case Study: SHA-256
	Slide 32: The Merkle-Damgard Approach
	Slide 33: The Merkle-Damgard Approach
	Slide 34: The Merkle-Damgard Approach
	Slide 35: The Merkle-Damgard Approach
	Slide 36: Case Study: SHA-256
	Slide 37: Cryptographic vs. Random Functions
	Slide 38: Cryptographic vs. Random Functions
	Slide 39: Cryptographic vs. Random Functions
	Slide 40: Cryptographic vs. Random Functions
	Slide 41: Compression via Hash Functions
	Slide 42: Protocol D (≈ Tendermint)
	Slide 43: Compression via Hash Functions
	Slide 44: Compression via Hash Functions
	Slide 45: Compression via Hash Functions
	Slide 46: Compression via Hash Functions
	Slide 47: Protocol D (≈ Tendermint)
	Slide 48: Compression via Hash Functions
	Slide 49: Compression via Hash Functions
	Slide 50: Compression via Hash Functions
	Slide 51: Cryptographic Hashes Are Binding
	Slide 52: Cryptographic Hashes Are Binding
	Slide 53: Cryptographic Hashes Are Binding
	Slide 54: Cryptographic Hashes Are Binding
	Slide 55: Cryptographic Commitments
	Slide 56: Cryptographic Commitments
	Slide 57: Cryptographic Commitments
	Slide 58: Cryptographic Commitments

