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1. Short, unique names that require no coordination.

– e.g., for transactions or blocks

2. Cryptographic hash functions as “random oracles.” 

– ideal hash function = random function, though still has collisions

3. What do cryptographic hash functions actually look like? 

– case study: SHA-256 and length-extension attacks

4. Cryptographic commitments.

– reconstructing blocks from hashes; binding and hiding
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Goals for Lecture #10



Cryptography in blockchain protocols: two unavoidable primitives: 

digital signatures (lec #5) and cryptographic hash functions (now).
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Short, Unique Names



Cryptography in blockchain protocols: two unavoidable primitives: 

digital signatures (lec #5) and cryptographic hash functions (now).

Recall: in a blockchain, each block (except 1st) has a predecessor.

Question: how should a block specify its predecessor?
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Short, Unique Names



Cryptography in blockchain protocols: two unavoidable primitives: 

digital signatures (lec #5) and cryptographic hash functions (now).

Recall: in a blockchain, each block (except 1st) has a predecessor.

Question: how should a block specify its predecessor?

Ideally: use some “naming function” h(.) such that:

• h is easy to evaluate

• the output of h is short

• never have ambiguous/non-unique names: x ≠ x’ ➔ f(x) ≠ f(x’)
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Short, Unique Names



Definition: a hash function h maps each finite-length string x to an 

element h(x) of some range Y.  [canonical example: Y = {0,1}256 ]

– length of x can be as long as you want (e.g., text of War and Peace)
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Hash Functions and Collisions



Definition: a hash function h maps each finite-length string x to an 

element h(x) of some range Y.  [canonical example: Y = {0,1}256 ]

– length of x can be as long as you want (e.g., text of War and Peace)

By Pigeonhole Principle: no matter what h is, will have collisions.

• collision: pair x ≠ x’ for which f(x)=f(x’)
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Hash Functions and Collisions



Definition: a hash function h maps each finite-length string x to an 

element h(x) of some range Y.  [canonical example: Y = {0,1}256 ]

– length of x can be as long as you want (e.g., text of War and Peace)

By Pigeonhole Principle: no matter what h is, will have collisions.

• collision: pair x ≠ x’ for which f(x)=f(x’)

– Pigeonhole: put n+1 pigeons in n holes, some hole has ≥ 2 pigeons
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Hash Functions and Collisions



Definition: a hash function h maps each finite-length string x to an 

element h(x) of some range Y.  [canonical example: Y = {0,1}256 ]

– length of x can be as long as you want (e.g., text of War and Peace)

By Pigeonhole Principle: no matter what h is, will have collisions.

• collision: pair x ≠ x’ for which f(x)=f(x’)

– Pigeonhole: put n+1 pigeons in n holes, some hole has ≥ 2 pigeons

Best-case scenario: a function h for which we’ll never encounter a 

collision in practice (no matter how hard an adversary might try).
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Hash Functions and Collisions



Ideal cryptographic hash function: a uniformly random function h:
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Ideal Hash Function: A Random Function



Ideal cryptographic hash function: a uniformly random function h:

– [a gnome in a box, with a big book and some dice]

• on input x:

11

Ideal Hash Function: A Random Function



Ideal cryptographic hash function: a uniformly random function h:

– [a gnome in a box, with a big book and some dice]

• on input x:

– if h(x) has never been evaluated before:

• flip 256 new random coins and return the result
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Ideal Hash Function: A Random Function



Ideal cryptographic hash function: a uniformly random function h:

– [a gnome in a box, with a big book and some dice]

• on input x:

– if h(x) has never been evaluated before:

• flip 256 new random coins and return the result

– else

• return the same output as previous evaluations of h at x
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Ideal Hash Function: A Random Function



Ideal cryptographic hash function: a uniformly random function h:

• on input x:

– if h(x) has never been evaluated before:

• flip 256 new random coins and return the result

– else

• return the same output as previous evaluations of h at x
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Ideal Hash Function: A Random Function



Ideal cryptographic hash function: a uniformly random function h:

• on input x:

– if h(x) has never been evaluated before:

• flip 256 new random coins and return the result

– else

• return the same output as previous evaluations of h at x

Fact: for such a function, don’t expect to see any collisions until 

it’s been evaluated ≈ 2128 times.

– i.e., for all practical purposes, never!
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Ideal Hash Function: A Random Function



Ideal cryptographic hash function: a uniformly random function h:

• on input x:

– if h(x) has never been evaluated before:

• flip 256 new random coins and return the result

– else

• return the same output as previous evaluations of h at x

Fact: for such a function, don’t expect to see any collisions until 

it’s been evaluated ≈ 2128 times.

– i.e., for all practical purposes, never!

Reason: the “birthday paradox.”
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Ideal Hash Function: A Random Function



• suppose h a uniformly random function with range Y

• suppose h evaluated at N different points
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The Birthday Paradox



• suppose h a uniformly random function with range Y

• suppose h evaluated at N different points

– N(N-1)/2 opportunities for a collision (one per pair of points)
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The Birthday Paradox



• suppose h a uniformly random function with range Y

• suppose h evaluated at N different points

– N(N-1)/2 opportunities for a collision (one per pair of points)

– probability that a given pair of points collide = 1/|Y|
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The Birthday Paradox



• suppose h a uniformly random function with range Y

• suppose h evaluated at N different points

– N(N-1)/2 opportunities for a collision (one per pair of points)

– probability that a given pair of points collide = 1/|Y|

– expect one collision when |Y| ≈ N(N-1)/2, or N ≈ 2|𝑌|
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The Birthday Paradox



• suppose h a uniformly random function with range Y

• suppose h evaluated at N different points

– N(N-1)/2 opportunities for a collision (one per pair of points)

– probability that a given pair of points collide = 1/|Y|

– expect one collision when |Y| ≈ N(N-1)/2, or N ≈ 2|𝑌|

– if Y = 256-bit strings, need N ≈ 2256/2 = 2128
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The Birthday Paradox



• suppose h a uniformly random function with range Y

• suppose h evaluated at N different points

– N(N-1)/2 opportunities for a collision (one per pair of points)

– probability that a given pair of points collide = 1/|Y|

– expect one collision when |Y| ≈ N(N-1)/2, or N ≈ 2|𝑌|

– if Y = 256-bit strings, need N ≈ 2256/2 = 2128

Also: (more detailed but elementary probability calculations)

– # of evaluations << 2128 
➔ almost no chance of a collision

– # of evaluations >> 2128 
➔ almost no chance of no collisions
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The Birthday Paradox



Informal definition: a function is collision-resistant if it’s 

computationally infeasible to find collisions.
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Cryptographic Hash Functions



Informal definition: a function is collision-resistant if it’s 

computationally infeasible to find collisions.

– intuitively, as hard as for a random function with the same range

– like signatures, precise security statement involve many nuances

– more common property desired of “cryptographic” hash functions
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Cryptographic Hash Functions



Informal definition: a function is collision-resistant if it’s 

computationally infeasible to find collisions.

– intuitively, as hard as for a random function with the same range

– like signatures, precise security statement involve many nuances

– more common property desired of “cryptographic” hash functions

Birthday paradox: size of range = twice the desired bits of security.
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Cryptographic Hash Functions



Informal definition: a function is collision-resistant if it’s 

computationally infeasible to find collisions.

– intuitively, as hard as for a random function with the same range

– like signatures, precise security statement involve many nuances

– more common property desired of “cryptographic” hash functions

Birthday paradox: size of range = twice the desired bits of security.

Upshot: can use a collision-resistant hash function (with e.g. 256-

bit outputs) to provide objects with names that are short and (for 

all practical purposes) unique.  [no coordination necessary!]
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Cryptographic Hash Functions



27



Note: infeasible to use a random function in practice.

– describing such a function requires an infinite number of bits
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Case Study: SHA-256



Note: infeasible to use a random function in practice.

– describing such a function requires an infinite number of bits

In practice: use function that is easy to describe + evaluate, but 

as unpredictable (for practical purposes) as a random function.
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Case Study: SHA-256



30

Code for SHA-256



Note: infeasible to use a random function in practice.

– describing such a function requires an infinite number of bits

In practice: use function that is easy to describe + evaluate, but 

as unpredictable (for practical purposes) as a random function.

Canonical example: SHA-256 (used in Bitcoin, Solana, etc.).

• based on the Merkle-Damgard approach of iteratively applying 

a ”compression function” to chunks of the input
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Case Study: SHA-256



– [assuming target output length = 256 bits]

• break input into chunks x1,x2,…,xm of 512 bits each

• for i = 1,2,…,m:
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The Merkle-Damgard Approach



– [assuming target output length = 256 bits]

• break input into chunks x1,x2,…,xm of 512 bits each

• for i = 1,2,…,m:

– hi := f(xi,hi-1) [f = “compression function,” h0 = fixed default value (IV)]
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The Merkle-Damgard Approach



– [assuming target output length = 256 bits]

• break input into chunks x1,x2,…,xm of 512 bits each

• for i = 1,2,…,m:

– hi := f(xi,hi-1) [f = “compression function,” h0 = fixed default value (IV)]

• return last 256 bits of hm
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The Merkle-Damgard Approach



– [assuming target output length = 256 bits]

• break input into chunks x1,x2,…,xm of 512 bits each

• for i = 1,2,…,m:

– hi := f(xi,hi-1) [f = “compression function,” h0 = fixed default value (IV)]

• return last 256 bits of hm

Compression function: resembles a block cipher (like AES).
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The Merkle-Damgard Approach

f

512 bits

512 bits

512 bits



Note: infeasible to use a random function in practice.

In practice: use function that is easy to describe + evaluate, but 

as unpredictable (for practical purposes) as a random function.

Canonical example: SHA-256 (used in Bitcoin, Solana, etc.).

– based on the Merkle-Damgard approach of iteratively applying a 

”compression function” to chunks of the input
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Case Study: SHA-256

f f f f ….

x2 x3 x4x1

IV



Warning: cryptographic hash functions are not random functions.

– deterministic, often < 100 lines of code

– have detectable properties that random functions don’t have

• does not necessarily contradict collision-resistance
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Cryptographic vs. Random Functions



Warning: cryptographic hash functions are not random functions.

– deterministic, often < 100 lines of code

– have detectable properties that random functions don’t have

• does not necessarily contradict collision-resistance

Example: length-extension attacks.

– applies to hash functions that use the Merkle-Damgard approach

– given x and h(x), can construct a y:=xz that extends x so that can 

compute h(y) from h(x) (rather than recomputing h(y) from scratch)
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Cryptographic vs. Random Functions



Warning: cryptographic hash functions are not random functions.

– deterministic, often < 100 lines of code

– have detectable properties that random functions don’t have

• does not necessarily contradict collision-resistance

Example: length-extension attacks.

– applies to hash functions that use the Merkle-Damgard approach

– given x and h(x), can construct a y:=xz that extends x so that can 

compute h(y) from h(x) (rather than recomputing h(y) from scratch)

• lethal for HMACs, not obviously relevant to blockchain protocols

• reason why SHA-256 often applied twice in the Bitcoin protocol?
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Cryptographic vs. Random Functions



Warning: cryptographic hash functions are not random functions.

Example: length-extension attacks.

– applies to hash functions that use the Merkle-Damgard approach

– given x and h(x), can construct a y:=xz that extends x so that can 

compute h(y) from h(x) (rather than recomputing h(y) from scratch)

Tl;dr: practitioners treat cryptographic hash functions like       

SHA-256 as random functions, even though they’re not.

– typically can get away with it, though beware of important edge cases
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Cryptographic vs. Random Functions



Recall: in e.g. Tendermint, validators pass around entire chains.
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Compression via Hash Functions



• at time 4∆ ⋅ 𝑣: 

– each validator i sends its current chain Ai to v’s leader ℓ

• at time 4∆ ⋅ 𝑣 + Δ: 

– let A = of the Ai’s received, the most recently created one; let B := all not-yet-included (in A) valid txs ℓ knows about

– ℓ sends proposal (A,B) to all other validators

• at time 4∆ ⋅ 𝑣 + 2Δ: 

– if validator i receives a proposal (A,B) from ℓ with A = Ai or with A more recent than Ai by this time:

• send “(A,B) is up-to-date” message to all validators

• at time 4∆ ⋅ 𝑣 + 3Δ: 

– if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time (a read quorum):

• package these messages into a quorum certificate (QC), Q

• send “ack (A,B,Q)” message to all validators and reset Ai  := (A,B,Q)

• at time 4∆ ⋅ 𝑣 + 4Δ: 

– if validator i has received > 2n/3 “ack (A,B,Q)” messages (a write quorum):

• reset Ci := (A,B,Q) (and also Ai := (A,B,Q), if necessary)
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Protocol D (≈ Tendermint)



Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:
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Compression via Hash Functions



Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:

• every block specifies a predecessor via hash of latter

– additional metadata, required for block to be viewed as valid
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Compression via Hash Functions

B3B2B1B0
….. Bv

“hash 

pointers”



Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:

• every block specifies a predecessor via hash of latter

– additional metadata, required for block to be viewed as valid

• leader proposes a block B, not a chain
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Compression via Hash Functions

B3B2B1B0
….. Bv

“hash 

pointers”



Recall: in e.g. Tendermint, validators pass around entire chains.

To make practical:

• every block specifies a predecessor via hash of latter

– additional metadata, required for block to be viewed as valid

• leader proposes a block B, not a chain

• “up-to-date” and “ack” messages reference has h(B), not B

– quorum certificates attest to a blockhash, not a block (or a chain)
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Compression via Hash Functions

B3B2B1B0
….. Bv

“hash 

pointers”



• at time 4∆ ⋅ 𝑣: 

– each validator i sends its current chain Ai to v’s leader ℓ

• at time 4∆ ⋅ 𝑣 + Δ: 

– let A = of the Ai’s received, the most recently created one; let B := all not-yet-included (in A) valid txs ℓ knows about

– ℓ sends proposal (A,B) to all other validators

• at time 4∆ ⋅ 𝑣 + 2Δ: 

– if validator i receives a proposal (A,B) from ℓ with A = Ai or with A more recent than Ai by this time:

• send “(A,B) is up-to-date” message to all validators

• at time 4∆ ⋅ 𝑣 + 3Δ: 

– if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time (a read quorum):

• package these messages into a quorum certificate (QC), Q

• send “ack (A,B,Q)” message to all validators and reset Ai  := (A,B,Q)

• at time 4∆ ⋅ 𝑣 + 4Δ: 

– if validator i has received > 2n/3 “ack (A,B,Q)” messages (a write quorum):

• reset Ci := (A,B,Q) (and also Ai := (A,B,Q), if necessary)
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Protocol D (≈ Tendermint)



To make practical:

• every block specifies a predecessor via hash of latter

• leader proposes a block B, not a chain

• “up-to-date” and “ack” messages reference has h(B), not B
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Compression via Hash Functions



To make practical:

• every block specifies a predecessor via hash of latter

• leader proposes a block B, not a chain

• “up-to-date” and “ack” messages reference has h(B), not B

Benefit: size of blockhash << size of block << size of chain. 
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Compression via Hash Functions



To make practical:

• every block specifies a predecessor via hash of latter

• leader proposes a block B, not a chain

• “up-to-date” and “ack” messages reference has h(B), not B

Benefit: size of blockhash << size of block << size of chain. 

Issue: validator may know blockhash before corresponding block.

– e.g., the predecessor blockhash in the current leader’s block proposal

– e.g., the blockhash referenced in “up-to-date” and “ack” messages

50

Compression via Hash Functions



Issue: validator may know blockhash before corresponding block.
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Cryptographic Hashes Are Binding



Issue: validator may know blockhash before corresponding block.

Note: collision-resistance of hash fn ➔ can’t reverse engineer 

block from blockhash.  [i.e., collision-resistance ➔ one-way function]

• thus: validator must obtain the full block from some other source
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Cryptographic Hashes Are Binding



Issue: validator may know blockhash before corresponding block.

Note: collision-resistance of hash fn ➔ can’t reverse engineer 

block from blockhash.  [i.e., collision-resistance ➔ one-way function]

• thus: validator must obtain the full block from some other source

Worry: could an untrusted source fabricate the block?
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Cryptographic Hashes Are Binding



Issue: validator may know blockhash before corresponding block.

Note: collision-resistance of hash fn ➔ can’t reverse engineer 

block from blockhash.  [i.e., collision-resistance ➔ one-way function]

• thus: validator must obtain the full block from some other source

Worry: could an untrusted source fabricate the block?

Good news: no, would contradict collision-resistance of hash fn.

– collision-resistant ➔ “second pre-image resistant”
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Cryptographic Hashes Are Binding



Terminology: hash h(x) is a commitment to x.

• analogy: object in a locked box
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Cryptographic Commitments



Terminology: hash h(x) is a commitment to x.

• analogy: object in a locked box

• binding: after announcing h(x), can’t later pretend to have 

committed to some y ≠ x (collision-resistance ➔ h(y) ≠ h(x))
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Cryptographic Commitments



Terminology: hash h(x) is a commitment to x.

• analogy: object in a locked box

• binding: after announcing h(x), can’t later pretend to have 

committed to some y ≠ x (collision-resistance ➔ h(y) ≠ h(x))

• hiding: knowing only h(x), don’t know x until it’s revealed

– can be important e.g. for privacy in some applications
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Cryptographic Commitments



Terminology: hash h(x) is a commitment to x.

• analogy: object in a locked box

• binding: after announcing h(x), can’t later pretend to have 

committed to some y ≠ x (collision-resistance ➔ h(y) ≠ h(x))

• hiding: knowing only h(x), don’t know x until it’s revealed

– can be important e.g. for privacy in some applications

Worry: what if validator can’t find source for block?

• need to ensure this never happens (“data availability”)
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Cryptographic Commitments
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