
Lecture #11:

Merkle and Merkle-Patricia Trees

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Querying a commitment.

– e.g., verifiable reporting of whether a given tx included in a block

2. Merkle trees (e.g., for transactions).

– commitment to a list, easy to reveal any given list element

3. Merkle-Patricia trees (e.g., for blockchain state).

– as used in Ethereum

4. Merkle proofs for state transitions/“statelessness.”

– e.g., verifiable reporting of the result of simulating a transaction
2

Goals for Lecture #11

1. Can use a collision-resistant hash function (like SHA-256) to

give short names to objects (unique for all practical purposes).

2. Practitioners treat cryptographic hash functions like SHA-256

as random functions even though they are not.

– more predictable than random functions (e.g., length-extension attack),

but doesn’t necessarily contradict collision-resistance

3. Output of a cryptographic hash function can be viewed as a

binding (and hiding) commitment to a particular input.

– infeasible to find a second input that would yield the same commitment
3

Recap from Lecture #10

Example: in Tendermint, validator hears about a blockhash h(B)

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

4

Revealing a Committed Value

Example: in Tendermint, validator hears about a blockhash h(B)

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

Solution: ask others for block, check that hash matches h(B).

5

Revealing a Committed Value

Example: in Tendermint, validator hears about a blockhash h(B)

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

Solution: ask others for block, check that hash matches h(B).

Properties:

• no false negatives: if sent actual block B, hash will match h(B)

6

Revealing a Committed Value

Example: in Tendermint, validator hears about a blockhash h(B)

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

Solution: ask others for block, check that hash matches h(B).

Properties:

• no false negatives: if sent actual block B, hash will match h(B)

• no false positives (unless find collision of h): if sent a block

B’ ≠ B, hash h(B’) won’t match h(B)
7

Revealing a Committed Value

Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks

8

Partial Reveal of a Committed Value

Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks

Simple solution: ask for B, check that hash = h(B), check if 𝑡 ∈ 𝐵.

– as before, no false negatives or (by collision-resistance) false positives

– might be downloading 4000 transactions to check for one

9

Partial Reveal of a Committed Value

Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks

Simple solution: ask for B, check that hash = h(B), check if 𝑡 ∈ 𝐵.

– as before, no false negatives or (by collision-resistance) false positives

– might be downloading 4000 transactions to check for one

Question: how to check with less communication?

10

Partial Reveal of a Committed Value

Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks

Simple solution: ask for B, check that hash = h(B), check if 𝑡 ∈ 𝐵.

– as before, no false negatives or (by collision-resistance) false positives

– might be downloading 4000 transactions to check for one

Question: how to check with less communication?

Idea: add more structure to the commitment.

– will use hierarchy of hashes, not just a single hash
11

Partial Reveal of a Committed Value

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

12

Merkle Trees

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

13

Merkle Trees

x1 x2 x3 x4 x5 x6 x7 x8

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

14

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

x3 x4

y3 y4:= h(x3) := h(x4)

x5 x6

y5 y6:= h(x5) := h(x6)

x7 x8

y7 y8:= h(x7) := h(x8)

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

15

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

x5 x6

y5 y6:= h(x5) := h(x6)

x7 x8

y7 y8:= h(x7) := h(x8)

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

16

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

x5 x6

y5 y6:= h(x5) := h(x6)

x7 x8

y7 y8:= h(x7) := h(x8)

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

17

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

18

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

19

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

20

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

Final commitment: the Merkle root (i.e., y2n-1).

21

Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

21

22

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

22

To prove that t = x4:

23

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

23

To prove that t = x4: exhibit siblings along root-leaf path: y3, y9, y14.

24

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

24

To prove that t = x4: exhibit siblings along root-leaf path: y3, y9, y14.

To verify: compute z4=h(t), z10=h(y3 || z4), z13=h(y9 || z10),

 z15=h(z13 || y14), check that z15=y15.

25

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

25

To prove that t = x5:

26

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

26

To prove that t = x5: exhibit siblings along root-leaf path: y6, y12, y13.

27

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

27

To prove that t = x5: exhibit siblings along root-leaf path: y6, y12, y13.

To verify: compute z5=h(t), z11=h(z5 || y6), z14=h(z11 || y12),

 z15=h(y13 || z14), check that z15=y15.

28

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

28

In general: O(n) space and hashes to construct Merkle tree.

• commitment size = O(1) [256-bit Merkle root]

• Merkle proofs: O(log n) space, O(log n) time to construct,

O(log n) hashes to verify

29

Merkle Proofs: Time and Space

29

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15

• no false negatives: if 𝑡 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛}, can construct a Merkle

proof guaranteed to pass the test

30

Merkle Proofs: Correctness

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15

30

• no false negatives: if 𝑡 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛}, can construct a Merkle

proof guaranteed to pass the test

• no false positives (unless find collision of h): if 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛},
infeasible to find false Merkle proof that passes the test

– somewhere along path, need to find false sibling hash giving the correct

parent hash

31

Merkle Proofs: Correctness

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15

31

In Bitcoin: each block includes Merkle root of its txs (as metadata).

– block name = hash of its metadata (“block header”), not of entire block

– block name depends on each of its txs via Merkle root in block header

32

Merkle Trees in Bitcoin

32

Issue: how to verify assertion that 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛}?

33

Proof of Non-Membership

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15

33

Issue: how to verify assertion that 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛}?

• modified construction: arrange leaves in sorted order

34

Proof of Non-Membership

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15

34
< < < < < < <

Issue: how to verify assertion that 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛}?

• modified construction: arrange leaves in sorted order

• to prove non-membership:

– let i be such that xi < t < xi+1

– prove membership of xi (at position i) and xi+1 (at position i+1)

35

Proof of Non-Membership

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15

35
< < < < < < <

Application: committing to states of all accounts in Ethereum.

– example: want short proof of some account’s ETH balance

36

(Modified) Merkle-Patricia Trees

Application: committing to states of all accounts in Ethereum.

– example: want short proof of some account’s ETH balance

Note: accounts naturally indexed by ID (rather than position).

37

(Modified) Merkle-Patricia Trees

Application: committing to states of all accounts in Ethereum.

– example: want short proof of some account’s ETH balance

Note: accounts naturally indexed by ID (rather than position).

First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

38

(Modified) Merkle-Patricia Trees

…..……….

0

1

F

…..……….

0

1 F
…..……….

First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:

39

(Modified) Merkle-Patricia Trees

…..……….

0

1

F

…..……….

0

1 F
…..……….

First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:

– introduce nodes and edges to tree only as needed

40

(Modified) Merkle-Patricia Trees

…..……….

0

1

F

…..……….

0

1 F
…..……….

First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:

– introduce nodes and edges to tree only as needed

– contract paths of nodes with only one child

41

(Modified) Merkle-Patricia Trees

…..……….

0

1

F

…..……….

0

1 F
…..……….

A

7

E

3 8

A7E

3 8

First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:

– introduce nodes and edges to tree only as needed

– contract paths of nodes with only one child

Merkle proofs: must supply all (≤ 15) sibling hashes.
42

(Modified) Merkle-Patricia Trees

…..……….

0

1

F

…..……….

0

1 F
…..……….

A

7

E

3 8

A7E

3 8

Primary use: state of Ethereum blockchain (leaves = accounts).

– even with optimizations, size = 100s of GBs (at least)

– every block includes commitment to “state root” (post-execution)

43

Merkle-Patricia Trees in Ethereum

Primary use: state of Ethereum blockchain (leaves = accounts).

– even with optimizations, size = 100s of GBs (at least)

– every block includes commitment to “state root” (post-execution)

Additional uses:

• storage in each account

– leaves = memory locations

• transactions in each block

– leaves = transactions

• tx receipts in each block
44

Merkle-Patricia Trees in Ethereum

Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

45

Proving a State Transition

Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?

46

Proving a State Transition

Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?

– answer by supplying Merkle proofs for every read/write to the state tree

required to carry out the computation

47

Proving a State Transition

Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?

– answer by supplying Merkle proofs for every read/write to the state tree

required to carry out the computation

– first, supply bytecode (tx only specifies account + data, not bytecode)

and Merkle proof that it’s the correct bytecode (check against state root)

48

Proving a State Transition

Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?

– answer by supplying Merkle proofs for every read/write to the state tree

required to carry out the computation

– first, supply bytecode (tx only specifies account + data, not bytecode)

and Merkle proof that it’s the correct bytecode (check against state root)

– simulate computation, whenever state is accessed, supply

corresponding value and Merkle proof that it’s the correct value

49

Proving a State Transition

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

50

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

51

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

52

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

53

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

– one possible future: Verkle trees (using KZG commitments)

54

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

– one possible future: Verkle trees (using KZG commitments)

– another: each block includes SNARK proving its correctness 55

“Statelessness”

	Slide 1: Lecture #11: Merkle and Merkle-Patricia Trees
	Slide 2: Goals for Lecture #11
	Slide 3: Recap from Lecture #10
	Slide 4: Revealing a Committed Value
	Slide 5: Revealing a Committed Value
	Slide 6: Revealing a Committed Value
	Slide 7: Revealing a Committed Value
	Slide 8: Partial Reveal of a Committed Value
	Slide 9: Partial Reveal of a Committed Value
	Slide 10: Partial Reveal of a Committed Value
	Slide 11: Partial Reveal of a Committed Value
	Slide 12: Merkle Trees
	Slide 13: Merkle Trees
	Slide 14: Merkle Trees
	Slide 15: Merkle Trees
	Slide 16: Merkle Trees
	Slide 17: Merkle Trees
	Slide 18: Merkle Trees
	Slide 19: Merkle Trees
	Slide 20: Merkle Trees
	Slide 21: Merkle Trees
	Slide 22: Merkle Proofs
	Slide 23: Merkle Proofs
	Slide 24: Merkle Proofs
	Slide 25: Merkle Proofs
	Slide 26: Merkle Proofs
	Slide 27: Merkle Proofs
	Slide 28: Merkle Proofs
	Slide 29: Merkle Proofs: Time and Space
	Slide 30: Merkle Proofs: Correctness
	Slide 31: Merkle Proofs: Correctness
	Slide 32: Merkle Trees in Bitcoin
	Slide 33: Proof of Non-Membership
	Slide 34: Proof of Non-Membership
	Slide 35: Proof of Non-Membership
	Slide 36: (Modified) Merkle-Patricia Trees
	Slide 37: (Modified) Merkle-Patricia Trees
	Slide 38: (Modified) Merkle-Patricia Trees
	Slide 39: (Modified) Merkle-Patricia Trees
	Slide 40: (Modified) Merkle-Patricia Trees
	Slide 41: (Modified) Merkle-Patricia Trees
	Slide 42: (Modified) Merkle-Patricia Trees
	Slide 43: Merkle-Patricia Trees in Ethereum
	Slide 44: Merkle-Patricia Trees in Ethereum
	Slide 45: Proving a State Transition
	Slide 46: Proving a State Transition
	Slide 47: Proving a State Transition
	Slide 48: Proving a State Transition
	Slide 49: Proving a State Transition
	Slide 50: “Statelessness”
	Slide 51: “Statelessness”
	Slide 52: “Statelessness”
	Slide 53: “Statelessness”
	Slide 54: “Statelessness”
	Slide 55: “Statelessness”

