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1. Querying a commitment.

– e.g., verifiable reporting of whether a given tx included in a block

2. Merkle trees (e.g., for transactions).

– commitment to a list, easy to reveal any given list element

3. Merkle-Patricia trees (e.g., for blockchain state). 

– as used in Ethereum

4. Merkle proofs for state transitions/“statelessness.”

– e.g., verifiable reporting of the result of simulating a transaction
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Goals for Lecture #11



1. Can use a collision-resistant hash function (like SHA-256) to 

give short names to objects (unique for all practical purposes).

2. Practitioners treat cryptographic hash functions like SHA-256 

as random functions even though they are not.

– more predictable than random functions (e.g., length-extension attack), 

but doesn’t necessarily contradict collision-resistance

3. Output of a cryptographic hash function can be viewed as a 

binding (and hiding) commitment to a particular input.

– infeasible to find a second input that would yield the same commitment
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Recap from Lecture #10



Example: in Tendermint, validator hears about a blockhash h(B) 

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

4

Revealing a Committed Value



Example: in Tendermint, validator hears about a blockhash h(B) 

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

Solution: ask others for block, check that hash matches h(B).
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Revealing a Committed Value



Example: in Tendermint, validator hears about a blockhash h(B) 

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

Solution: ask others for block, check that hash matches h(B).

Properties:

• no false negatives: if sent actual block B, hash will match h(B)
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Revealing a Committed Value



Example: in Tendermint, validator hears about a blockhash h(B) 

before hearing the block B.

– e.g., as the predecessor in the current leader’s proposal

– e.g., in “up-to-date” messages from other validators

Solution: ask others for block, check that hash matches h(B).

Properties:

• no false negatives: if sent actual block B, hash will match h(B)

• no false positives (unless find collision of h): if sent a block       

B’ ≠ B, hash h(B’) won’t match h(B)
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Revealing a Committed Value



Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks
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Partial Reveal of a Committed Value



Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks

Simple solution: ask for B, check that hash = h(B), check if 𝑡 ∈ 𝐵.

– as before, no false negatives or (by collision-resistance) false positives

– might be downloading 4000 transactions to check for one
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Partial Reveal of a Committed Value



Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks

Simple solution: ask for B, check that hash = h(B), check if 𝑡 ∈ 𝐵.

– as before, no false negatives or (by collision-resistance) false positives

– might be downloading 4000 transactions to check for one

Question: how to check with less communication?
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Partial Reveal of a Committed Value



Easier (?) problem: for blockhash h(B) and tx t, is 𝑡 ∈ 𝐵?

– e.g., wallet software tracking blockhashes but not blocks

Simple solution: ask for B, check that hash = h(B), check if 𝑡 ∈ 𝐵.

– as before, no false negatives or (by collision-resistance) false positives

– might be downloading 4000 transactions to check for one

Question: how to check with less communication?

Idea: add more structure to the commitment.

– will use hierarchy of hashes, not just a single hash
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Partial Reveal of a Committed Value



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2 x3 x4 x5 x6 x7 x8



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

x3 x4

y3 y4:= h(x3) := h(x4)

x5 x6

y5 y6:= h(x5) := h(x6)

x7 x8

y7 y8:= h(x7) := h(x8)



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

x5 x6

y5 y6:= h(x5) := h(x6)

x7 x8

y7 y8:= h(x7) := h(x8)



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

x5 x6

y5 y6:= h(x5) := h(x6)

x7 x8

y7 y8:= h(x7) := h(x8)



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)



Example application: committing to txs in each Bitcoin block.

Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)



Assume: n pieces of data x1,x2,…,xn, n a power of 2. h = hash fn.

Final commitment: the Merkle root (i.e., y2n-1).
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Merkle Trees

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

21



22

Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)
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To prove that t = x4:
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Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)
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To prove that t = x4: exhibit siblings along root-leaf path: y3, y9, y14.
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Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)
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To prove that t = x4: exhibit siblings along root-leaf path: y3, y9, y14.

To verify: compute z4=h(t), z10=h(y3 || z4), z13=h(y9 || z10),    

 z15=h(z13 || y14), check that z15=y15.
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Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)
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To prove that t = x5:
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Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)
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To prove that t = x5: exhibit siblings along root-leaf path: y6, y12, y13.
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Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

27



To prove that t = x5: exhibit siblings along root-leaf path: y6, y12, y13.

To verify: compute z5=h(t), z11=h(z5 || y6), z14=h(z11 || y12),    

 z15=h(y13 || z14), check that z15=y15.
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Merkle Proofs

x1 x2

y1 y2:= h(x1) := h(x2)

y9 := h(y1 || y2)

x3 x4

y3 y4:= h(x3) := h(x4)

y10 := h(y3 || y4)

y13 := h(y9 || y10)

x5 x6

y5 y6:= h(x5) := h(x6)

y11 := h(y5 || y6)

x7 x8

y7 y8:= h(x7) := h(x8)

y12 := h(y7 || y8)

y14 := h(y11 || y12)

y15 := h(y13 || y14)

28



In general: O(n) space and hashes to construct Merkle tree.

• commitment size = O(1)  [256-bit Merkle root]

• Merkle proofs: O(log n) space, O(log n) time to construct,     

O(log n) hashes to verify
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Merkle Proofs: Time and Space

29

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15



• no false negatives: if 𝑡 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛}, can construct a Merkle 

proof guaranteed to pass the test
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Merkle Proofs: Correctness

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15
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• no false negatives: if 𝑡 ∈ {𝑥1, 𝑥2, … , 𝑥𝑛}, can construct a Merkle 

proof guaranteed to pass the test

• no false positives (unless find collision of h): if 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛}, 
infeasible to find false Merkle proof that passes the test

– somewhere along path, need to find false sibling hash giving the correct 

parent hash
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Merkle Proofs: Correctness

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15
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In Bitcoin: each block includes Merkle root of its txs (as metadata).

– block name = hash of its metadata (“block header”), not of entire block

– block name depends on each of its txs via Merkle root in block header
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Merkle Trees in Bitcoin

32



Issue: how to verify assertion that 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛}?
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Proof of Non-Membership

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15
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Issue: how to verify assertion that 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛}?

• modified construction: arrange leaves in sorted order

34

Proof of Non-Membership

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15

34
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Issue: how to verify assertion that 𝑡 ∉ {𝑥1, 𝑥2, … , 𝑥𝑛}?

• modified construction: arrange leaves in sorted order

• to prove non-membership:

– let i be such that xi < t < xi+1

– prove membership of xi (at position i) and xi+1 (at position i+1) 

35

Proof of Non-Membership

x1 x2

y1 y2

y9

x3 x4

y3 y4

y10

y13

x5 x6

y5 y6

y11

x7 x8

y7 y8

y12

y14

y15
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Application: committing to states of all accounts in Ethereum.

– example: want short proof of some account’s ETH balance

36

(Modified) Merkle-Patricia Trees



Application: committing to states of all accounts in Ethereum.

– example: want short proof of some account’s ETH balance

Note: accounts naturally indexed by ID (rather than position).
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(Modified) Merkle-Patricia Trees



Application: committing to states of all accounts in Ethereum.

– example: want short proof of some account’s ETH balance

Note: accounts naturally indexed by ID (rather than position).

First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)
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(Modified) Merkle-Patricia Trees
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First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:
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(Modified) Merkle-Patricia Trees
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First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:

– introduce nodes and edges to tree only as needed 
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(Modified) Merkle-Patricia Trees
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First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:

– introduce nodes and edges to tree only as needed 

– contract paths of nodes with only one child
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(Modified) Merkle-Patricia Trees
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First cut: radix tree, branching factor = 16 (hexadecimal), 40 levels.

– leaves correspond to accounts (labels on root-leaf path  account ID)

Optimizations:

– introduce nodes and edges to tree only as needed 

– contract paths of nodes with only one child

Merkle proofs: must supply all (≤ 15) sibling hashes.
42

(Modified) Merkle-Patricia Trees
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Primary use: state of Ethereum blockchain (leaves = accounts).

– even with optimizations, size = 100s of GBs (at least)

– every block includes commitment to “state root” (post-execution)
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Merkle-Patricia Trees in Ethereum



Primary use: state of Ethereum blockchain (leaves = accounts).

– even with optimizations, size = 100s of GBs (at least)

– every block includes commitment to “state root” (post-execution)

Additional uses:

• storage in each account

– leaves = memory locations

• transactions in each block

– leaves = transactions

• tx receipts in each block
44

Merkle-Patricia Trees in Ethereum



Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

45

Proving a State Transition



Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?
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Proving a State Transition



Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?

– answer by supplying Merkle proofs for every read/write to the state tree 

required to carry out the computation

47

Proving a State Transition



Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?

– answer by supplying Merkle proofs for every read/write to the state tree 

required to carry out the computation

– first, supply bytecode (tx only specifies account + data, not bytecode) 

and Merkle proof that it’s the correct bytecode (check against state root)
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Proving a State Transition



Basic query to MPT: current balance of my account?

– answer by supplying Merkle proof w.r.t. current state tree

Advanced query: how would balance change after executing tx t?

– answer by supplying Merkle proofs for every read/write to the state tree 

required to carry out the computation

– first, supply bytecode (tx only specifies account + data, not bytecode) 

and Merkle proof that it’s the correct bytecode (check against state root)

– simulate computation, whenever state is accessed, supply 

corresponding value and Merkle proof that it’s the correct value

49

Proving a State Transition



Note: to determine if block is valid, generally need to keep track of 

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

50

“Statelessness”



Note: to determine if block is valid, generally need to keep track of 

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to 

assess validity purely from block itself (no other state needed).
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“Statelessness”



Note: to determine if block is valid, generally need to keep track of 

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to 

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block
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“Statelessness”



Note: to determine if block is valid, generally need to keep track of 

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to 

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity
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Note: to determine if block is valid, generally need to keep track of 

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to 

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

– one possible future: Verkle trees (using KZG commitments)
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Note: to determine if block is valid, generally need to keep track of 

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to 

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

– one possible future: Verkle trees (using KZG commitments)

– another: each block includes SNARK proving its correctness 55

“Statelessness”
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