Lecture #12: Data Availability

COMS 4995-001: The Science of Blockchains URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Lecture #12

- 1. Data availability committees.
 - offload storage responsibilities from validators to third parties
- 2. Verifiable information dispersal (VID).
 - use Merkle trees and Reed-Solomon codes to get minimal overhead
- 3. Data availability sampling.
 - how can an end user be confident that data is available?
 - idea: repeatedly download small random chunks

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

Typical solution: validators expected to store what is necessary to efficiently check validity of txs and block (but nothing beyond this).

 at least a few entities (validators and/or third parties) maintain full history (last resort for reconstructing the blockchain state)

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

Typical solution: validators expected to store what is necessary to efficiently check validity of txs and block (but nothing beyond this).

 at least a few entities (validators and/or third parties) maintain full history (last resort for reconstructing the blockchain state)

Data availability (DA) problem: how to be sure that data really is being stored as intended?

Optimizations to the original Tendermint protocol:

Optimizations to the original Tendermint protocol:

1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain

Optimizations to the original Tendermint protocol:

- 1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain
- 2. validators send "up-to-date" message only if they've seen all relevant data (predecessors), include only blockhash in msg

Optimizations to the original Tendermint protocol:

- 1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain
- 2. validators send "up-to-date" message only if they've seen all relevant data (predecessors), include only blockhash in msg
- validators send "ack" message upon hearing > 2n/3 "up-todate" messages for the same blockhash
 - even if haven't yet received the corresponding block

Optimizations to the original Tendermint protocol:

- 1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain
- 2. validators send "up-to-date" message only if they've seen all relevant data (predecessors), include only blockhash in msg
- 3. validators send "ack" message upon hearing > 2n/3 "up-todate" messages for the same blockhash
 - even if haven't yet received the corresponding block

Question: why is optimization (3) safe?

Optimizations to the original Tendermint protocol:

- 1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain
- 2. validators send "up-to-date" message only if they've seen all relevant data (predecessors), include only blockhash in msg
- 3. validators send "ack" message upon hearing > 2n/3 "up-to-date" messages for the same blockhash (even if haven't yet received the corresponding block)

Question: why is optimization (3) safe?

 – if receive > 2n/3 "up-to-date" msgs for same blockhash → > n/3 of these from honest validators → must have seen corresponding block

Optimizations to the original Tendermint protocol:

- 1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain
- 2. validators send "up-to-date" message only if they've seen all relevant data (predecessors), include only blockhash in msg
- 3. validators send "ack" message upon hearing > 2n/3 "up-to-date" messages for the same blockhash (even if haven't yet received the corresponding block)

Question: why is optimization (3) safe?

 – if receive > 2n/3 "up-to-date" msgs for same blockhash → > n/3 of these from honest validators → must have seen corresponding block

Implicit assumption: honest validators: (i) store entire blockchain; and (ii) upload past blocks to others on request. 13

- n servers (permissioned, with publicly known public keys)
- bound f < n on how many servers might be faulty

- n servers (permissioned, with publicly known public keys)
- bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until \geq f+1 servers send back signed "ack h(x)" messages. [h=hash fn]

- n servers (permissioned, with publicly known public keys)
- bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until \geq f+1 servers send back signed "ack h(x)" messages. [h=hash fn]

Assumption: after signing an "ack h(x)" message, non-faulty server will store x and resend it on request, indefinitely.

- n servers (permissioned, with publicly known public keys)
- bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until \geq f+1 servers send back signed "ack h(x)" messages. [h=hash fn]

Assumption: after signing an "ack h(x)" message, non-faulty server will store x and resend it on request, indefinitely.

 any collection of f+1 signatures acking h(x) is proof (modulo assumptions) that the data x is available

- n servers (permissioned, with publicly known public keys)
- bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until \geq f+1 servers send back signed "ack h(x)" messages. [h=hash fn]

Assumption: after signing an "ack h(x)" message, non-faulty server will store x and resend it on request, indefinitely.

- any collection of f+1 signatures acking h(x) is proof (modulo assumptions) that the data x is available
- example: Arbitrum AnyTrust (e.g., n=12, f=10)

Setup: want to store data values $m_0, m_1, m_2, \ldots, m_{k-1}$. (e.g., 256 bits each)

- split data into chunks, if necessary

Setup: want to store data values $m_0, m_1, m_2, \ldots, m_{k-1}$. (e.g., 256 bits each)

- split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Setup: want to store data values $m_0, m_1, m_2, \ldots, m_{k-1}$. (e.g., 256 bits each)

- split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each m_i to only one (or a few) servers.

Setup: want to store data values $m_0, m_1, m_2, \dots, m_{k-1}$. (e.g., 256 bits each)

- split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each m_i to only one (or a few) servers.

Issue: if sent only to faulty servers, could get lost.

Setup: want to store data values $m_0, m_1, m_2, \dots, m_{k-1}$. (e.g., 256 bits each)

- split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each m_i to only one (or a few) servers.

Issue: if sent only to faulty servers, could get lost.

Solution: add redundancy to the m_i's using an erasure code.

- in effect, every server will store a little bit of info about every m_i

Recall: any two points determine a (unique) line.

• example: points (1,4) and (2,9) \rightarrow line y = 5x-1

- example: points (1,4) and (2,9) \rightarrow line y = 5x-1
- note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: any two points determine a (unique) line.

- example: points (1,4) and (2,9) \rightarrow line y = 5x-1
- note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

- if later remember only (3,14) and (4,19), can still recover line 5x-1

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x - 1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x - 1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form $f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0 = \sum_{i=0}^d a_i x^i.$

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x - 1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form $f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0 = \sum_{i=0}^d a_i x^i.$

Fact: any d+1 points $(x_0, y_0), (x_1, y_1), \dots, (x_d, y_d)$ determine a unique degree-d polynomial, f(x) [with $y_i=f(x_i)$ for all $i=0,1,2,\dots,d$].

- if store n > d+1 evaluations of f, can recover f from any d+1 of them

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x - 1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form $f(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0 = \sum_{i=0}^d a_i x^i.$

Fact: any d+1 points $(x_0, y_0), (x_1, y_1), \dots, (x_d, y_d)$ determine a unique degree-d polynomial, f(x) [with $y_i=f(x_i)$ for all $i=0,1,2,\dots,d$].

- if store n > d+1 evaluations of f, can recover f from any d+1 of them
- easy to compute f from evaluations, e.g. via Lagrange interpolation
- corresponds to a *Reed-Solomon code* with parameters n and k=d+1

Setup: sender with k 256-bit values, $m_0, m_1, m_2, \dots, m_{k-1}$; n servers.

Setup: sender with k 256-bit values, $m_0, m_1, m_2, \ldots, m_{k-1}$; n servers.

Assumption: at most f faulty servers, with f < n/3 and $n-f \ge k$. - ex: n=3k+1, f=k

Setup: sender with k 256-bit values, $m_0, m_1, m_2, \ldots, m_{k-1}$; n servers.

Assumption: at most f faulty servers, with f < n/3 and $n-f \ge k$. - ex: n=3k+1, f=k

Setup: sender with k 256-bit values, $m_0, m_1, m_2, \ldots, m_{k-1}$; n servers.

Assumption: at most f faulty servers, with f < n/3 and $n-f \ge k$. - ex: n=3k+1, f=k

Step 1: sender interprets m_i 's as integers modulo p (p prime, $\approx 2^{256}$)

• sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$

Setup: sender with k 256-bit values, $m_0, m_1, m_2, \ldots, m_{k-1}$; n servers.

Assumption: at most f faulty servers, with f < n/3 and $n-f \ge k$. - ex: n=3k+1, f=k

- sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$
- sender computes $y_i = f(i)$ for i=1,2,...,n

Setup: sender with k 256-bit values, $m_0, m_1, m_2, \ldots, m_{k-1}$; n servers.

Assumption: at most f faulty servers, with f < n/3 and $n-f \ge k$. - ex: n=3k+1, f=k

- sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$
- sender computes $y_i = f(i)$ for i=1,2,...,n
- sender computes Merkle tree T with y_i's as leaves

Setup: sender with k 256-bit values, $m_0, m_1, m_2, \ldots, m_{k-1}$; n servers.

Assumption: at most f faulty servers, with f < n/3 and $n-f \ge k$. - ex: n=3k+1, f=k

- sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$
- sender computes $y_i = f(i)$ for i=1,2,...,n
- sender computes Merkle tree T with y's as leaves
- sender sends $(\mathbf{r}, \mathbf{y}_i, \pi_i)$ to server i $[\mathbf{r} = \text{Merkle root}, \pi_i = \text{Merkle proof}]$

Step 1: sender interprets m_i's as integers modulo p (p prime, ≈2²⁵⁶)

- sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$
- sender computes $y_i = f(i)$ for i=1,2,...,n
- sender computes Merkle tree T with y_i's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 1: sender interprets m_i's as integers modulo p (p prime, ≈2²⁵⁶)

- sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$
- sender computes $y_i = f(i)$ for i=1,2,...,n
- sender computes Merkle tree T with y_i's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 2: [if sender might equivocate] servers reach consensus on r

Step 1: sender interprets m_i's as integers modulo p (p prime, ≈2²⁵⁶)

- sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$
- sender computes $y_i = f(i)$ for i=1,2,...,n
- sender computes Merkle tree T with y_i's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 2: [if sender might equivocate] servers reach consensus on r

 if server i received valid tuple (r,y_i,π_i) from sender, send back an "ACK r" message (with server's signature)

Step 1: sender interprets m_i's as integers modulo p (p prime, ≈2²⁵⁶)

- sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$
- sender computes $y_i = f(i)$ for i=1,2,...,n
- sender computes Merkle tree T with y_i's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 2: [if sender might equivocate] servers reach consensus on r

 if server i received valid tuple (r,y_i,π_i) from sender, send back an "ACK r" message (with server's signature)

Step 3: if sender receives \geq k+f signed "ACK r" messages, assemble into a "DA certificate."

Step 1: sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$

- sender computes $y_i = f(i)$ for i=1,2,...,n, computes Merkle tree T with y_i 's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 2: if server i received valid tuple (r, y_i, π_i) from sender, send back an "ACK r" message Step 3: if sender receives \geq k+f signed "ACK r" messages, assemble into a "DA certificate." To reconstruct: (given a DA certificate for data $m_0, m_1, m_2, \dots, m_{k-1}$)

Step 1: sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$

- sender computes $y_i = f(i)$ for i=1,2,...,n, computes Merkle tree T with y_i 's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 2: if server i received valid tuple (r, y_i, π_i) from sender, send back an "ACK r" message

Step 3: if sender receives \geq k+f signed "ACK r" messages, assemble into a "DA certificate."

To reconstruct: (given a DA certificate for data $m_0, m_1, m_2, ..., m_{k-1}$)

- collect a set S of k signed tuples of the form (r, y_i, π_i)

Step 1: sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$

- sender computes $y_i = f(i)$ for i=1,2,...,n, computes Merkle tree T with y_i 's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 2: if server i received valid tuple (r, y_i, π_i) from sender, send back an "ACK r" message

Step 3: if sender receives \geq k+f signed "ACK r" messages, assemble into a "DA certificate."

To reconstruct: (given a DA certificate for data $m_0, m_1, m_2, \dots, m_{k-1}$)

- collect a set S of k signed tuples of the form (r, y_i, π_i)
- compute degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} a_i x^i$ s.t. f(i)=y_i for all i in S

Step 1: sender forms degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i \pmod{p}$

- sender computes $y_i = f(i)$ for i=1,2,...,n, computes Merkle tree T with y_i 's as leaves
- sender sends (r, y_i, π_i) to server i $[r = Merkle root, \pi_i = Merkle proof]$

Step 2: if server i received valid tuple (r, y_i, π_i) from sender, send back an "ACK r" message

Step 3: if sender receives \geq k+f signed "ACK r" messages, assemble into a "DA certificate."

To reconstruct: (given a DA certificate for data $m_0, m_1, m_2, \dots, m_{k-1}$)

- collect a set S of k signed tuples of the form (r, y_i, π_i)

- compute degree-(k-1) polynomial $f(x) = \sum_{i=0}^{k-1} a_i x^i$ s.t. f(i)=y_i for all i in S

- compute Merkle tree with values $f(1), f(2), \dots, f(n)$ at leaves, check root = r
 - if not, sender committed to polynomial w/degree > k-1 (fail) 48

Question: as an end user, how to be sure that a collection of servers really is storing critical data?

- e.g., don't accept the trust assumptions required by a DA certificate

Question: as an end user, how to be sure that a collection of servers really is storing critical data?

- e.g., don't accept the trust assumptions required by a DA certificate

Naïve solution: download data from servers to double-check.

- what if this is infeasible? (too much data and/or weak device)

Question: as an end user, how to be sure that a collection of servers really is storing critical data?

- e.g., don't accept the trust assumptions required by a DA certificate

Naïve solution: download data from servers to double-check.

- what if this is infeasible? (too much data and/or weak device)

Idea: download several random *chunks* of data to audit.

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random *chunks* of data to audit.

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random *chunks* of data to audit.

Intuition: suppose crash failures (of servers) only.

 – chunk data into k pieces, use a Reed-Solomon code to redundantly encode as 2k chunks (as in VID protocol), store chunks with servers

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random *chunks* of data to audit.

- chunk data into k pieces, use a Reed-Solomon code to redundantly encode as 2k chunks (as in VID protocol), store chunks with servers
- if uncrashed servers still have ≥ k chunks → data is still available (can reconstruct if needed)

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random *chunks* of data to audit.

- chunk data into k pieces, use a Reed-Solomon code to redundantly encode as 2k chunks (as in VID protocol), store chunks with servers
- if uncrashed servers still have ≥ k chunks → data is still available (can reconstruct if needed)
- if uncrashed servers only have < k chunks → can recognize this with 99% probability by downloading 7 random chunks

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random *chunks* of data to audit.

- chunk data into k pieces, use a Reed-Solomon code to redundantly encode as 2k chunks (as in VID protocol), store chunks with servers
- if uncrashed servers still have ≥ k chunks → data is still available (can reconstruct if needed)
- if uncrashed servers only have < k chunks → can recognize this with 99% probability by downloading 7 random chunks
- ideally, reconstruct chunks whenever they're detected as missing 56