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1. Data availability committees.

– offload storage responsibilities from validators to third parties

2. Verifiable information dispersal (VID).

– use Merkle trees and Reed-Solomon codes to get minimal overhead

3. Data availability sampling. 

– how can an end user be confident that data is available?

– idea: repeatedly download small random chunks
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Goals for Lecture #12



Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.
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Validator Responsibilities, Revisited



Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.
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Validator Responsibilities, Revisited



Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

Typical solution: validators expected to store what is necessary to 

efficiently check validity of txs and block (but nothing beyond this).

– at least a few entities (validators and/or third parties) maintain full 

history (last resort for reconstructing the blockchain state)
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Validator Responsibilities, Revisited



Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

Typical solution: validators expected to store what is necessary to 

efficiently check validity of txs and block (but nothing beyond this).

– at least a few entities (validators and/or third parties) maintain full 

history (last resort for reconstructing the blockchain state)

Data availability (DA) problem: how to be sure that data really is 

being stored as intended?
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Validator Responsibilities, Revisited



Optimizations to the original Tendermint protocol: 
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Tendermint with Blockhashes



Optimizations to the original Tendermint protocol: 

1. leader proposes block (w/predecessor specified by hash) 

rather than a full blockchain
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Tendermint with Blockhashes



Optimizations to the original Tendermint protocol: 

1. leader proposes block (w/predecessor specified by hash) 

rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all 

relevant data (predecessors), include only blockhash in msg
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Optimizations to the original Tendermint protocol: 

1. leader proposes block (w/predecessor specified by hash) 

rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all 

relevant data (predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-

date” messages for the same blockhash

– even if haven’t yet received the corresponding block
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Tendermint with Blockhashes



Optimizations to the original Tendermint protocol: 

1. leader proposes block (w/predecessor specified by hash) 

rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all 

relevant data (predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-

date” messages for the same blockhash

– even if haven’t yet received the corresponding block

Question: why is optimization (3) safe?
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Tendermint with Blockhashes



Optimizations to the original Tendermint protocol: 

1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all relevant data 

(predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-date” messages for the same 

blockhash (even if haven’t yet received the corresponding block)

Question: why is optimization (3) safe?

– if receive > 2n/3 “up-to-date” msgs for same blockhash ➔ > n/3 of 

these from honest validators ➔ must have seen corresponding block
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Tendermint with Blockhashes



Optimizations to the original Tendermint protocol: 

1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all relevant data 

(predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-date” messages for the same 

blockhash (even if haven’t yet received the corresponding block)

Question: why is optimization (3) safe?

– if receive > 2n/3 “up-to-date” msgs for same blockhash ➔ > n/3 of 

these from honest validators ➔ must have seen corresponding block

Implicit assumption: honest validators: (i) store entire blockchain; 

and (ii) upload past blocks to others on request. 13

Tendermint with Blockhashes



• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty
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Data Availability Committees (DACs)



• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1 

servers send back signed “ack h(x)” messages.  [h=hash fn]
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• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1 

servers send back signed “ack h(x)” messages.  [h=hash fn]

Assumption: after signing an “ack h(x)” message, non-faulty 

server will store x and resend it on request, indefinitely.
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• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1 

servers send back signed “ack h(x)” messages.  [h=hash fn]

Assumption: after signing an “ack h(x)” message, non-faulty 

server will store x and resend it on request, indefinitely.

– any collection of f+1 signatures acking h(x) is proof (modulo 

assumptions) that the data x is available
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Data Availability Committees (DACs)



• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1 

servers send back signed “ack h(x)” messages.  [h=hash fn]

Assumption: after signing an “ack h(x)” message, non-faulty 

server will store x and resend it on request, indefinitely.

– any collection of f+1 signatures acking h(x) is proof (modulo 

assumptions) that the data x is available

– example: Arbitrum AnyTrust (e.g., n=12, f=10)
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Data Availability Committees (DACs)



Setup: want to store data values m0,m1,m2,…,mk-1.  (e.g., 256 bits each)

– split data into chunks, if necessary
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Verifiable Information Dispersal (VID)



Setup: want to store data values m0,m1,m2,…,mk-1.  (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

20

Verifiable Information Dispersal (VID)



Setup: want to store data values m0,m1,m2,…,mk-1.  (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each mi to only one (or a few) servers.
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Setup: want to store data values m0,m1,m2,…,mk-1.  (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each mi to only one (or a few) servers.

Issue: if sent only to faulty servers, could get lost.
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Setup: want to store data values m0,m1,m2,…,mk-1.  (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each mi to only one (or a few) servers.

Issue: if sent only to faulty servers, could get lost.

Solution: add redundancy to the mi’s using an erasure code.

– in effect, every server will store a little bit of info about every mi
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Verifiable Information Dispersal (VID)



Recall: any two points determine a (unique) line.
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Recall: any two points determine a (unique) line.

• example: points (1,4) and (2,9) ➔ line y = 5x-1
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Recall: any two points determine a (unique) line.

• example: points (1,4) and (2,9) ➔ line y = 5x-1

• note: could redundantly encode line y = 5x -1 via the points 

(1,4), (2,9), (3,14), and (4,19)
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Recall: any two points determine a (unique) line.

• example: points (1,4) and (2,9) ➔ line y = 5x-1

• note: could redundantly encode line y = 5x -1 via the points 

(1,4), (2,9), (3,14), and (4,19)

– if later remember only (3,14) and (4,19), can still recover line 5x-1
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Reed-Solomon Codes



Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)
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Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.
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Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact: any d+1 points (x0,y0),(x1,y1),…,(xd,yd) determine a unique 

degree-d polynomial, f(x) [with yi=f(xi) for all i=0,1,2,...,d].

– if store n > d+1 evaluations of f, can recover f from any d+1 of them
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Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form    

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact: any d+1 points (x0,y0),(x1,y1),…,(xd,yd) determine a unique 

degree-d polynomial, f(x) [with yi=f(xi) for all i=0,1,2,...,d].

– if store n > d+1 evaluations of f, can recover f from any d+1 of them

– easy to compute f from evaluations, e.g. via Lagrange interpolation

– corresponds to a Reed-Solomon code with parameters n and k=d+1
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Reed-Solomon Codes



Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.
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The Cachin-Tessaro VID Protocol



Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k
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Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)
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Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)
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Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n
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Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.
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– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)
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• sender computes Merkle tree T with yi’s as leaves
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Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]
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Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]
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The Cachin-Tessaro VID Protocol (con’d)



Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: [if sender might equivocate] servers reach consensus on r 
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Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: [if sender might equivocate] servers reach consensus on r 

• if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an 

“ACK r” message (with server’s signature)
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Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: [if sender might equivocate] servers reach consensus on r 

• if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an 

“ACK r” message (with server’s signature)

Step 3: if sender receives ≥ k+f signed “ACK r” messages, 

assemble into a “DA certificate.” 44
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Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)
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Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)

– collect a set S of k signed tuples of the form (r,yi,𝜋𝑖)
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Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)

– collect a set S of k signed tuples of the form (r,yi,𝜋𝑖)

– compute degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑎𝑖𝑥𝑖 s.t. f(i)=yi for all i in S
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Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖  (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i  [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)

– collect a set S of k signed tuples of the form (r,yi,𝜋𝑖)

– compute degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑎𝑖𝑥𝑖 s.t. f(i)=yi for all i in S

– compute Merkle tree with values f(1),f(2),…,f(n) at leaves, check root = r

• if not, sender committed to polynomial w/degree > k-1 (fail) 48

The Cachin-Tessaro VID Protocol (con’d)



Question: as an end user, how to be sure that a collection of 

servers really is storing critical data?

– e.g., don’t accept the trust assumptions required by a DA certificate 
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Question: as an end user, how to be sure that a collection of 

servers really is storing critical data?

– e.g., don’t accept the trust assumptions required by a DA certificate 

Naïve solution: download data from servers to double-check.

– what if this is infeasible? (too much data and/or weak device)
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Question: as an end user, how to be sure that a collection of 

servers really is storing critical data?

– e.g., don’t accept the trust assumptions required by a DA certificate 

Naïve solution: download data from servers to double-check.

– what if this is infeasible? (too much data and/or weak device)

Idea: download several random chunks of data to audit.
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Data Availability Sampling (DAS)



Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.
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Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly 

encode as 2k chunks (as in VID protocol), store chunks with servers
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Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly 

encode as 2k chunks (as in VID protocol), store chunks with servers

– if uncrashed servers still have ≥ k chunks ➔ data is still available (can 

reconstruct if needed)
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Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly 

encode as 2k chunks (as in VID protocol), store chunks with servers

– if uncrashed servers still have ≥ k chunks ➔ data is still available (can 

reconstruct if needed)

– if uncrashed servers only have < k chunks ➔ can recognize this with 

99% probability by downloading 7 random chunks
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Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly 

encode as 2k chunks (as in VID protocol), store chunks with servers

– if uncrashed servers still have ≥ k chunks ➔ data is still available (can 

reconstruct if needed)

– if uncrashed servers only have < k chunks ➔ can recognize this with 

99% probability by downloading 7 random chunks

– ideally, reconstruct chunks whenever they’re detected as missing 56

Data Availability Sampling (DAS)
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