
Lecture #12:

Data Availability

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Data availability committees.

– offload storage responsibilities from validators to third parties

2. Verifiable information dispersal (VID).

– use Merkle trees and Reed-Solomon codes to get minimal overhead

3. Data availability sampling.

– how can an end user be confident that data is available?

– idea: repeatedly download small random chunks

2

Goals for Lecture #12

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

3

Validator Responsibilities, Revisited

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

4

Validator Responsibilities, Revisited

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

Typical solution: validators expected to store what is necessary to

efficiently check validity of txs and block (but nothing beyond this).

– at least a few entities (validators and/or third parties) maintain full

history (last resort for reconstructing the blockchain state)

5

Validator Responsibilities, Revisited

Consensus: agree on a sequence blocks/transactions.

Execution: process txs, keep state of blockchain up-to-date.

Storage?: maintain archive of entire sequence of processed txs.

Typical solution: validators expected to store what is necessary to

efficiently check validity of txs and block (but nothing beyond this).

– at least a few entities (validators and/or third parties) maintain full

history (last resort for reconstructing the blockchain state)

Data availability (DA) problem: how to be sure that data really is

being stored as intended?
6

Validator Responsibilities, Revisited

Optimizations to the original Tendermint protocol:

7

Tendermint with Blockhashes

Optimizations to the original Tendermint protocol:

1. leader proposes block (w/predecessor specified by hash)

rather than a full blockchain

8

Tendermint with Blockhashes

Optimizations to the original Tendermint protocol:

1. leader proposes block (w/predecessor specified by hash)

rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all

relevant data (predecessors), include only blockhash in msg

9

Tendermint with Blockhashes

Optimizations to the original Tendermint protocol:

1. leader proposes block (w/predecessor specified by hash)

rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all

relevant data (predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-

date” messages for the same blockhash

– even if haven’t yet received the corresponding block

10

Tendermint with Blockhashes

Optimizations to the original Tendermint protocol:

1. leader proposes block (w/predecessor specified by hash)

rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all

relevant data (predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-

date” messages for the same blockhash

– even if haven’t yet received the corresponding block

Question: why is optimization (3) safe?
11

Tendermint with Blockhashes

Optimizations to the original Tendermint protocol:

1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all relevant data

(predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-date” messages for the same

blockhash (even if haven’t yet received the corresponding block)

Question: why is optimization (3) safe?

– if receive > 2n/3 “up-to-date” msgs for same blockhash ➔ > n/3 of

these from honest validators ➔ must have seen corresponding block

12

Tendermint with Blockhashes

Optimizations to the original Tendermint protocol:

1. leader proposes block (w/predecessor specified by hash) rather than a full blockchain

2. validators send “up-to-date” message only if they’ve seen all relevant data

(predecessors), include only blockhash in msg

3. validators send “ack” message upon hearing > 2n/3 “up-to-date” messages for the same

blockhash (even if haven’t yet received the corresponding block)

Question: why is optimization (3) safe?

– if receive > 2n/3 “up-to-date” msgs for same blockhash ➔ > n/3 of

these from honest validators ➔ must have seen corresponding block

Implicit assumption: honest validators: (i) store entire blockchain;

and (ii) upload past blocks to others on request. 13

Tendermint with Blockhashes

• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

14

Data Availability Committees (DACs)

• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1

servers send back signed “ack h(x)” messages. [h=hash fn]

15

Data Availability Committees (DACs)

• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1

servers send back signed “ack h(x)” messages. [h=hash fn]

Assumption: after signing an “ack h(x)” message, non-faulty

server will store x and resend it on request, indefinitely.

16

Data Availability Committees (DACs)

• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1

servers send back signed “ack h(x)” messages. [h=hash fn]

Assumption: after signing an “ack h(x)” message, non-faulty

server will store x and resend it on request, indefinitely.

– any collection of f+1 signatures acking h(x) is proof (modulo

assumptions) that the data x is available

17

Data Availability Committees (DACs)

• n servers (permissioned, with publicly known public keys)

• bound f < n on how many servers might be faulty

To archive data: send data x to all n servers, wait until ≥ f+1

servers send back signed “ack h(x)” messages. [h=hash fn]

Assumption: after signing an “ack h(x)” message, non-faulty

server will store x and resend it on request, indefinitely.

– any collection of f+1 signatures acking h(x) is proof (modulo

assumptions) that the data x is available

– example: Arbitrum AnyTrust (e.g., n=12, f=10)
18

Data Availability Committees (DACs)

Setup: want to store data values m0,m1,m2,…,mk-1. (e.g., 256 bits each)

– split data into chunks, if necessary

19

Verifiable Information Dispersal (VID)

Setup: want to store data values m0,m1,m2,…,mk-1. (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

20

Verifiable Information Dispersal (VID)

Setup: want to store data values m0,m1,m2,…,mk-1. (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each mi to only one (or a few) servers.

21

Verifiable Information Dispersal (VID)

Setup: want to store data values m0,m1,m2,…,mk-1. (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each mi to only one (or a few) servers.

Issue: if sent only to faulty servers, could get lost.

22

Verifiable Information Dispersal (VID)

Setup: want to store data values m0,m1,m2,…,mk-1. (e.g., 256 bits each)

– split data into chunks, if necessary

Naïve DAC: send all data to each of n servers, factor-n overhead.

Idea: send each mi to only one (or a few) servers.

Issue: if sent only to faulty servers, could get lost.

Solution: add redundancy to the mi’s using an erasure code.

– in effect, every server will store a little bit of info about every mi

23

Verifiable Information Dispersal (VID)

Recall: any two points determine a (unique) line.

24

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

25

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

26

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

• example: points (1,4) and (2,9) ➔ line y = 5x-1

27

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

• example: points (1,4) and (2,9) ➔ line y = 5x-1

• note: could redundantly encode line y = 5x -1 via the points

(1,4), (2,9), (3,14), and (4,19)

28

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

• example: points (1,4) and (2,9) ➔ line y = 5x-1

• note: could redundantly encode line y = 5x -1 via the points

(1,4), (2,9), (3,14), and (4,19)

– if later remember only (3,14) and (4,19), can still recover line 5x-1

29

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

30

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

31

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact: any d+1 points (x0,y0),(x1,y1),…,(xd,yd) determine a unique

degree-d polynomial, f(x) [with yi=f(xi) for all i=0,1,2,...,d].

– if store n > d+1 evaluations of f, can recover f from any d+1 of them

32

Reed-Solomon Codes

Recall: any two points determine a (unique) line.

• note: could redundantly encode line y = 5x -1 via the points (1,4), (2,9), (3,14), and (4,19)

Recall: a (degree-d) polynomial has the form

 𝑓 𝑥 = 𝑎𝑑𝑥𝑑 + 𝑎𝑑−1𝑥𝑑−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = σ𝑖=0
𝑑 𝑎𝑖𝑥𝑖.

Fact: any d+1 points (x0,y0),(x1,y1),…,(xd,yd) determine a unique

degree-d polynomial, f(x) [with yi=f(xi) for all i=0,1,2,...,d].

– if store n > d+1 evaluations of f, can recover f from any d+1 of them

– easy to compute f from evaluations, e.g. via Lagrange interpolation

– corresponds to a Reed-Solomon code with parameters n and k=d+1

33

Reed-Solomon Codes

Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

34

The Cachin-Tessaro VID Protocol

Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

35

The Cachin-Tessaro VID Protocol

Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

36

The Cachin-Tessaro VID Protocol

Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

37

The Cachin-Tessaro VID Protocol

Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

38

The Cachin-Tessaro VID Protocol

Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

39

The Cachin-Tessaro VID Protocol

Setup: sender with k 256-bit values, m0,m1,m2,…,mk-1; n servers.

Assumption: at most f faulty servers, with f < n/3 and n-f ≥ k.

– ex: n=3k+1, f=k

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]
40

The Cachin-Tessaro VID Protocol

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

41

The Cachin-Tessaro VID Protocol (con’d)

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: [if sender might equivocate] servers reach consensus on r

42

The Cachin-Tessaro VID Protocol (con’d)

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: [if sender might equivocate] servers reach consensus on r

• if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an

“ACK r” message (with server’s signature)

43

The Cachin-Tessaro VID Protocol (con’d)

Step 1: sender interprets mi’s as integers modulo p (p prime, ≈2256)

• sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n

• sender computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: [if sender might equivocate] servers reach consensus on r

• if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an

“ACK r” message (with server’s signature)

Step 3: if sender receives ≥ k+f signed “ACK r” messages,

assemble into a “DA certificate.” 44

The Cachin-Tessaro VID Protocol (con’d)

Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)

45

The Cachin-Tessaro VID Protocol (con’d)

Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)

– collect a set S of k signed tuples of the form (r,yi,𝜋𝑖)

46

The Cachin-Tessaro VID Protocol (con’d)

Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)

– collect a set S of k signed tuples of the form (r,yi,𝜋𝑖)

– compute degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑎𝑖𝑥𝑖 s.t. f(i)=yi for all i in S

47

The Cachin-Tessaro VID Protocol (con’d)

Step 1: sender forms degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑚𝑖𝑥𝑖 (𝑚𝑜𝑑 𝑝)

• sender computes yi = f(i) for i=1,2,…,n, computes Merkle tree T with yi’s as leaves

• sender sends (r,yi,𝜋𝑖) to server i [r = Merkle root, 𝜋𝑖 = Merkle proof]

Step 2: if server i received valid tuple (r,yi,𝜋𝑖) from sender, send back an “ACK r” message

Step 3: if sender receives ≥ k+f signed “ACK r” messages, assemble into a “DA certificate.”

To reconstruct: (given a DA certificate for data m0,m1,m2,…,mk-1)

– collect a set S of k signed tuples of the form (r,yi,𝜋𝑖)

– compute degree-(k-1) polynomial 𝑓 𝑥 = σ𝑖=0
𝑘−1 𝑎𝑖𝑥𝑖 s.t. f(i)=yi for all i in S

– compute Merkle tree with values f(1),f(2),…,f(n) at leaves, check root = r

• if not, sender committed to polynomial w/degree > k-1 (fail) 48

The Cachin-Tessaro VID Protocol (con’d)

Question: as an end user, how to be sure that a collection of

servers really is storing critical data?

– e.g., don’t accept the trust assumptions required by a DA certificate

49

Data Availability Sampling (DAS)

Question: as an end user, how to be sure that a collection of

servers really is storing critical data?

– e.g., don’t accept the trust assumptions required by a DA certificate

Naïve solution: download data from servers to double-check.

– what if this is infeasible? (too much data and/or weak device)

50

Data Availability Sampling (DAS)

Question: as an end user, how to be sure that a collection of

servers really is storing critical data?

– e.g., don’t accept the trust assumptions required by a DA certificate

Naïve solution: download data from servers to double-check.

– what if this is infeasible? (too much data and/or weak device)

Idea: download several random chunks of data to audit.

51

Data Availability Sampling (DAS)

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

52

Data Availability Sampling (DAS)

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly

encode as 2k chunks (as in VID protocol), store chunks with servers

53

Data Availability Sampling (DAS)

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly

encode as 2k chunks (as in VID protocol), store chunks with servers

– if uncrashed servers still have ≥ k chunks ➔ data is still available (can

reconstruct if needed)

54

Data Availability Sampling (DAS)

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly

encode as 2k chunks (as in VID protocol), store chunks with servers

– if uncrashed servers still have ≥ k chunks ➔ data is still available (can

reconstruct if needed)

– if uncrashed servers only have < k chunks ➔ can recognize this with

99% probability by downloading 7 random chunks

55

Data Availability Sampling (DAS)

Question: as end user, how to be sure that servers are storing critical data?

Idea: download several random chunks of data to audit.

Intuition: suppose crash failures (of servers) only.

– chunk data into k pieces, use a Reed-Solomon code to redundantly

encode as 2k chunks (as in VID protocol), store chunks with servers

– if uncrashed servers still have ≥ k chunks ➔ data is still available (can

reconstruct if needed)

– if uncrashed servers only have < k chunks ➔ can recognize this with

99% probability by downloading 7 random chunks

– ideally, reconstruct chunks whenever they’re detected as missing 56

Data Availability Sampling (DAS)

	Slide 1: Lecture #12: Data Availability
	Slide 2: Goals for Lecture #12
	Slide 3: Validator Responsibilities, Revisited
	Slide 4: Validator Responsibilities, Revisited
	Slide 5: Validator Responsibilities, Revisited
	Slide 6: Validator Responsibilities, Revisited
	Slide 7: Tendermint with Blockhashes
	Slide 8: Tendermint with Blockhashes
	Slide 9: Tendermint with Blockhashes
	Slide 10: Tendermint with Blockhashes
	Slide 11: Tendermint with Blockhashes
	Slide 12: Tendermint with Blockhashes
	Slide 13: Tendermint with Blockhashes
	Slide 14: Data Availability Committees (DACs)
	Slide 15: Data Availability Committees (DACs)
	Slide 16: Data Availability Committees (DACs)
	Slide 17: Data Availability Committees (DACs)
	Slide 18: Data Availability Committees (DACs)
	Slide 19: Verifiable Information Dispersal (VID)
	Slide 20: Verifiable Information Dispersal (VID)
	Slide 21: Verifiable Information Dispersal (VID)
	Slide 22: Verifiable Information Dispersal (VID)
	Slide 23: Verifiable Information Dispersal (VID)
	Slide 24: Reed-Solomon Codes
	Slide 25: Reed-Solomon Codes
	Slide 26: Reed-Solomon Codes
	Slide 27: Reed-Solomon Codes
	Slide 28: Reed-Solomon Codes
	Slide 29: Reed-Solomon Codes
	Slide 30: Reed-Solomon Codes
	Slide 31: Reed-Solomon Codes
	Slide 32: Reed-Solomon Codes
	Slide 33: Reed-Solomon Codes
	Slide 34: The Cachin-Tessaro VID Protocol
	Slide 35: The Cachin-Tessaro VID Protocol
	Slide 36: The Cachin-Tessaro VID Protocol
	Slide 37: The Cachin-Tessaro VID Protocol
	Slide 38: The Cachin-Tessaro VID Protocol
	Slide 39: The Cachin-Tessaro VID Protocol
	Slide 40: The Cachin-Tessaro VID Protocol
	Slide 41: The Cachin-Tessaro VID Protocol (con’d)
	Slide 42: The Cachin-Tessaro VID Protocol (con’d)
	Slide 43: The Cachin-Tessaro VID Protocol (con’d)
	Slide 44: The Cachin-Tessaro VID Protocol (con’d)
	Slide 45: The Cachin-Tessaro VID Protocol (con’d)
	Slide 46: The Cachin-Tessaro VID Protocol (con’d)
	Slide 47: The Cachin-Tessaro VID Protocol (con’d)
	Slide 48: The Cachin-Tessaro VID Protocol (con’d)
	Slide 49: Data Availability Sampling (DAS)
	Slide 50: Data Availability Sampling (DAS)
	Slide 51: Data Availability Sampling (DAS)
	Slide 52: Data Availability Sampling (DAS)
	Slide 53: Data Availability Sampling (DAS)
	Slide 54: Data Availability Sampling (DAS)
	Slide 55: Data Availability Sampling (DAS)
	Slide 56: Data Availability Sampling (DAS)

