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Goals for Lecture #13

1. Block headers and light clients.
— headers = metadata, light clients = know only headers

2. Simplified payment verification (SPV).
— verifying properties of state from metadata + proofs
— UTXO-based and accounts-based models

3. Stateless clients and statelessness.
— checking block validity without knowing the state



Block Headers

* block = header (metadata) + transactions (payload)



Block Headers

* block = header (metadata) + transactions (payload)

— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper



Block Headers

* block = header (metadata) + transactions (payload)
— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper

o :V:j:;':::,‘.‘;'.f-'.\.;‘:‘_\‘
[ Prev Hash u Nonce L] Pev Hash Nonce \\ Prev Hash Nonce E‘_—:—-—“a
(vervie oot] | Timestamp | I} Vierkie Root| | Tmestamp (vieriae Root] | Tmestamp

Hasho! Hashzs | Merkie sranch for Tx3

Hasih? | Hasig

<

From “Merkling in Ethereum” by Vitalik Buterin https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/




Block Headers

* block = header (metadata) + transactions (payload)
— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper

. “name” of block := hash of its header e




Block Headers

* block = header (metadata) + transactions (payload)
— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

— additional data may be non-archival, cheaper

name” of block := hash of its header e =
* typical ingredients of block header: =0 0af s

— predecessor (specified by name, as above) = ) L



Block Headers

* block = header (metadata) + transactions (payload)

— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

— additional data may be non-archival, cheaper
* “name” of block := hash of its header

* typical ingredients of block header:
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Block Headers

* block = header (metadata) + transactions (payload)

— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper

* “name” of block := hash of its header
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* typical ingredients of block header:

— predecessor (specified by name, as above)
— transaction root (root of Merkle tree of txs)

— state root (in account-based blockchains)
— consensus-related data (e.g., signature of proposer, view #, etc.)
* detalls vary for permissioned vs. proof-of-work vs. proof-of-state
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Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.
— example #1: app running on user’'s phone
— example #2: smart contract on a blockchain (“bridge contract”)
— typically associated with one or small number of public keys/accounts
— generally no PKI, not participating in or following consensus
* just subscribing to a "block header service”
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Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):

check account balance? [answer: no]

check tx inclusion? [answer: noj

check correctness of tx/state roots in block headers? [no]
check if corresponding blocks have been finalized? [no]
check validity of predecessor pointers, back to genesis? [yes!]

Wbk

Goal: enable 1+2 through short + verifiable (Merkle) proofs.

27



The Cast of Characters
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1.

2.

3.

4.

5.

Validators: participate in consensus and execution, maintain full state.

The Cast of Characters

[increasingly: outsource block-building from other duties]

source of “decentralization,” need (super-)majority to be honest/correct

Full node: maintain full state, don’t participate in consensus.

can serve RPC requests and/or act as watchdog on validators

Archival node: store all historical data.

Light client: store only block headers, trust that state roots are correct.

really one need one honest such node

Stateless client: verify correctness of state roots in block headers.

future: validators might just be stateless clients (with block-building outsourced)

33



Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client
should be able to verify payments to/from it. (= track balance)
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Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

* If using Tendermint or similar: (< n/3 Byzantine validators)
— have validators broadcast “finalized h(B)" msg after finalizing block B
— only accept a block header accompanied by > n/3 such messages

* If using longest-chain consensus: (< n/2 Byzantine validators)
— verify proposer signatures on all block headers (from leader of view)

— trust block header only if = k blocks deep on the longest chain

« k = a user-specified security parameter 43
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Light Clients in the Accounts-Based Model

Example: Ethereum. A FE
Block O O30 d.
 state = accounts, each account = "
has balance/code/data ﬂm = ;ﬂ.
O |z | O
* stored in Merkle-Patricia tree Rl aistsis
— leaves = accounts i
i = e e
* block header includes state root ooon) &
(in addition to tx root, receipts root) s

46



Light Clients in the Accounts-Based Model

Example: Ethereum.

state = accounts, each account
has balance/code/data

stored in Merkle-Patricia tree
— |leaves = accounts

block header includes state root
(in addition to tx root, receipts root)

to check tx inclusion: same as UTXO case (use tx root)
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Light Clients in the Accounts-Based Model

Example: Ethereum.

e State = accounts, each account
has balance/code/data

 stored in Merkle-Patricia tree
— |leaves = accounts

 block header includes state root
(in addition to tx root, receipts root)

* to check tx inclusion: same as UTXO case (use tx root)
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* to check account balance: Merkle proof (but now use state root)
— assume state root is correct (otherwise rejected by honest validators)




Stateless Clients/Validation

Goal: verify correctness of state root without knowing full state.
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 alleged new state root r’ (after execution of all the txs)

30



Stateless Clients/Validation

Goal: verify correctness of state root without knowing full state.

Inputs to verification problem:

* Initial state root (assume already verified)

* list of txs

 alleged new state root r’ (after execution of all the txs)

Question: how much of the actual state is necessary to verify the
correctness of r'?
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Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

mmg
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A’s balance B’s balance
X > X-Z y > y+z
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Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

AR PEARR

A’s balance B’s balance
X > X-Z y > y+z

« sufficient to supply Merkle proofs for balances of A and B
— stateless client then has enough info to compute new Merkle root >



Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?
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Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

* need Merkle proof for each part of blockchain state accessed by
some tx (e.g., supplied by a validator or full node)

— Merkle proofs supply state info on need-to-know basis
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Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

* need Merkle proof for each part of blockchain state accessed by
some tx (e.g., supplied by a validator or full node)

— Merkle proofs supply state info on need-to-know basis

 after each update to state, recompute new state root
— Increment nonce, write new value to variable in contract storage, etc.
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Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

* need Merkle proof for each part of blockchain state accessed by
some tx (e.g., supplied by a validator or full node)

— Merkle proofs supply state info on need-to-know basis

 after each update to state, recompute new state root
— Increment nonce, write new value to variable in contract storage, etc.

- after processing all txs, can check if new state root = r’
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“Statelessness”

Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations
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Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to
assess validity purely from block itself (no other state needed).

— In principle, could include the entire state in the block

— slightly less crazy: include all Merkle proofs needed to assess validity

— one possible future: Verkle trees (using KZG commitments)

— another: each block includes SNARK proving its correctness 66
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