Lecture #13:
Light and Stateless Clients

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Lecture #13

1. Block headers and light clients.
— headers = metadata, light clients = know only headers

2. Simplified payment verification (SPV).
— verifying properties of state from metadata + proofs
— UTXO-based and accounts-based models

3. Stateless clients and statelessness.
— checking block validity without knowing the state

Block Headers

* block = header (metadata) + transactions (payload)

Block Headers

* block = header (metadata) + transactions (payload)

— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper

Block Headers

* block = header (metadata) + transactions (payload)
— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper

o :V:j:;':::,‘.‘;'.f-'.\.;‘:‘_\‘
[Prev Hash u Nonce L] Pev Hash Nonce \\ Prev Hash Nonce E‘_—:—-—“a
(vervie oot] | Timestamp | I} Vierkie Root| | Tmestamp (vieriae Root] | Tmestamp

Hasho! Hashzs | Merkie sranch for Tx3

Hasih? | Hasig

<

From “Merkling in Ethereum” by Vitalik Buterin https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/

Block Headers

* block = header (metadata) + transactions (payload)
— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper

. “name” of block := hash of its header e

Block Headers

* block = header (metadata) + transactions (payload)
— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

— additional data may be non-archival, cheaper

name” of block := hash of its header e =
* typical ingredients of block header: =0 0af s

— predecessor (specified by name, as above) =) L

Block Headers

* block = header (metadata) + transactions (payload)

— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

— additional data may be non-archival, cheaper
* “name” of block := hash of its header

* typical ingredients of block header:

— predecessor (specified by name, as above)
— transaction root (root of Merkle tree of txs)

Prev H Nonce
D s e |
e o] ooy)|

Prev Hash Nonce
SRS CEa

o] | oesig]

Merkle Branch for Tx3

Block Headers

* block = header (metadata) + transactions (payload)
— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

— additional data may be non-archival, cheaper

» "name” of block := hash of its header S T\ EEi

: Merkie Roof | | Timesfusmp
* typical ingredients of block header: =0 AaT wwomniro
— predecessor (specified by name, as above) (=] Lo

— transaction root (root of Merkle tree of txs)
— state root (in account-based blockchains)

Block Headers

* block = header (metadata) + transactions (payload)

— optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)
— additional data may be non-archival, cheaper

* “name” of block := hash of its header

Merkle Root |

S
D Ve |
orce] Tmesng] |5

* typical ingredients of block header:

— predecessor (specified by name, as above)
— transaction root (root of Merkle tree of txs)

— state root (in account-based blockchains)
— consensus-related data (e.g., signature of proposer, view #, etc.)
* detalls vary for permissioned vs. proof-of-work vs. proof-of-state

Light Clients

Note: block header size << block size (by factor of 100-10000).

11

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.

12

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.
— example #1: app running on user’'s phone

13

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.
— example #1: app running on user’'s phone
— example #2: smart contract on a blockchain (“bridge contract”)

14

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.
— example #1: app running on user’'s phone
— example #2: smart contract on a blockchain (“bridge contract”)
— typically associated with one or small number of public keys/accounts
— generally no PKI, not participating in or following consensus
* just subscribing to a "block header service”

15

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):

16

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):
1. check account balance?

17

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):
1. check account balance? [answer: no]

18

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):
1. check account balance? [answer: no]
2. check tx inclusion?

19

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):
1. check account balance? [answer: no]
2. check tx inclusion? [answer: no]

20

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):
1. check account balance? [answer: no]
2. check tx inclusion? [answer: no]
3. check correctness of tx/state roots in block headers?

21

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):
1. check account balance? [answer: no]
2. check tx inclusion? [answer: no]
3. check correctness of tx/state roots in block headers? [no]

22

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):

W he

check account balance? [answer: no]

check tx inclusion? [answer: noj

check correctness of tx/state roots in block headers? [no]
check if corresponding blocks have been finalized?

23

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):

W he

check account balance? [answer: no]

check tx inclusion? [answer: noj

check correctness of tx/state roots in block headers? [no]
check if corresponding blocks have been finalized? [no]

24

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):

Wbk

check account balance? [answer: no]

check tx inclusion? [answer: noj

check correctness of tx/state roots in block headers? [no]
check if corresponding blocks have been finalized? [no]
check validity of predecessor pointers, back to genesis?

25

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):

Wbk

check account balance? [answer: no]

check tx inclusion? [answer: noj

check correctness of tx/state roots in block headers? [no]
check if corresponding blocks have been finalized? [no]
check validity of predecessor pointers, back to genesis? [yes!]

26

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.
— examples: app on user's phone, smart contract on a blockchain

Question: what can light clients do (without help):

check account balance? [answer: no]

check tx inclusion? [answer: noj

check correctness of tx/state roots in block headers? [no]
check if corresponding blocks have been finalized? [no]
check validity of predecessor pointers, back to genesis? [yes!]

Wbk

Goal: enable 1+2 through short + verifiable (Merkle) proofs.

27

The Cast of Characters

28

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.
[increasingly: outsource block-building from other duties]

— source of “decentralization,” need (super-)majority to be honest/correct

29

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.

[increasingly: outsource block-building from other duties]
— source of “decentralization,” need (super-)majority to be honest/correct

2. Full node: maintain full state, don’t participate in consensus.
— can serve RPC requests and/or act as watchdog on validators

30

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.

[increasingly: outsource block-building from other duties]
— source of “decentralization,” need (super-)majority to be honest/correct

2. Full node: maintain full state, don’t participate in consensus.
— can serve RPC requests and/or act as watchdog on validators

3. Archival node: store all historical data.
— really one need one honest such node

31

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.
[increasingly: outsource block-building from other duties]

— source of “decentralization,” need (super-)majority to be honest/correct

2. Full node: maintain full state, don’t participate in consensus.
— can serve RPC requests and/or act as watchdog on validators

3. Archival node: store all historical data.
— really one need one honest such node

4. Light client: store only block headers, trust that state roots are correct.

32

1.

2.

3.

4.

5.

Validators: participate in consensus and execution, maintain full state.

The Cast of Characters

[increasingly: outsource block-building from other duties]

source of “decentralization,” need (super-)majority to be honest/correct

Full node: maintain full state, don’t participate in consensus.

can serve RPC requests and/or act as watchdog on validators

Archival node: store all historical data.

Light client: store only block headers, trust that state roots are correct.

really one need one honest such node

Stateless client: verify correctness of state roots in block headers.

future: validators might just be stateless clients (with block-building outsourced)

33

Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client
should be able to verify payments to/from it. (= track balance)

34

Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client
should be able to verify payments to/from it. (= track balance)

Solution:
« keep track of all block headers (with tx roots)
« verify all predecessors

35

Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client
should be able to verify payments to/from it. (= track balance)

Solution:

« keep track of all block headers (with tx roots)

« verify all predecessors

 for inbound payments, insist on receipt (Merkle proof of tx inclusion)
 for outbound payments, request Merkle proof from validator

36

Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client
should be able to verify payments to/from it. (= track balance)

Solution:

« keep track of all block headers (with tx roots)

« verify all predecessors

 for inbound payments, insist on receipt (Merkle proof of tx inclusion)
 for outbound payments, request Merkle proof from validator

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs] 37

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

38

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.
* If using Tendermint or similar: (< n/3 Byzantine validators)

39

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

* If using Tendermint or similar: (< n/3 Byzantine validators)
— have validators broadcast “finalized h(B)" msg after finalizing block B
— only accept a block header accompanied by > n/3 such messages

40

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

* If using Tendermint or similar: (< n/3 Byzantine validators)
— have validators broadcast “finalized h(B)" msg after finalizing block B
— only accept a block header accompanied by > n/3 such messages

* If using longest-chain consensus: (< n/2 Byzantine validators)

41

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

* If using Tendermint or similar: (< n/3 Byzantine validators)
— have validators broadcast “finalized h(B)" msg after finalizing block B
— only accept a block header accompanied by > n/3 such messages

* If using longest-chain consensus: (< n/2 Byzantine validators)
— verify proposer signatures on all block headers (from leader of view)

42

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +
finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

* If using Tendermint or similar: (< n/3 Byzantine validators)
— have validators broadcast “finalized h(B)" msg after finalizing block B
— only accept a block header accompanied by > n/3 such messages

* If using longest-chain consensus: (< n/2 Byzantine validators)
— verify proposer signatures on all block headers (from leader of view)

— trust block header only if = k blocks deep on the longest chain

« k = a user-specified security parameter 43

Light Clients in the Accounts-Based Model

lllllllll

Example: Ethereum. — o E

e state = accounts, each account —

dificulty

has balance/code/data T

nnn

receiptsRoot

55555555

nonce

. | ransactionindex

Light Clients in the Accounts-Based Model

lllllllll

Example: Ethereum. — o E
* state = accounts, each account

has balance/code/data T
- stored in Merkle-Patricia tree N

s.hé'.lu-nclcs

55555555

— leaves = accounts s — =

transactionsRoot |¢

nonce

g
&
L]

\
i

Light Clients in the Accounts-Based Model

Example: Ethereum. A FE
Block O O30 d.
 state = accounts, each account = "
has balance/code/data ﬂm = ;ﬂ.
O |z | O
* stored in Merkle-Patricia tree Rl aistsis
— leaves = accounts i
i = e e
* block header includes state root ooon) &
(in addition to tx root, receipts root) s

46

Light Clients in the Accounts-Based Model

Example: Ethereum.

state = accounts, each account
has balance/code/data

stored in Merkle-Patricia tree
— |leaves = accounts

block header includes state root
(in addition to tx root, receipts root)

to check tx inclusion: same as UTXO case (use tx root)

Receipts Trie

0

e,

[g I
000

extraData

dasted

nnnnn
aaaaaaaaaa

shadUncles

,,,,,,,,,,,

uncles

ccccc
lllllll

nnnnnnnn

nonce

oD o

hash

nonce

‘s fransactionindex

47

Light Clients in the Accounts-Based Model

Example: Ethereum.

e State = accounts, each account
has balance/code/data

 stored in Merkle-Patricia tree
— |leaves = accounts

 block header includes state root
(in addition to tx root, receipts root)

* to check tx inclusion: same as UTXO case (use tx root)

Receipts Trie

0

e,

[g I
000

extraData

dasted

nnnnn
aaaaaaaaaa

shadUncles

,,,,,,,,,,,

uncles

ccccc
lllllll

- nonce
nnnnnnnn

oD o

‘s fransactionindex

hash

nonce

* to check account balance: Merkle proof (but now use state root)
— assume state root is correct (otherwise rejected by honest validators)

Stateless Clients/Validation

Goal: verify correctness of state root without knowing full state.

49

Stateless Clients/Validation

Goal: verify correctness of state root without knowing full state.

Inputs to verification problem:

* Initial state root (assume already verified)

* list of txs

 alleged new state root r’ (after execution of all the txs)

30

Stateless Clients/Validation

Goal: verify correctness of state root without knowing full state.

Inputs to verification problem:

* Initial state root (assume already verified)

* list of txs

 alleged new state root r’ (after execution of all the txs)

Question: how much of the actual state is necessary to verify the
correctness of r'?

ol

Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

mmg

52

Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

mmg

A’s balance B’s balance
X > X-Z y > y+z

53

Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

ARAPLEARR

A’s balance B’s balance
X > X-Z y > y+z

o4

Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

AR PEARR

A’s balance B’s balance
X > X-Z y > y+z

55

Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

AR PEARR

A’s balance B’s balance
X > X-Z y > y+z

« sufficient to supply Merkle proofs for balances of A and B
— stateless client then has enough info to compute new Merkle root >

Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

S7

Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

* need Merkle proof for each part of blockchain state accessed by
some tx (e.g., supplied by a validator or full node)

— Merkle proofs supply state info on need-to-know basis

58

Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

* need Merkle proof for each part of blockchain state accessed by
some tx (e.g., supplied by a validator or full node)

— Merkle proofs supply state info on need-to-know basis

 after each update to state, recompute new state root
— Increment nonce, write new value to variable in contract storage, etc.

39

Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r'.

Question: how much of the actual state is necessary to verify the correctness of r'?

* need Merkle proof for each part of blockchain state accessed by
some tx (e.g., supplied by a validator or full node)

— Merkle proofs supply state info on need-to-know basis

 after each update to state, recompute new state root
— Increment nonce, write new value to variable in contract storage, etc.

- after processing all txs, can check if new state root = r’

60

“Statelessness”

Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations

61

“Statelessness”

Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to
assess validity purely from block itself (no other state needed).

62

“Statelessness”

Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to
assess validity purely from block itself (no other state needed).

— In principle, could include the entire state in the block

63

“Statelessness”

Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to
assess validity purely from block itself (no other state needed).

— In principle, could include the entire state in the block
— slightly less crazy: include all Merkle proofs needed to assess validity

64

“Statelessness”

Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to
assess validity purely from block itself (no other state needed).

— In principle, could include the entire state in the block
— slightly less crazy: include all Merkle proofs needed to assess validity
— one possible future: Verkle trees (using KZG commitments)

65

“Statelessness”

Note: to determine If block is valid, generally need to keep track of
transactions processed in previous blocks.

— In Bitcoin, need to know current UTXOs to assess block validity
— In Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to
assess validity purely from block itself (no other state needed).

— In principle, could include the entire state in the block

— slightly less crazy: include all Merkle proofs needed to assess validity

— one possible future: Verkle trees (using KZG commitments)

— another: each block includes SNARK proving its correctness 66

	Slide 1: Lecture #13: Light and Stateless Clients
	Slide 2: Goals for Lecture #13
	Slide 3: Block Headers
	Slide 4: Block Headers
	Slide 5: Block Headers
	Slide 6: Block Headers
	Slide 7: Block Headers
	Slide 8: Block Headers
	Slide 9: Block Headers
	Slide 10: Block Headers
	Slide 11: Light Clients
	Slide 12: Light Clients
	Slide 13: Light Clients
	Slide 14: Light Clients
	Slide 15: Light Clients
	Slide 16: Light Clients (con’d)
	Slide 17: Light Clients (con’d)
	Slide 18: Light Clients (con’d)
	Slide 19: Light Clients (con’d)
	Slide 20: Light Clients (con’d)
	Slide 21: Light Clients (con’d)
	Slide 22: Light Clients (con’d)
	Slide 23: Light Clients (con’d)
	Slide 24: Light Clients (con’d)
	Slide 25: Light Clients (con’d)
	Slide 26: Light Clients (con’d)
	Slide 27: Light Clients (con’d)
	Slide 28: The Cast of Characters
	Slide 29: The Cast of Characters
	Slide 30: The Cast of Characters
	Slide 31: The Cast of Characters
	Slide 32: The Cast of Characters
	Slide 33: The Cast of Characters
	Slide 34: Light Clients in the UTXO Model
	Slide 35: Light Clients in the UTXO Model
	Slide 36: Light Clients in the UTXO Model
	Slide 37: Light Clients in the UTXO Model
	Slide 38: Are the Block Headers Correct?
	Slide 39: Are the Block Headers Correct?
	Slide 40: Are the Block Headers Correct?
	Slide 41: Are the Block Headers Correct?
	Slide 42: Are the Block Headers Correct?
	Slide 43: Are the Block Headers Correct?
	Slide 44: Light Clients in the Accounts-Based Model
	Slide 45: Light Clients in the Accounts-Based Model
	Slide 46: Light Clients in the Accounts-Based Model
	Slide 47: Light Clients in the Accounts-Based Model
	Slide 48: Light Clients in the Accounts-Based Model
	Slide 49: Stateless Clients/Validation
	Slide 50: Stateless Clients/Validation
	Slide 51: Stateless Clients/Validation
	Slide 52: Example: Simple Transfers
	Slide 53: Example: Simple Transfers
	Slide 54: Example: Simple Transfers
	Slide 55: Example: Simple Transfers
	Slide 56: Example: Simple Transfers
	Slide 57: Verifying General Transactions
	Slide 58: Verifying General Transactions
	Slide 59: Verifying General Transactions
	Slide 60: Verifying General Transactions
	Slide 61: “Statelessness”
	Slide 62: “Statelessness”
	Slide 63: “Statelessness”
	Slide 64: “Statelessness”
	Slide 65: “Statelessness”
	Slide 66: “Statelessness”

