
Lecture #13:

Light and Stateless Clients

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Block headers and light clients.

– headers = metadata, light clients = know only headers

2. Simplified payment verification (SPV).

– verifying properties of state from metadata + proofs

– UTXO-based and accounts-based models

3. Stateless clients and statelessness.

– checking block validity without knowing the state

2

Goals for Lecture #13

• block = header (metadata) + transactions (payload)

3

Block Headers

• block = header (metadata) + transactions (payload)

– optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

– additional data may be non-archival, cheaper

4

Block Headers

• block = header (metadata) + transactions (payload)

– optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

– additional data may be non-archival, cheaper

5

Block Headers

• block = header (metadata) + transactions (payload)

– optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

– additional data may be non-archival, cheaper

• “name” of block := hash of its header

6

Block Headers

• block = header (metadata) + transactions (payload)

– optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

– additional data may be non-archival, cheaper

• “name” of block := hash of its header

• typical ingredients of block header:

– predecessor (specified by name, as above)

7

Block Headers

• block = header (metadata) + transactions (payload)

– optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

– additional data may be non-archival, cheaper

• “name” of block := hash of its header

• typical ingredients of block header:

– predecessor (specified by name, as above)

– transaction root (root of Merkle tree of txs)

8

Block Headers

• block = header (metadata) + transactions (payload)

– optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

– additional data may be non-archival, cheaper

• “name” of block := hash of its header

• typical ingredients of block header:

– predecessor (specified by name, as above)

– transaction root (root of Merkle tree of txs)

– state root (in account-based blockchains)

9

Block Headers

• block = header (metadata) + transactions (payload)

– optional: additional data (cf., witness data in Bitcoin, blobs in Etherem)

– additional data may be non-archival, cheaper

• “name” of block := hash of its header

• typical ingredients of block header:

– predecessor (specified by name, as above)

– transaction root (root of Merkle tree of txs)

– state root (in account-based blockchains)

– consensus-related data (e.g., signature of proposer, view #, etc.)

• details vary for permissioned vs. proof-of-work vs. proof-of-state
10

Block Headers

Note: block header size << block size (by factor of 100-10000).

11

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.

12

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.

– example #1: app running on user’s phone

13

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.

– example #1: app running on user’s phone

– example #2: smart contract on a blockchain (“bridge contract”)

14

Light Clients

Note: block header size << block size (by factor of 100-10000).

Light client: downloads block headers only, not full blocks.

– example #1: app running on user’s phone

– example #2: smart contract on a blockchain (“bridge contract”)

– typically associated with one or small number of public keys/accounts

– generally no PKI, not participating in or following consensus

• just subscribing to a “block header service”

15

Light Clients

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

16

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance?

17

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

18

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion?

19

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

20

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

3. check correctness of tx/state roots in block headers?

21

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

3. check correctness of tx/state roots in block headers? [no]

22

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

3. check correctness of tx/state roots in block headers? [no]

4. check if corresponding blocks have been finalized?

23

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

3. check correctness of tx/state roots in block headers? [no]

4. check if corresponding blocks have been finalized? [no]

24

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

3. check correctness of tx/state roots in block headers? [no]

4. check if corresponding blocks have been finalized? [no]

5. check validity of predecessor pointers, back to genesis?

25

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

3. check correctness of tx/state roots in block headers? [no]

4. check if corresponding blocks have been finalized? [no]

5. check validity of predecessor pointers, back to genesis? [yes!]

26

Light Clients (con’d)

Light client: downloads block headers only, not full blocks.

– examples: app on user’s phone, smart contract on a blockchain

Question: what can light clients do (without help):

1. check account balance? [answer: no]

2. check tx inclusion? [answer: no]

3. check correctness of tx/state roots in block headers? [no]

4. check if corresponding blocks have been finalized? [no]

5. check validity of predecessor pointers, back to genesis? [yes!]

Goal: enable 1+2 through short + verifiable (Merkle) proofs.
27

Light Clients (con’d)

28

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.
[increasingly: outsource block-building from other duties]

– source of “decentralization,” need (super-)majority to be honest/correct

29

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.
[increasingly: outsource block-building from other duties]

– source of “decentralization,” need (super-)majority to be honest/correct

2. Full node: maintain full state, don’t participate in consensus.

– can serve RPC requests and/or act as watchdog on validators

30

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.
[increasingly: outsource block-building from other duties]

– source of “decentralization,” need (super-)majority to be honest/correct

2. Full node: maintain full state, don’t participate in consensus.

– can serve RPC requests and/or act as watchdog on validators

3. Archival node: store all historical data.

– really one need one honest such node

31

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.
[increasingly: outsource block-building from other duties]

– source of “decentralization,” need (super-)majority to be honest/correct

2. Full node: maintain full state, don’t participate in consensus.

– can serve RPC requests and/or act as watchdog on validators

3. Archival node: store all historical data.

– really one need one honest such node

4. Light client: store only block headers, trust that state roots are correct.

32

The Cast of Characters

1. Validators: participate in consensus and execution, maintain full state.
[increasingly: outsource block-building from other duties]

– source of “decentralization,” need (super-)majority to be honest/correct

2. Full node: maintain full state, don’t participate in consensus.

– can serve RPC requests and/or act as watchdog on validators

3. Archival node: store all historical data.

– really one need one honest such node

4. Light client: store only block headers, trust that state roots are correct.

5. Stateless client: verify correctness of state roots in block headers.

– future: validators might just be stateless clients (with block-building outsourced) 33

The Cast of Characters

Simplified payment verification (SPV) in Bitcoin: a light client

should be able to verify payments to/from it. (➔ track balance)

34

Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client

should be able to verify payments to/from it. (➔ track balance)

Solution:

• keep track of all block headers (with tx roots)

• verify all predecessors

35

Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client

should be able to verify payments to/from it. (➔ track balance)

Solution:

• keep track of all block headers (with tx roots)

• verify all predecessors

• for inbound payments, insist on receipt (Merkle proof of tx inclusion)

• for outbound payments, request Merkle proof from validator

36

Light Clients in the UTXO Model

Simplified payment verification (SPV) in Bitcoin: a light client

should be able to verify payments to/from it. (➔ track balance)

Solution:

• keep track of all block headers (with tx roots)

• verify all predecessors

• for inbound payments, insist on receipt (Merkle proof of tx inclusion)

• for outbound payments, request Merkle proof from validator

Issue: how to know that block header corresponds to real +

finalized block? [worry: tx root corresponds to bogus txs] 37

Light Clients in the UTXO Model

Issue: how to know that block header corresponds to real +

finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

38

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +

finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

• if using Tendermint or similar: (< n/3 Byzantine validators)

39

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +

finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

• if using Tendermint or similar: (< n/3 Byzantine validators)

– have validators broadcast “finalized h(B)” msg after finalizing block B

– only accept a block header accompanied by > n/3 such messages

40

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +

finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

• if using Tendermint or similar: (< n/3 Byzantine validators)

– have validators broadcast “finalized h(B)” msg after finalizing block B

– only accept a block header accompanied by > n/3 such messages

• if using longest-chain consensus: (< n/2 Byzantine validators)

41

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +

finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

• if using Tendermint or similar: (< n/3 Byzantine validators)

– have validators broadcast “finalized h(B)” msg after finalizing block B

– only accept a block header accompanied by > n/3 such messages

• if using longest-chain consensus: (< n/2 Byzantine validators)

– verify proposer signatures on all block headers (from leader of view)

42

Are the Block Headers Correct?

Issue: how to know that block header corresponds to real +

finalized block? [worry: tx root corresponds to bogus txs]

Solution: lean on consensus + honest (super)majority assumption.

• if using Tendermint or similar: (< n/3 Byzantine validators)

– have validators broadcast “finalized h(B)” msg after finalizing block B

– only accept a block header accompanied by > n/3 such messages

• if using longest-chain consensus: (< n/2 Byzantine validators)

– verify proposer signatures on all block headers (from leader of view)

– trust block header only if ≥ k blocks deep on the longest chain

• k = a user-specified security parameter 43

Are the Block Headers Correct?

Example: Ethereum.

• state = accounts, each account

has balance/code/data

44

Light Clients in the Accounts-Based Model

Example: Ethereum.

• state = accounts, each account

has balance/code/data

• stored in Merkle-Patricia tree

– leaves = accounts

45

Light Clients in the Accounts-Based Model

Example: Ethereum.

• state = accounts, each account

has balance/code/data

• stored in Merkle-Patricia tree

– leaves = accounts

• block header includes state root

(in addition to tx root, receipts root)

46

Light Clients in the Accounts-Based Model

Example: Ethereum.

• state = accounts, each account

has balance/code/data

• stored in Merkle-Patricia tree

– leaves = accounts

• block header includes state root

(in addition to tx root, receipts root)

• to check tx inclusion: same as UTXO case (use tx root)

47

Light Clients in the Accounts-Based Model

Example: Ethereum.

• state = accounts, each account

has balance/code/data

• stored in Merkle-Patricia tree

– leaves = accounts

• block header includes state root

(in addition to tx root, receipts root)

• to check tx inclusion: same as UTXO case (use tx root)

• to check account balance: Merkle proof (but now use state root)

– assume state root is correct (otherwise rejected by honest validators) 48

Light Clients in the Accounts-Based Model

Goal: verify correctness of state root without knowing full state.

49

Stateless Clients/Validation

Goal: verify correctness of state root without knowing full state.

Inputs to verification problem:

• initial state root (assume already verified)

• list of txs

• alleged new state root r’ (after execution of all the txs)

50

Stateless Clients/Validation

Goal: verify correctness of state root without knowing full state.

Inputs to verification problem:

• initial state root (assume already verified)

• list of txs

• alleged new state root r’ (after execution of all the txs)

Question: how much of the actual state is necessary to verify the

correctness of r’?

51

Stateless Clients/Validation

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

52

Example: Simple Transfers

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

53

Example: Simple Transfers

A’s balance

x → x-z

B’s balance

y → y+z

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

A’s balance

x → x-z

54

Example: Simple Transfers

B’s balance

y → y+z

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

A’s balance

x → x-z

55

Example: Simple Transfers

B’s balance

y → y+z

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

• sufficient to supply Merkle proofs for balances of A and B

– stateless client then has enough info to compute new Merkle root

A’s balance

x → x-z

56

Example: Simple Transfers

B’s balance

y → y+z

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

57

Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

• need Merkle proof for each part of blockchain state accessed by

some tx (e.g., supplied by a validator or full node)

– Merkle proofs supply state info on need-to-know basis

58

Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

• need Merkle proof for each part of blockchain state accessed by

some tx (e.g., supplied by a validator or full node)

– Merkle proofs supply state info on need-to-know basis

• after each update to state, recompute new state root

– increment nonce, write new value to variable in contract storage, etc.

59

Verifying General Transactions

Inputs to verification problem: initial state root, list of txs, alleged new state root r’.

Question: how much of the actual state is necessary to verify the correctness of r’?

• need Merkle proof for each part of blockchain state accessed by

some tx (e.g., supplied by a validator or full node)

– Merkle proofs supply state info on need-to-know basis

• after each update to state, recompute new state root

– increment nonce, write new value to variable in contract storage, etc.

• after processing all txs, can check if new state root = r’

60

Verifying General Transactions

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

61

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

62

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

63

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

64

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

– one possible future: Verkle trees (using KZG commitments)

65

“Statelessness”

Note: to determine if block is valid, generally need to keep track of

transactions processed in previous blocks.

– in Bitcoin, need to know current UTXOs to assess block validity

– in Ethereum, need to know state to know outcome of computations

Long-time Ethereum dream: include enough metadata in block to

assess validity purely from block itself (no other state needed).

– in principle, could include the entire state in the block

– slightly less crazy: include all Merkle proofs needed to assess validity

– one possible future: Verkle trees (using KZG commitments)

– another: each block includes SNARK proving its correctness 66

“Statelessness”

	Slide 1: Lecture #13: Light and Stateless Clients
	Slide 2: Goals for Lecture #13
	Slide 3: Block Headers
	Slide 4: Block Headers
	Slide 5: Block Headers
	Slide 6: Block Headers
	Slide 7: Block Headers
	Slide 8: Block Headers
	Slide 9: Block Headers
	Slide 10: Block Headers
	Slide 11: Light Clients
	Slide 12: Light Clients
	Slide 13: Light Clients
	Slide 14: Light Clients
	Slide 15: Light Clients
	Slide 16: Light Clients (con’d)
	Slide 17: Light Clients (con’d)
	Slide 18: Light Clients (con’d)
	Slide 19: Light Clients (con’d)
	Slide 20: Light Clients (con’d)
	Slide 21: Light Clients (con’d)
	Slide 22: Light Clients (con’d)
	Slide 23: Light Clients (con’d)
	Slide 24: Light Clients (con’d)
	Slide 25: Light Clients (con’d)
	Slide 26: Light Clients (con’d)
	Slide 27: Light Clients (con’d)
	Slide 28: The Cast of Characters
	Slide 29: The Cast of Characters
	Slide 30: The Cast of Characters
	Slide 31: The Cast of Characters
	Slide 32: The Cast of Characters
	Slide 33: The Cast of Characters
	Slide 34: Light Clients in the UTXO Model
	Slide 35: Light Clients in the UTXO Model
	Slide 36: Light Clients in the UTXO Model
	Slide 37: Light Clients in the UTXO Model
	Slide 38: Are the Block Headers Correct?
	Slide 39: Are the Block Headers Correct?
	Slide 40: Are the Block Headers Correct?
	Slide 41: Are the Block Headers Correct?
	Slide 42: Are the Block Headers Correct?
	Slide 43: Are the Block Headers Correct?
	Slide 44: Light Clients in the Accounts-Based Model
	Slide 45: Light Clients in the Accounts-Based Model
	Slide 46: Light Clients in the Accounts-Based Model
	Slide 47: Light Clients in the Accounts-Based Model
	Slide 48: Light Clients in the Accounts-Based Model
	Slide 49: Stateless Clients/Validation
	Slide 50: Stateless Clients/Validation
	Slide 51: Stateless Clients/Validation
	Slide 52: Example: Simple Transfers
	Slide 53: Example: Simple Transfers
	Slide 54: Example: Simple Transfers
	Slide 55: Example: Simple Transfers
	Slide 56: Example: Simple Transfers
	Slide 57: Verifying General Transactions
	Slide 58: Verifying General Transactions
	Slide 59: Verifying General Transactions
	Slide 60: Verifying General Transactions
	Slide 61: “Statelessness”
	Slide 62: “Statelessness”
	Slide 63: “Statelessness”
	Slide 64: “Statelessness”
	Slide 65: “Statelessness”
	Slide 66: “Statelessness”

