
Lecture #14:

Scaling Blockchain Protocols

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Bottlenecks to scaling.

– consensus, execution, storage

2. Four approaches to scaling.

– constrain validator set; better protocols and client implementations;

outsourcing validator responsibilities; sharding/horizontal scaling

3. Introduction to “rollups.”

– an approach to sharding blockchain state and execution

– piggyback on an “L1” for data availability, liveness, etc.

– central to the Ethereum ecosystem
2

Goals for Lecture #14

Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

3

Measuring Performance

Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

• throughput (roughly, number of transactions per second)

– tricky point: some txs require more work to process than others

4

Measuring Performance

Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

• throughput (roughly, number of transactions per second)

– tricky point: some txs require more work to process than others

• latency (time between tx submission and tx finalization)

– tricky point: when to consider a tx confirmed/finalized?

5

Measuring Performance

Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

• throughput (roughly, number of transactions per second)

– tricky point: some txs require more work to process than others

• latency (time between tx submission and tx finalization)

– tricky point: when to consider a tx confirmed/finalized?

Holy grail: millions of txs/sec, latency in 100s of milliseconds.

6

Measuring Performance

Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

• throughput (roughly, number of transactions per second)

• latency (time between tx submission and tx finalization)

Holy grail: millions of txs/sec, latency in 100s of milliseconds.

Question: what’s stopping us?

7

Measuring Performance

Answer: load on validators.

8

Bottlenecks to Scaling

Answer: load on validators.

• consensus responsibilities:

– assembling a block (can be hard to do well, more later)

– communication/bandwidth

– computation (e.g., signature verification)

9

Bottlenecks to Scaling

Answer: load on validators.

• consensus responsibilities:

– assembling a block (can be hard to do well, more later)

– communication/bandwidth

– computation (e.g., signature verification)

• execution responsibilities:

– storing the blockchain state

– repeated reads/writes to state

10

Bottlenecks to Scaling

Answer: load on validators.

• consensus responsibilities:

– assembling a block (can be hard to do well, more later)

– communication/bandwidth

– computation (e.g., signature verification)

• execution responsibilities:

– storing the blockchain state

– repeated reads/writes to state

• storage responsibilities:

– storing sequence of all processed txs 11

Bottlenecks to Scaling

Category #1:

12

Approaches to Scaling

Category #1: impose constraints on the validator set.

– often interpreted as “compromising on decentralization”

13

Approaches to Scaling

Category #1: impose constraints on the validator set.

– often interpreted as “compromising on decentralization”

• limit the number of validators (e.g., to maximum of 100)

– limits work required at consensus layer

– explicitly or implicitly e.g. through large staking requirement

14

Approaches to Scaling

Category #1: impose constraints on the validator set.

– often interpreted as “compromising on decentralization”

• limit the number of validators (e.g., to maximum of 100)

– limits work required at consensus layer

– explicitly or implicitly e.g. through large staking requirement

• require high-performance validators

– e.g., requirements on number of cores, RAM, bandwidth, etc.

– ideological split between Bitcoin/Ethereum and newer blockchains

15

Approaches to Scaling

Category #2: better protocols and client implementations.

16

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

17

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

18

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

19

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated transaction dissemination

20

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated transaction dissemination

– “leaderless” consensus protocols

21

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated block/transaction dissemination

– “leaderless” consensus protocols

• examples at execution layer:

22

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated block/transaction dissemination

– “leaderless” consensus protocols

• examples at execution layer:

– better state management (e.g., tailored databases to store accounts)

23

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated block/transaction dissemination

– “leaderless” consensus protocols

• examples at execution layer:

– better state management (e.g., tailored databases to store accounts)

– state expiry

24

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated block/transaction dissemination

– “leaderless” consensus protocols

• examples at execution layer:

– better state management (e.g., tailored databases to store accounts)

– state expiry

– parallel execution of non-conflicting transactions 25

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3rd parties.

– 3rd parties may be specialized, centralized, and largely untrusted

26

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3rd parties.

– 3rd parties may be specialized, centralized, and largely untrusted

• already standard: long-term storage outsourced to archival

nodes and/or data availability committees

27

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3rd parties.

– 3rd parties may be specialized, centralized, and largely untrusted

• already standard: long-term storage outsourced to archival

nodes and/or data availability committees

• recent development: block-building

– currently (in Ethereum/Solana): to capture “MEV”

– possible future: to outsource execution duties

28

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3rd parties.

– 3rd parties may be specialized, centralized, and largely untrusted

• already standard: long-term storage outsourced to archival

nodes and/or data availability committees

• recent development: block-building

– currently (in Ethereum/Solana): to capture “MEV”

– possible future: to outsource execution duties

• possible future: execution + maintenance of blockchain state

– validators still expected to verify correctness of execution

– cf., stateless clients (see last lecture)
29

Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.

– unlike replication, want more validators ➔ more processing power

30

Approaches to Scaling (con’d)

main blockchain protocol

(coordinates shards)

shard #2shard #1 shard #s……………….

……………….

Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward

31

Approaches to Scaling (con’d)

main blockchain

protocol

(coordinates shards)

shard #2shard #1 shard #s
…………

…….

…………

…….

Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward

• sharding consensus (i.e., tx sequencing):

– can be achieved via “rollups” (next)

32

Approaches to Scaling (con’d)

main blockchain

protocol

(coordinates shards)

shard #2shard #1 shard #s
…………

…….

…………

…….

Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward

• sharding consensus (i.e., tx sequencing):

– can be achieved via “rollups” (next)

• sharding execution:

– with separate state per shard:

can be achieved via “rollups” (next)

33

Approaches to Scaling (con’d)

main blockchain

protocol

(coordinates shards)

shard #2shard #1 shard #s
…………

…….

…………

…….

Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward

• sharding consensus (i.e., tx sequencing):

– can be achieved via “rollups” (next)

• sharding execution:

– with separate state per shard:

can be achieved via “rollups” (next)

– with shared state across

shards: largely unsolved

34

Approaches to Scaling (con’d)

main blockchain

protocol

(coordinates shards)

shard #2shard #1 shard #s
…………

…….

…………

…….

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

35

Introduction to Rollups

36

L1  Rollup Architecture

decentralized blockchain

protocol (“L1”)

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

37

Introduction to Rollups

38

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

39

Introduction to Rollups

40

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

41

Introduction to Rollups

42

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

publish “tx1 tx2 … tx100”

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment 43

Introduction to Rollups

44

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

set new state root := r

“Classic” rollup: a blockchain/virtual machine with its own state

– performs its own consensus (i.e., tx sequencing) and execution

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

– periodically publishes commitment to rollup state (e.g. state root) to L1

45

Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state

– performs its own consensus (i.e., tx sequencing) and execution

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”

rollup to resume execution from most recent state commitment.

– tx data available on L1 ➔ blockchain state (not just state root) is known

46

Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state

– performs its own consensus (i.e., tx sequencing) and execution

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”

rollup to resume execution from most recent state commitment.

– tx data available on L1 ➔ blockchain state (not just state root) is known

Protection against rollup safety failure: any full node can detect an

incorrect state root and raise an alarm.
47

Dealing with Rollup Failures

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs

48

Two Requirements for “Classic” Rollups

49

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

add tx t to queue

(sent by end user)

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs

• L1 tx records the specified rollup tx in queue in rollup’s L1 contract

• next publication of rollup txs must “clear the queue” to be valid

50

Two Requirements for “Classic” Rollups

51

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

publish “tx1 tx2 … tx100”

(invalid unless includes all
txs in the contract’s queue)

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs

• L1 tx records the specified rollup tx in queue in rollup’s L1 contract

• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

52

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs

• L1 tx records the specified rollup tx in queue in rollup’s L1 contract

• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

53

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– as opposed to relying on full nodes

54

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– as opposed to relying on full nodes

– naïve/infeasible approach: L1 re-computes rollup’s state commitment

• defeats purpose of rollup (to offload execution from L1 validators)

55

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– naïve/infeasible approach: L1 re-computes rollup’s state commitment

– optimistic approach: L1 assumes state commitment correct unless

dispute raised, re-execute rollup txs as needed to resolve dispute

56

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– naïve/infeasible approach: L1 re-computes rollup’s state commitment

– optimistic approach: L1 assumes state commitment correct unless

dispute raised, re-execute rollup txs as needed to resolve dispute

– “zk”/validity approach: L1 verifies a “SNARK” which proves the

correctness of the state commitment
57

Two Requirements for “Classic” Rollups

	Slide 1: Lecture #14: Scaling Blockchain Protocols
	Slide 2: Goals for Lecture #14
	Slide 3: Measuring Performance
	Slide 4: Measuring Performance
	Slide 5: Measuring Performance
	Slide 6: Measuring Performance
	Slide 7: Measuring Performance
	Slide 8: Bottlenecks to Scaling
	Slide 9: Bottlenecks to Scaling
	Slide 10: Bottlenecks to Scaling
	Slide 11: Bottlenecks to Scaling
	Slide 12: Approaches to Scaling
	Slide 13: Approaches to Scaling
	Slide 14: Approaches to Scaling
	Slide 15: Approaches to Scaling
	Slide 16: Approaches to Scaling (con’d)
	Slide 17: Approaches to Scaling (con’d)
	Slide 18: Approaches to Scaling (con’d)
	Slide 19: Approaches to Scaling (con’d)
	Slide 20: Approaches to Scaling (con’d)
	Slide 21: Approaches to Scaling (con’d)
	Slide 22: Approaches to Scaling (con’d)
	Slide 23: Approaches to Scaling (con’d)
	Slide 24: Approaches to Scaling (con’d)
	Slide 25: Approaches to Scaling (con’d)
	Slide 26: Approaches to Scaling (con’d)
	Slide 27: Approaches to Scaling (con’d)
	Slide 28: Approaches to Scaling (con’d)
	Slide 29: Approaches to Scaling (con’d)
	Slide 30: Approaches to Scaling (con’d)
	Slide 31: Approaches to Scaling (con’d)
	Slide 32: Approaches to Scaling (con’d)
	Slide 33: Approaches to Scaling (con’d)
	Slide 34: Approaches to Scaling (con’d)
	Slide 35: Introduction to Rollups
	Slide 36: L1  Rollup Architecture
	Slide 37: Introduction to Rollups
	Slide 38: L1  Rollup Architecture
	Slide 39: Introduction to Rollups
	Slide 40: L1  Rollup Architecture
	Slide 41: Introduction to Rollups
	Slide 42: L1  Rollup Architecture
	Slide 43: Introduction to Rollups
	Slide 44: L1  Rollup Architecture
	Slide 45: Dealing with Rollup Failures
	Slide 46: Dealing with Rollup Failures
	Slide 47: Dealing with Rollup Failures
	Slide 48: Two Requirements for “Classic” Rollups
	Slide 49: Forcing the Inclusion of a Rollup Tx
	Slide 50: Two Requirements for “Classic” Rollups
	Slide 51: Forcing the Inclusion of a Rollup Tx
	Slide 52: Two Requirements for “Classic” Rollups
	Slide 53: Two Requirements for “Classic” Rollups
	Slide 54: Two Requirements for “Classic” Rollups
	Slide 55: Two Requirements for “Classic” Rollups
	Slide 56: Two Requirements for “Classic” Rollups
	Slide 57: Two Requirements for “Classic” Rollups

