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Goals for Lecture #14

1. Bottlenecks to scaling.
— consensus, execution, storage

2. Four approaches to scaling.

— constrain validator set; better protocols and client implementations;
outsourcing validator responsibilities; sharding/horizontal scaling

3. Introduction to “rollups.”
— an approach to sharding blockchain state and execution
— piggyback on an “L1” for data availability, liveness, etc.
— central to the Ethereum ecosystem
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Measuring Performance

Key security requirements: consistency and liveness.
— subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:
 throughput (roughly, number of transactions per second)

 latency (time between tx submission and tx finalization)

Holy grail: millions of txs/sec, latency in 100s of milliseconds.

Question: what's stopping us?
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Bottlenecks to Scaling

Answer: load on validators.

e consensus responsibilities:
— assembling a block (can be hard to do well, more later)
— communication/bandwidth
— computation (e.g., signature verification)
e execution responsiblilities:
— storing the blockchain state
— repeated reads/writes to state
e storage responsibilities:
— storing sequence of all processed txs
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Approaches to Scaling
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Approaches to Scaling

Category #1: Impose constraints on the validator set.
— often interpreted as “compromising on decentralization”

* limit the number of validators (e.g., to maximum of 100)
— limits work required at consensus layer
— explicitly or implicitly e.g. through large staking requirement

* require high-performance validators

— e.g., requirements on number of cores, RAM, bandwidth, etc.
— Ideological split between Bitcoin/Ethereum and newer blockchains
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Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.
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Approaches to Scaling (con’d)
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Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.
examples at consensus layer:

pipelining to decrease latency (i.e., overlapping views)
optimistic block proposal, execution, etc.

random sampling to manage large validator sets (“committees”)
faster/more sophisticated block/transaction dissemination
“leaderless” consensus protocols

examples at execution layer:

better state management (e.qg., tailored databases to store accounts)

state expiry
parallel execution of non-conflicting transactions
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Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3" parties.
— 3" parties may be specialized, centralized, and largely untrusted
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Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3" parties.

— 3" parties may be specialized, centralized, and largely untrusted

« already standard: long-term storage outsourced to archival
nodes and/or data availability committees

« recent development: block-building
— currently (in Ethereum/Solana): to capture “MEV”
— possible future: to outsource execution duties
* possible future: execution + maintenance of blockchain state

— validators still expected to verify correctness of execution
— cf., stateless clients (see last lecture)
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Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.
— unlike replication, want more validators =» more processing power

main blockchain protocol
(coordinates shards)
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Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.

« sharding storage: conceptually straightforward

» sharding consensus (l.e., tx sequencing):
— can be achieved via “rollups” (next)

* sharding execution: main blockchain

protocol

— with separate state per shard:
can be achieved via “rollups” (next)

— with shared state across
shards: largely unsolved




Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)
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Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution
— associated with smart contract(s) running on the L1
— publishes tx sequence via L1 contract (i.e., uses L1 for data availabllity)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)
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Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes tx sequence via L1 contract (i.e., uses L1 for data availabllity)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment 43



L1 < Rollup Architecture

(possibly centralized) rollup

set new state root :=r

decentralized blockchain
protocol (“L17)

rollup
contract
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Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution
— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1
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— periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

— tx data available on L1 =» blockchain state (not just state root) is known
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Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution
— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

— tx data available on L1 =» blockchain state (not just state root) is known

Protection against rollup safety failure: any full node can detect an
Incorrect state root and raise an alarm.
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Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
Its inclusion in the next batch of rollup txs
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Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

add tx t to queue
(sent by end user)

decentralized blockchain
protocol (“L17)

rollup
contract
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— any user can send a rollup tx direct to the rollup’s L1 contract to force
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« next publication of rollup txs must “clear the queue” to be valid
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Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain
protocol (“L17)

rollup
contract

pu bliSh “tXl tX2 " tXlOO”
(invalid unless includes all
txs in the contract’s queue)
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Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
Its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
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— rollup liveness failure =» can use L1 for liveness until reboot completes
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Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.
— as opposed to relying on full nodes
— nalvel/infeasible approach: L1 re-computes rollup’s state commitment
« defeats purpose of rollup (to offload execution from L1 validators)
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Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

— nalvel/infeasible approach: L1 re-computes rollup’s state commitment

— optimistic approach: L1 assumes state commitment correct unless
dispute raised, re-execute rollup txs as needed to resolve dispute
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Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

rollup liveness failure =» can use L1 for liveness until reboot completes
rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

nalve/infeasible approach: L1 re-computes rollup’s state commitment

optimistic approach: L1 assumes state commitment correct unless
dispute raised, re-execute rollup txs as needed to resolve dispute

“zKk’/validity approach: L1 verifies a “SNARK"” which proves the

correctness of the state commitment -
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