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1. Bottlenecks to scaling.

– consensus, execution, storage

2. Four approaches to scaling.

– constrain validator set; better protocols and client implementations; 

outsourcing validator responsibilities; sharding/horizontal scaling

3. Introduction to “rollups.” 

– an approach to sharding blockchain state and execution

– piggyback on an “L1” for data availability, liveness, etc.

– central to the Ethereum ecosystem
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Goals for Lecture #14



Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics: 

3

Measuring Performance



Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics: 

• throughput (roughly, number of transactions per second)

– tricky point: some txs require more work to process than others

4

Measuring Performance



Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics: 

• throughput (roughly, number of transactions per second)

– tricky point: some txs require more work to process than others

• latency (time between tx submission and tx finalization)

– tricky point: when to consider a tx confirmed/finalized?

5

Measuring Performance



Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics: 

• throughput (roughly, number of transactions per second)

– tricky point: some txs require more work to process than others

• latency (time between tx submission and tx finalization)

– tricky point: when to consider a tx confirmed/finalized?

Holy grail: millions of txs/sec, latency in 100s of milliseconds.

6

Measuring Performance



Key security requirements: consistency and liveness.

– subject to this, want protocol to be as “high-performance” as possible

Key performance metrics: 

• throughput (roughly, number of transactions per second)

• latency (time between tx submission and tx finalization)

Holy grail: millions of txs/sec, latency in 100s of milliseconds.

Question: what’s stopping us?
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Measuring Performance



Answer: load on validators.

8

Bottlenecks to Scaling
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• consensus responsibilities:

– assembling a block (can be hard to do well, more later)

– communication/bandwidth

– computation (e.g., signature verification)
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Answer: load on validators.

• consensus responsibilities:

– assembling a block (can be hard to do well, more later)

– communication/bandwidth

– computation (e.g., signature verification)

• execution responsibilities:

– storing the blockchain state

– repeated reads/writes to state

• storage responsibilities:

– storing sequence of all processed txs 11

Bottlenecks to Scaling



Category #1:
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Category #1: impose constraints on the validator set.

– often interpreted as “compromising on decentralization”
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Category #1: impose constraints on the validator set.

– often interpreted as “compromising on decentralization”

• limit the number of validators (e.g., to maximum of 100)

– limits work required at consensus layer

– explicitly or implicitly e.g. through large staking requirement

• require high-performance validators

– e.g., requirements on number of cores, RAM, bandwidth, etc.

– ideological split between Bitcoin/Ethereum and newer blockchains
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Approaches to Scaling



Category #2: better protocols and client implementations.
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• examples at consensus layer:
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Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated block/transaction dissemination

– “leaderless” consensus protocols

• examples at execution layer:

– better state management (e.g., tailored databases to store accounts)

– state expiry
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Category #2: better protocols and client implementations.

• examples at consensus layer:

– pipelining to decrease latency (i.e., overlapping views)

– optimistic block proposal, execution, etc.

– random sampling to manage large validator sets (“committees”)

– faster/more sophisticated block/transaction dissemination

– “leaderless” consensus protocols

• examples at execution layer:

– better state management (e.g., tailored databases to store accounts)

– state expiry

– parallel execution of non-conflicting transactions 25
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Category #3: outsourcing validator responsibilities to 3rd parties.

– 3rd parties may be specialized, centralized, and largely untrusted

26

Approaches to Scaling (con’d)



Category #3: outsourcing validator responsibilities to 3rd parties.

– 3rd parties may be specialized, centralized, and largely untrusted

• already standard: long-term storage outsourced to archival 

nodes and/or data availability committees
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Category #3: outsourcing validator responsibilities to 3rd parties.

– 3rd parties may be specialized, centralized, and largely untrusted

• already standard: long-term storage outsourced to archival 

nodes and/or data availability committees

• recent development: block-building

– currently (in Ethereum/Solana): to capture “MEV”

– possible future: to outsource execution duties

• possible future: execution + maintenance of blockchain state

– validators still expected to verify correctness of execution

– cf., stateless clients (see last lecture)
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Category #4: “sharding”/horizontal scaling.

– unlike replication, want more validators ➔ more processing power
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Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward
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Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward

• sharding consensus (i.e., tx sequencing):

– can be achieved via “rollups” (next)
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Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward

• sharding consensus (i.e., tx sequencing):

– can be achieved via “rollups” (next)

• sharding execution:

– with separate  state per shard:                 

can be achieved via “rollups” (next)
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Category #4: “sharding”/horizontal scaling.

• sharding storage: conceptually straightforward

• sharding consensus (i.e., tx sequencing):

– can be achieved via “rollups” (next)

• sharding execution:

– with separate  state per shard:                 

can be achieved via “rollups” (next)

– with shared state across           

shards: largely unsolved
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(coordinates shards)

shard #2shard #1 shard #s
…………

…….
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…….



Assume: a decentralized “layer-one” blockchain (“L1”) with strong 

consistency and liveness guarantees.  (e.g., Ethereum)
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Assume: a decentralized “layer-one” blockchain (“L1”) with strong 

consistency and liveness guarantees.  (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution
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– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1
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Assume: a decentralized “layer-one” blockchain (“L1”) with strong 

consistency and liveness guarantees.  (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)
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publish “tx1 tx2 … tx100”



Assume: a decentralized “layer-one” blockchain (“L1”) with strong 

consistency and liveness guarantees.  (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment 43
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L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain       

protocol (“L1”)

rollup 

contract

set new state root := r



“Classic” rollup: a blockchain/virtual machine with its own state

– performs its own consensus (i.e., tx sequencing) and execution

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

– periodically publishes commitment to rollup state (e.g. state root) to L1
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“Classic” rollup: a blockchain/virtual machine with its own state

– performs its own consensus (i.e., tx sequencing) and execution

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork” 

rollup to resume execution from most recent state commitment.

– tx data available on L1 ➔ blockchain state (not just state root) is known
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“Classic” rollup: a blockchain/virtual machine with its own state

– performs its own consensus (i.e., tx sequencing) and execution

– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork” 

rollup to resume execution from most recent state commitment.

– tx data available on L1 ➔ blockchain state (not just state root) is known

Protection against rollup safety failure: any full node can detect an 

incorrect state root and raise an alarm.
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Dealing with Rollup Failures



1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs
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Two Requirements for “Classic” Rollups
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Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain       

protocol (“L1”)

rollup 

contract

add tx t to queue               

(sent by end user)



1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs

• L1 tx records the specified rollup tx in queue in rollup’s L1 contract

• next publication of rollup txs must “clear the queue” to be valid
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rollup 
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(invalid unless includes all 
txs in the contract’s queue)



1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs

• L1 tx records the specified rollup tx in queue in rollup’s L1 contract

• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure ➔ can use L1 for liveness until reboot completes
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1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in 

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– as opposed to relying on full nodes
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1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in 

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– as opposed to relying on full nodes

– naïve/infeasible approach: L1 re-computes rollup’s state commitment

• defeats purpose of rollup (to offload execution from L1 validators)
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1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in 

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– naïve/infeasible approach: L1 re-computes rollup’s state commitment

– optimistic approach: L1 assumes state commitment correct unless 

dispute raised, re-execute rollup txs as needed to resolve dispute
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1. Escape hatch/forced tx inclusion via the L1.

– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in 

the next batch of rollup txs

– rollup liveness failure ➔ can use L1 for liveness until reboot completes

– rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

– naïve/infeasible approach: L1 re-computes rollup’s state commitment

– optimistic approach: L1 assumes state commitment correct unless 

dispute raised, re-execute rollup txs as needed to resolve dispute

– “zk”/validity approach: L1 verifies a “SNARK” which proves the 

correctness of the state commitment
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