Lecture #14.
Scaling Blockchain Protocols

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Lecture #14

1. Bottlenecks to scaling.
— consensus, execution, storage

2. Four approaches to scaling.

— constrain validator set; better protocols and client implementations;
outsourcing validator responsibilities; sharding/horizontal scaling

3. Introduction to “rollups.”
— an approach to sharding blockchain state and execution
— piggyback on an “L1” for data availability, liveness, etc.
— central to the Ethereum ecosystem

Measuring Performance

Key security requirements: consistency and liveness.
— subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

Measuring Performance

Key security requirements: consistency and liveness.
— subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

 throughput (roughly, number of transactions per second)
— tricky point: some txs require more work to process than others

Measuring Performance

Key security requirements: consistency and liveness.
— subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

 throughput (roughly, number of transactions per second)
— tricky point: some txs require more work to process than others

 latency (time between tx submission and tx finalization)
— tricky point: when to consider a tx confirmed/finalized?

Measuring Performance

Key security requirements: consistency and liveness.
— subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:

 throughput (roughly, number of transactions per second)
— tricky point: some txs require more work to process than others

 latency (time between tx submission and tx finalization)
— tricky point: when to consider a tx confirmed/finalized?

Holy grail: millions of txs/sec, latency in 100s of milliseconds.

Measuring Performance

Key security requirements: consistency and liveness.
— subject to this, want protocol to be as “high-performance” as possible

Key performance metrics:
 throughput (roughly, number of transactions per second)

 latency (time between tx submission and tx finalization)

Holy grail: millions of txs/sec, latency in 100s of milliseconds.

Question: what's stopping us?

Bottlenecks to Scaling

Answer: load on validators.

Bottlenecks to Scaling

Answer: load on validators.

e consensus responsibilities:
— assembling a block (can be hard to do well, more later)
— communication/bandwidth
— computation (e.g., signature verification)

Bottlenecks to Scaling

Answer: load on validators.

e consensus responsibilities:
— assembling a block (can be hard to do well, more later)
— communication/bandwidth
— computation (e.g., signature verification)

e execution responsiblilities:

— storing the blockchain state
— repeated reads/writes to state

10

Bottlenecks to Scaling

Answer: load on validators.

e consensus responsibilities:
— assembling a block (can be hard to do well, more later)
— communication/bandwidth
— computation (e.g., signature verification)
e execution responsiblilities:
— storing the blockchain state
— repeated reads/writes to state
e storage responsibilities:
— storing sequence of all processed txs

11

Category #1.:

Approaches to Scaling

12

Approaches to Scaling

Category #1: Impose constraints on the validator set.
— often interpreted as “compromising on decentralization”

13

Approaches to Scaling

Category #1: Impose constraints on the validator set.

— often interpreted as “compromising on decentralization”

limit the number of validators (e.g., to maximum of 100)
— limits work required at consensus layer
— explicitly or implicitly e.g. through large staking requirement

14

Approaches to Scaling

Category #1: Impose constraints on the validator set.
— often interpreted as “compromising on decentralization”

* limit the number of validators (e.g., to maximum of 100)
— limits work required at consensus layer
— explicitly or implicitly e.g. through large staking requirement

* require high-performance validators

— e.g., requirements on number of cores, RAM, bandwidth, etc.
— Ideological split between Bitcoin/Ethereum and newer blockchains

15

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

16

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

« examples at consensus layer:
— pipelining to decrease latency (i.e., overlapping views)

17

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

« examples at consensus layer:
— pipelining to decrease latency (i.e., overlapping views)
— optimistic block proposal, execution, etc.

18

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.

« examples at consensus layer:
— pipelining to decrease latency (i.e., overlapping views)
— optimistic block proposal, execution, etc.
— random sampling to manage large validator sets (“‘committees”)

19

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.
« examples at consensus layer:

pipelining to decrease latency (i.e., overlapping views)
optimistic block proposal, execution, etc.

random sampling to manage large validator sets (“committees™)
faster/more sophisticated transaction dissemination

20

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.
« examples at consensus layer:

pipelining to decrease latency (i.e., overlapping views)
optimistic block proposal, execution, etc.

random sampling to manage large validator sets (“committees™)
faster/more sophisticated transaction dissemination
“leaderless” consensus protocols

21

Category #2: better protocols and client implementations.

Approaches to Scaling (con’d)

examples at consensus layer:

pipelining to decrease latency (i.e., overlapping views)
optimistic block proposal, execution, etc.

random sampling to manage large validator sets (“committees”)
faster/more sophisticated block/transaction dissemination
“leaderless” consensus protocols

examples at execution layer:

22

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.
examples at consensus layer:

pipelining to decrease latency (i.e., overlapping views)
optimistic block proposal, execution, etc.

random sampling to manage large validator sets (“committees”)
faster/more sophisticated block/transaction dissemination
“leaderless” consensus protocols

examples at execution layer:

better state management (e.qg., tailored databases to store accounts)

23

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.
examples at consensus layer:

pipelining to decrease latency (i.e., overlapping views)
optimistic block proposal, execution, etc.

random sampling to manage large validator sets (“committees”)
faster/more sophisticated block/transaction dissemination
“leaderless” consensus protocols

examples at execution layer:

better state management (e.qg., tailored databases to store accounts)
state expiry

24

Approaches to Scaling (con’d)

Category #2: better protocols and client implementations.
examples at consensus layer:

pipelining to decrease latency (i.e., overlapping views)
optimistic block proposal, execution, etc.

random sampling to manage large validator sets (“committees”)
faster/more sophisticated block/transaction dissemination
“leaderless” consensus protocols

examples at execution layer:

better state management (e.qg., tailored databases to store accounts)

state expiry
parallel execution of non-conflicting transactions

25

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3" parties.
— 3" parties may be specialized, centralized, and largely untrusted

26

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3" parties.
— 3" parties may be specialized, centralized, and largely untrusted

« already standard: long-term storage outsourced to archival
nodes and/or data availability committees

27

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3" parties.
— 3" parties may be specialized, centralized, and largely untrusted

« already standard: long-term storage outsourced to archival
nodes and/or data availability committees

« recent development: block-building
— currently (in Ethereum/Solana): to capture “MEV”
— possible future: to outsource execution duties

28

Approaches to Scaling (con’d)

Category #3: outsourcing validator responsibilities to 3" parties.

— 3" parties may be specialized, centralized, and largely untrusted

« already standard: long-term storage outsourced to archival
nodes and/or data availability committees

« recent development: block-building
— currently (in Ethereum/Solana): to capture “MEV”
— possible future: to outsource execution duties
* possible future: execution + maintenance of blockchain state

— validators still expected to verify correctness of execution
— cf., stateless clients (see last lecture)

29

Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.
— unlike replication, want more validators =» more processing power

main blockchain protocol
(coordinates shards)

Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.

sharding storage: conceptually straightforward

main blockchain

protocol

Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.

sharding storage: conceptually straightforward

sharding consensus (l.e., tx sequencing):
— can be achieved via “rollups” (next)

main blockchain

protocol

Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.
« sharding storage: conceptually straightforward

» sharding consensus (l.e., tx sequencing):
— can be achieved via “rollups” (next)

* sharding execution: main blockchain

protocol

— with separate state per shard:
can be achieved via “rollups” (next) / / \

Approaches to Scaling (con’d)

Category #4: “sharding”/horizontal scaling.

« sharding storage: conceptually straightforward

» sharding consensus (l.e., tx sequencing):
— can be achieved via “rollups” (next)

* sharding execution: main blockchain

protocol

— with separate state per shard:
can be achieved via “rollups” (next)

— with shared state across
shards: largely unsolved

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

35

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

36

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution

37

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

(possibly centralized) rollup

38

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution
— associated with smart contract(s) running on the L1

39

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

rollup
contract

(possibly centralized) rollup

40

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution
— associated with smart contract(s) running on the L1
— publishes tx sequence via L1 contract (i.e., uses L1 for data availabllity)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

41

L1 < Rollup Architecture

(possibly centralized) rollup

publish “tx; tx, ... tX;00”

decentralized blockchain
protocol (“L17)

rollup
contract

42

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes tx sequence via L1 contract (i.e., uses L1 for data availabllity)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment 43

L1 < Rollup Architecture

(possibly centralized) rollup

set new state root :=r

decentralized blockchain
protocol (“L17)

rollup
contract

44

Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution
— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1

45

Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution
— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

— tx data available on L1 =» blockchain state (not just state root) is known

46

Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution
— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

— tx data available on L1 =» blockchain state (not just state root) is known

Protection against rollup safety failure: any full node can detect an
Incorrect state root and raise an alarm.

47

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
Its inclusion in the next batch of rollup txs

48

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

add tx t to queue
(sent by end user)

decentralized blockchain
protocol (“L17)

rollup
contract

49

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
Its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
« next publication of rollup txs must “clear the queue” to be valid

30

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain
protocol (“L17)

rollup
contract

pu bliSh “tXl tX2 " tXlOO”
(invalid unless includes all
txs in the contract’s queue)

ol

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
Its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
« next publication of rollup txs must “clear the queue” to be valid
— rollup liveness failure =» can use L1 for liveness until reboot completes

52

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
Its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
« next publication of rollup txs must “clear the queue” to be valid
— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censor-resistance” of the L1

53

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.
— as opposed to relying on full nodes

o4

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.
— as opposed to relying on full nodes
— nalvel/infeasible approach: L1 re-computes rollup’s state commitment
« defeats purpose of rollup (to offload execution from L1 validators)

55

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

— nalvel/infeasible approach: L1 re-computes rollup’s state commitment

— optimistic approach: L1 assumes state commitment correct unless
dispute raised, re-execute rollup txs as needed to resolve dispute

56

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

rollup liveness failure =» can use L1 for liveness until reboot completes
rollup inherits the “censor-resistance” of the L1

2. State commitment correctness verified by L1.

nalve/infeasible approach: L1 re-computes rollup’s state commitment

optimistic approach: L1 assumes state commitment correct unless
dispute raised, re-execute rollup txs as needed to resolve dispute

“zKk’/validity approach: L1 verifies a “SNARK"” which proves the

correctness of the state commitment -

	Slide 1: Lecture #14: Scaling Blockchain Protocols
	Slide 2: Goals for Lecture #14
	Slide 3: Measuring Performance
	Slide 4: Measuring Performance
	Slide 5: Measuring Performance
	Slide 6: Measuring Performance
	Slide 7: Measuring Performance
	Slide 8: Bottlenecks to Scaling
	Slide 9: Bottlenecks to Scaling
	Slide 10: Bottlenecks to Scaling
	Slide 11: Bottlenecks to Scaling
	Slide 12: Approaches to Scaling
	Slide 13: Approaches to Scaling
	Slide 14: Approaches to Scaling
	Slide 15: Approaches to Scaling
	Slide 16: Approaches to Scaling (con’d)
	Slide 17: Approaches to Scaling (con’d)
	Slide 18: Approaches to Scaling (con’d)
	Slide 19: Approaches to Scaling (con’d)
	Slide 20: Approaches to Scaling (con’d)
	Slide 21: Approaches to Scaling (con’d)
	Slide 22: Approaches to Scaling (con’d)
	Slide 23: Approaches to Scaling (con’d)
	Slide 24: Approaches to Scaling (con’d)
	Slide 25: Approaches to Scaling (con’d)
	Slide 26: Approaches to Scaling (con’d)
	Slide 27: Approaches to Scaling (con’d)
	Slide 28: Approaches to Scaling (con’d)
	Slide 29: Approaches to Scaling (con’d)
	Slide 30: Approaches to Scaling (con’d)
	Slide 31: Approaches to Scaling (con’d)
	Slide 32: Approaches to Scaling (con’d)
	Slide 33: Approaches to Scaling (con’d)
	Slide 34: Approaches to Scaling (con’d)
	Slide 35: Introduction to Rollups
	Slide 36: L1  Rollup Architecture
	Slide 37: Introduction to Rollups
	Slide 38: L1  Rollup Architecture
	Slide 39: Introduction to Rollups
	Slide 40: L1  Rollup Architecture
	Slide 41: Introduction to Rollups
	Slide 42: L1  Rollup Architecture
	Slide 43: Introduction to Rollups
	Slide 44: L1  Rollup Architecture
	Slide 45: Dealing with Rollup Failures
	Slide 46: Dealing with Rollup Failures
	Slide 47: Dealing with Rollup Failures
	Slide 48: Two Requirements for “Classic” Rollups
	Slide 49: Forcing the Inclusion of a Rollup Tx
	Slide 50: Two Requirements for “Classic” Rollups
	Slide 51: Forcing the Inclusion of a Rollup Tx
	Slide 52: Two Requirements for “Classic” Rollups
	Slide 53: Two Requirements for “Classic” Rollups
	Slide 54: Two Requirements for “Classic” Rollups
	Slide 55: Two Requirements for “Classic” Rollups
	Slide 56: Two Requirements for “Classic” Rollups
	Slide 57: Two Requirements for “Classic” Rollups

