
Lecture #15:
Rollups

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

Answer: load on validators.
• consensus responsibilities:

– assembling a block (can be hard to do well, more later)
– communication/bandwidth
– computation (e.g., signature verification)

2

Bottlenecks to Scaling

Answer: load on validators.
• consensus responsibilities:

– assembling a block (can be hard to do well, more later)
– communication/bandwidth
– computation (e.g., signature verification)

• execution responsibilities:
– storing the blockchain state
– repeated reads/writes to state

3

Bottlenecks to Scaling

Answer: load on validators.
• consensus responsibilities:

– assembling a block (can be hard to do well, more later)
– communication/bandwidth
– computation (e.g., signature verification)

• execution responsibilities:
– storing the blockchain state
– repeated reads/writes to state

• storage responsibilities:
– storing sequence of all processed txs 4

Bottlenecks to Scaling

Category #1: impose constraints on the validator set.

5

Approaches to Scaling

Category #1: impose constraints on the validator set.

Category #2: better protocols and client implementations.

6

Approaches to Scaling

Category #1: impose constraints on the validator set.

Category #2: better protocols and client implementations.

Category #3: outsourcing validator responsibilities to 3rd parties.
– 3rd parties may be specialized, centralized, and largely untrusted

7

Approaches to Scaling

Category #1: impose constraints on the validator set.

Category #2: better protocols and client implementations.

Category #3: outsourcing validator responsibilities to 3rd parties.
– 3rd parties may be specialized, centralized, and largely untrusted

Category #4: “sharding”/horizontal scaling.

8

Approaches to Scaling

main blockchain protocol
(coordinates shards)

shard #2shard #1 shard #s…………
…….

…………
…….

1. Introduction to “rollups.”
– an approach to sharding blockchain state and execution
– piggyback on an “L1” for data availability, liveness, etc.
– central to the Ethereum ecosystem

2. EIP-4844.
– modern solution to DA required by rollups: “blob” storage

3. Optimistic rollups. (e.g., Arbitrum, Base, Optimism)
– rollup state commitments verified via “bisection game”
– security derived from economic penalties (confiscated collateral)

9

Goals for Lecture #15

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

10

Introduction to Rollups

11

L1 ó Rollup Architecture

decentralized blockchain
protocol (“L1”)

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution

12

Introduction to Rollups

13

L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain
protocol (“L1”)

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
– associated with smart contract(s) running on the L1

14

Introduction to Rollups

15

L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain
protocol (“L1”)

rollup
contract

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
– associated with smart contract(s) running on the L1
– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

16

Introduction to Rollups

17

L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain
protocol (“L1”)

rollup
contract

publish “tx1 tx2 … tx100”

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
– associated with smart contract(s) running on the L1
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)
– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment 18

Introduction to Rollups

19

L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain
protocol (“L1”)

rollup
contract

set new state root := r

“Classic” rollup: a blockchain/virtual machine with its own state
– performs its own consensus (i.e., tx sequencing) and execution
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
– periodically publishes commitment to rollup state (e.g. state root) to L1

20

Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state
– performs its own consensus (i.e., tx sequencing) and execution
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

– tx data available on L1 è blockchain state (not just state root) is known

21

Dealing with Rollup Failures

“Classic” rollup: a blockchain/virtual machine with its own state
– performs its own consensus (i.e., tx sequencing) and execution
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

– tx data available on L1 è blockchain state (not just state root) is known

Protection against rollup safety failure: any full node can detect an
incorrect state commitment and raise an alarm.

22

Dealing with Rollup Failures

1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs

23

Two Requirements for “Classic” Rollups

24

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain
protocol (“L1”)

rollup
contract

add tx t to queue
(sent by end user)

1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid

25

Two Requirements for “Classic” Rollups

26

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain
protocol (“L1”)

rollup
contract

publish “tx1 tx2 … tx100”
(invalid unless includes all
txs in the contract’s queue)

1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure è can use L1 for liveness until reboot completes

27

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1

28

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in

the next batch of rollup txs
– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
– as opposed to relying on full nodes

29

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in

the next batch of rollup txs
– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
– as opposed to relying on full nodes
– naïve/infeasible approach: L1 re-computes rollup’s state commitment

• defeats purpose of rollup (to offload execution from L1 validators)

30

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in

the next batch of rollup txs
– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
– as opposed to relying on full nodes
– naïve/infeasible approach: L1 re-computes rollup’s state commitment

• defeats purpose of rollup (to offload execution from L1 validators)

Question: how can L1 verify correctness without tx re-execution?
31

Two Requirements for “Classic” Rollups

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

32

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short

proof of incorrectness (which L1 can verify directly)

33

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short

proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

34

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short

proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness

(“SNARK”) along with each new tx batch + state commitment, L1 can
verify SNARK directly

35

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short

proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness

(“SNARK”) along with each new tx batch + state commitment, L1 can
verify SNARK directly

– SNARKs known since mid-1990s, becoming practical in mid-2020s
36

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:

37

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex

38

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex
– economic guarantees (optimistic) vs. cryptographic guarantees (validity)

39

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex
– economic guarantees (optimistic) vs. cryptographic guarantees (validity)
– common case requires little work (optimistic) vs. lots of work (validity)

40

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex
– economic guarantees (optimistic) vs. cryptographic guarantees (validity)
– common case requires little work (optimistic) vs. lots of work (validity)
– rollup txs might get reversed (optimistic) vs. final (validity)

41

Two Approaches to Verification

Rollup: uses L1 for availability of tx data.

42

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data

43

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.

44

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.
– introduces “blob” txs, max 6 blobs/block, ≈ 125kB/block
– blob data only at consensus layer, validators can delete after 2-3 weeks
– KZG commitments to blobs included in tx data (verified by validators)

45

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.
– introduces “blob” txs, max 6 blobs/block, ≈ 125kB/block
– blob data only at consensus layer, validators can delete after 2-3 weeks
– KZG commitments to blobs included in tx data (verified by validators)

Upshot: rollup txs became much cheaper (by 10-100x).
– blobs priced separately from regular txs 46

EIP-4844

Idea: watchdogs correct inaccurate state commitments.

47

Optimistic Rollups: The High-Level Idea

Idea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
– includes new state commitment with each batch
– deposits bounty (i.e., lots of money) for catching bogus commitments

48

Optimistic Rollups: The High-Level Idea

Idea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
– includes new state commitment with each batch
– deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose an alternative state
commitment any published batch of rollup txs.

– deposits money (to L1 contract) along with its challenge

49

Optimistic Rollups: The High-Level Idea

Idea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
– includes new state commitment with each batch
– deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose an alternative state
commitment any published batch of rollup txs.

– deposits money (to L1 contract) along with its challenge

Dispute resolution: L1 contract determines correct commitment.
– idea: re-execute minimal amount to determine winner 50

Optimistic Rollups: The High-Level Idea

Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»

51

Dispute Resolution

Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»

Resolving 𝜎′" 𝑣𝑠. 𝜎": view processing of txs in L as a sequence
𝜇", 𝜇#, … , 𝜇$ of EVM states (≈ one per line of EVM bytecode executed)

52

Dispute Resolution

Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»

Resolving 𝜎′" 𝑣𝑠. 𝜎": view processing of txs in L as a sequence
𝜇", 𝜇#, … , 𝜇$ of EVM states (≈ one per line of EVM bytecode executed)

– sequencer posts Merkle tree root r committing to its EVM computation
• leaves = 𝜇"’s [𝜇! = consistent with 𝜎#, 𝜇$ = consistent with 𝜎!]

53

Dispute Resolution

Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»

Resolving 𝜎′" 𝑣𝑠. 𝜎": view processing of txs in L as a sequence
𝜇", 𝜇#, … , 𝜇$ of EVM states (≈ one per line of EVM bytecode executed)

– sequencer posts Merkle tree root r committing to its EVM computation
• leaves = 𝜇"’s [𝜇! = consistent with 𝜎#, 𝜇$ = consistent with 𝜎!]

– defender posts commitment r’ to its computation 𝜇′!, 𝜇′%, … , 𝜇′$
54

Dispute Resolution

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:

55

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

56

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)

57

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)
– if 𝜇$/% = 𝜇′$/% è recurse on second half of computation trace

58

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)
– if 𝜇$/% = 𝜇′$/% è recurse on second half of computation trace
– if 𝜇$/% ≠ 𝜇′$/% è recurse on first half of computation trace

59

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)
– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)
– if 𝜇$/% = 𝜇′$/% è recurse on second half of computation trace
– if 𝜇$/% ≠ 𝜇′$/% è recurse on first half of computation trace
– repeat until locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!

60

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer, defender reveal midpoints 𝜇$/%,𝜇′$/% of computations
– repeatedly recurse on first or second half of computation trace until

locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!

61

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer, defender reveal midpoints 𝜇$/%,𝜇′$/% of computations
– repeatedly recurse on first or second half of computation trace until

locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!
– L1 contract directly verifies if transition 𝜇" → 𝜇"'! correctly computed

62

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer, defender reveal midpoints 𝜇$/%,𝜇′$/% of computations
– repeatedly recurse on first or second half of computation trace until

locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!
– L1 contract directly verifies if transition 𝜇" → 𝜇"'! correctly computed

• ≈ simulating one step of the EVM (inside a smart contract)
• if not, contract rejects 𝜎! as invalid, confiscates sequencer’s stake
• if so, contract confiscates challenger’s stake 63

Bisection Games

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game: sequencer, defender reveal midpoints of computations
– repeatedly recurse on first or second half of computation trace until locate position i of

computation s.t. 𝜇$ = 𝜇′$ and 𝜇$%! ≠ 𝜇′$%!
– L1 contract directly verifies if transition 𝜇$ → 𝜇$%! correctly computed

64

Properties of Optimistic Rollups

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game: sequencer, defender reveal midpoints of computations
– repeatedly recurse on first or second half of computation trace until locate position i of

computation s.t. 𝜇$ = 𝜇′$ and 𝜇$%! ≠ 𝜇′$%!
– L1 contract directly verifies if transition 𝜇$ → 𝜇$%! correctly computed

Good news: incorrect state commitment è big economic penalty.

65

Properties of Optimistic Rollups

Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game: sequencer, defender reveal midpoints of computations
– repeatedly recurse on first or second half of computation trace until locate position i of

computation s.t. 𝜇$ = 𝜇′$ and 𝜇$%! ≠ 𝜇′$%!
– L1 contract directly verifies if transition 𝜇$ → 𝜇$%! correctly computed

Good news: incorrect state commitment è big economic penalty.

Bad news: requires time (days) for dispute resolution to play out.
66

Properties of Optimistic Rollups

