Lecture #15:
Rollups

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Bottlenecks to Scaling

Answer: load on validators.

* consensus responsibilities:
— assembling a block (can be hard to do well, more later)
— communication/bandwidth
— computation (e.g., signature verification)

Bottlenecks to Scaling

Answer: load on validators.

* consensus responsibilities:
— assembling a block (can be hard to do well, more later)
— communication/bandwidth
— computation (e.g., signature verification)
« execution responsibilities:
— storing the blockchain state
— repeated reads/writes to state

Bottlenecks to Scaling

Answer: load on validators.

* consensus responsibilities:
— assembling a block (can be hard to do well, more later)
— communication/bandwidth
— computation (e.g., signature verification)
« execution responsibilities:
— storing the blockchain state
— repeated reads/writes to state

 storage responsibilities:
— storing sequence of all processed txs

Approaches to Scaling

Category #1: impose constraints on the validator set.

Approaches to Scaling

Category #1: impose constraints on the validator set.

Category #2: better protocols and client implementations.

Approaches to Scaling

Category #1: impose constraints on the validator set.
Category #2: better protocols and client implementations.

Category #3: outsourcing validator responsibilities to 3™ parties.
— 3 parties may be specialized, centralized, and largely untrusted

Approaches to Scaling

Category #1: impose constraints on the validator set.
Category #2: better protocols and client implementations.

Category #3: outsourcing validator responsibilities to 3™ parties.
— 3 parties may be specialized, centralized, and largely untrusted

Category #4: “sharding”/horizontal scaling.

main blockchain protocol
(coordinates shards)

Goals for Lecture #15

1. Introduction to “rollups.”
— an approach to sharding blockchain state and execution
— piggyback on an “L1” for data availability, liveness, etc.
— central to the Ethereum ecosystem

2. EIP-4844.
— modern solution to DA required by rollups: “blob” storage

3. Optimistic rollups. (e.g., Arbitrum, Base, Optimism)
— rollup state commitments verified via “bisection game”
— security derived from economic penalties (confiscated collateral)

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

10

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

11

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution

12

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

(possibly centralized) rollup

13

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution
— associated with smart contract(s) running on the L1

14

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

rollup
contract

(possibly centralized) rollup

15

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution
— associated with smart contract(s) running on the L1
— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
 note: anyone can run a rollup full node (i.e., maintain full rollup state)

16

L1 < Rollup Architecture

(possibly centralized) rollup

publish “tx; 1, ... tX;00”

decentralized blockchain
protocol (“L17)

rollup
contract

17

Introduction to Rollups

Assume: a decentralized “layer-one” blockchain (“L1”) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
 note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
- note: any full node can check correctness of commitment 18

L1 < Rollup Architecture

(possibly centralized) rollup

set new state root :=r

decentralized blockchain
protocol (“L17)

rollup
contract

19

Dealing with Rollup Falilures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution
— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1

20

Dealing with Rollup Falilures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution
— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

— tx data available on L1 = blockchain state (not just state root) is known

21

Dealing with Rollup Falilures

“Classic” rollup: a blockchain/virtual machine with its own state
— performs its own consensus (i.e., tx sequencing) and execution

— publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
— periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork”
rollup to resume execution from most recent state commitment.

— tx data available on L1 = blockchain state (not just state root) is known

Protection against rollup safety failure: any full node can detect an
iIncorrect state commitment and raise an alarm.

22

1.

Two Requirements for “Classic” Rollups

Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
its inclusion in the next batch of rollup txs

23

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

add tx t to queue
(sent by end user)

decentralized blockchain
protocol (“L17)

rollup
contract

24

1.

Two Requirements for “Classic” Rollups

Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
next publication of rollup txs must “clear the queue” to be valid

25

Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain
protocol (“L17)

rollup
contract

publish “tx; 1, ... tX;00”
(invalid unless includes all
txs in the contract’s queue)

26

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
next publication of rollup txs must “clear the queue” to be valid
— rollup liveness failure =» can use L1 for liveness until reboot completes

27

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
next publication of rollup txs must “clear the queue” to be valid
— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censorship-resistance” of the L1

28

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
— as opposed to relying on full nodes

29

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
— as opposed to relying on full nodes

— nalvel/infeasible approach: L1 re-computes rollup’s state commitment
defeats purpose of rollup (to offload execution from L1 validators)

30

Two Requirements for “Classic” Rollups

1. Escape hatch/forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in
the next batch of rollup txs

— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
— as opposed to relying on full nodes

— nalvel/infeasible approach: L1 re-computes rollup’s state commitment
defeats purpose of rollup (to offload execution from L1 validators)

Question: how can L1 verify correctness without tx re-execution?

31

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

32

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

L1 assumes state commitment correct unless dispute raised, re-
execution only as needed to resolve dispute

rely on watchdogs to catch incorrect state commitments, submit short
proof of incorrectness (which L1 can verify directly)

33

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct unless dispute raised, re-
execution only as needed to resolve dispute

— rely on watchdogs to catch incorrect state commitments, submit short
proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

34

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct unless dispute raised, re-
execution only as needed to resolve dispute

— rely on watchdogs to catch incorrect state commitments, submit short
proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

— rollup sequencer publishes easy-to-verify proof of correctness
(“SNARK?”) along with each new tx batch + state commitment, L1 can
verify SNARK directly

35

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct unless dispute raised, re-
execution only as needed to resolve dispute

— rely on watchdogs to catch incorrect state commitments, submit short
proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

— rollup sequencer publishes easy-to-verify proof of correctness
(“SNARK?”) along with each new tx batch + state commitment, L1 can
verify SNARK directly

— SNARKSs known since mid-1990s, becoming practical in mid-2020s

36

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct, re-execution only as needed to resolve dispute
— rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

— rollup sequencer publishes easy-to-verify proof of correctness (“SNARK?”) along with each new
tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:

37

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct, re-execution only as needed to resolve dispute
— rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

— rollup sequencer publishes easy-to-verify proof of correctness (“SNARK?”) along with each new
tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
— dispute resolution logic complex; SNARKSs really complex

38

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct, re-execution only as needed to resolve dispute
— rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

— rollup sequencer publishes easy-to-verify proof of correctness (“SNARK?”) along with each new
tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
— dispute resolution logic complex; SNARKSs really complex
— economic guarantees (optimistic) vs. cryptographic guarantees (validity)

39

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct, re-execution only as needed to resolve dispute
— rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

— rollup sequencer publishes easy-to-verify proof of correctness (“SNARK?”) along with each new
tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
— dispute resolution logic complex; SNARKSs really complex
— economic guarantees (optimistic) vs. cryptographic guarantees (validity)
— common case requires little work (optimistic) vs. lots of work (validity)

40

Two Approaches to Verification

1. Optimistic rollups. (examples: Arbitrum, Base, Optimism)

— L1 assumes state commitment correct, re-execution only as needed to resolve dispute
— rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)

— rollup sequencer publishes easy-to-verify proof of correctness (“SNARK?”) along with each new
tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
— dispute resolution logic complex; SNARKSs really complex
— economic guarantees (optimistic) vs. cryptographic guarantees (validity)
— common case requires little work (optimistic) vs. lots of work (validity)

— rollup txs might get reversed (optimistic) vs. final (validity) y

EIP-4844

Rollup: uses L1 for availability of tx data.

42

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
— not stored in blockchain state, only in historical tx data

43

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
— not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.

44

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
— not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.
— introduces “blob” txs, max 6 blobs/block, =~ 125kB/block
— blob data only at consensus layer, validators can delete after 2-3 weeks
— KZG commitments to blobs included in tx data (verified by validators)

45

EIP-4844

Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
— not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.
— introduces “blob” txs, max 6 blobs/block, =~ 125kB/block
— blob data only at consensus layer, validators can delete after 2-3 weeks
— KZG commitments to blobs included in tx data (verified by validators)

Upshot: rollup txs became much cheaper (by 10-100x).

— blobs priced separately from regular txs 0

Optimistic Rollups: The High-Level Idea

ldea: watchdogs correct inaccurate state commitments.

47

Optimistic Rollups: The High-Level Idea

ldea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
— includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

48

Optimistic Rollups: The High-Level Idea

ldea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
— includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose an alternative state
commitment any published batch of rollup txs.

— deposits money (to L1 contract) along with its challenge

49

Optimistic Rollups: The High-Level Idea

ldea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.

— includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose an alternative state
commitment any published batch of rollup txs.

— deposits money (to L1 contract) along with its challenge

Dispute resolution: L1 contract determines correct commitment.
— |dea: re-execute minimal amount to determine winner

50

Dispute Resolution

Canonical scenario: initial state commitment o,, assumed correct.
— ordered batch L =t4,t,,...,t, of txs
— sequencer alleges that o is correct state commitment after executing L
— defender disagrees, posts alternative commitment ¢'; # o4

51

Dispute Resolution

Canonical scenario: initial state commitment o,, assumed correct.
— ordered batch L =t4,t,,...,t, of txs
— sequencer alleges that o is correct state commitment after executing L
— defender disagrees, posts alternative commitment ¢'; # o4

Resolving ¢'; vs. o, view processing of txs in L as a sequence
Ui, Uo, ..., Uy OF EVM states (= one per line of EVM bytecode executed)

52

Dispute Resolution

Canonical scenario: initial state commitment o,, assumed correct.
— ordered batch L =t4,t,,...,t, of txs
— sequencer alleges that o is correct state commitment after executing L
— defender disagrees, posts alternative commitment ¢'; # o4

Resolving ¢'; vs. o, view processing of txs in L as a sequence
Ui, Us, ..., Uy OF EVM states (= one per line of EVM bytecode executed)

— sequencer posts Merkle tree root r committing to its EVM computation
* leaves = u;’s [uq = consistent with gy, uy = consistent with o4]

53

Dispute Resolution

Canonical scenario: initial state commitment o,, assumed correct.
— ordered batch L =t4,t,,...,t, of txs
— sequencer alleges that o is correct state commitment after executing L
— defender disagrees, posts alternative commitment ¢'; # o4

Resolving ¢'; vs. o, view processing of txs in L as a sequence
Ui, Us, ..., Uy OF EVM states (= one per line of EVM bytecode executed)

— sequencer posts Merkle tree root r committing to its EVM computation
* leaves = u;’s [uq = consistent with gy, uy = consistent with o4]
— defender posts commitment r’ to its computation u'y, 5, ..., 'y

54

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:

55

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer reveals midpoint py /, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof

56

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer reveals midpoint py /, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof

— defender reveals midpoint u'y /, of its computation (with Merkle proof)

57

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer reveals midpoint py /, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof

— defender reveals midpoint u'y /, of its computation (with Merkle proof)
— if uy/, = u'y /2 P recurse on second half of computation trace

58

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer reveals midpoint py /, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof

— defender reveals midpoint u'y /, of its computation (with Merkle proof)
— if uy/, = u'y /2 P recurse on second half of computation trace
— if un/2 # 1'n /2 =P recurse on first half of computation trace

59

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer reveals midpoint py /, of its computation (with Merkle proof)
— defender reveals midpoint i’y /, of its computation (with Merkle proof)
— if uy/2 = 1'n /2 =P recurse on second half of computation trace
— if un/2 # 1'n /2 =P recurse on first half of computation trace
— repeat until locate position i of computation s.t. y; = u'; and pj 1 # 141

60

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer, defender reveal midpoints py /,u'y /2 Of computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. y; = u'; and pj1q1 # 1'i4q

61

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer, defender reveal midpoints py /,u'y /2 Of computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. y; = u'; and pj1q1 # 1'i4q

— L1 contract directly verifies if transition u; - u;,, correctly computed

62

Bisection Games

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game:
— sequencer, defender reveal midpoints py /,u'y /2 Of computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. y; = u'; and pj1q1 # 1'i4q
— L1 contract directly verifies if transition u; - u; 4 correctly computed
« = simulating one step of the EVM (inside a smart contract)
- if not, contract rejects o; as invalid, confiscates sequencer’s stake
- if so, contract confiscates challenger’s stake

63

Properties of Optimistic Rollups

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game: sequencer, defender reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and pypq # 1

— L1 contract directly verifies if transition u; - u;,4 correctly computed

64

Properties of Optimistic Rollups

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game: sequencer, defender reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and pypq # 1

— L1 contract directly verifies if transition u; - u;,4 correctly computed

Good news: incorrect state commitment =» big economic penalty.

65

Properties of Optimistic Rollups

Resolving ¢’ vs. g;: view processing of txs in as a sequence of EVM states
— sequencer posts commitment r to its computation uq, u,, ..., iy
— defender posts commitment r’ to its computation u'y, u's, ..., u'y

Bisection game: sequencer, defender reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and pypq # 1

— L1 contract directly verifies if transition u; - u;,4 correctly computed

Good news: incorrect state commitment =» big economic penalty.

Bad news: requires time (days) for dispute resolution to play out.

66

