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Answer: load on validators.
• consensus responsibilities:

– assembling a block (can be hard to do well, more later)
– communication/bandwidth
– computation (e.g., signature verification)
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Answer: load on validators.
• consensus responsibilities:

– assembling a block (can be hard to do well, more later)
– communication/bandwidth
– computation (e.g., signature verification)

• execution responsibilities:
– storing the blockchain state
– repeated reads/writes to state

• storage responsibilities:
– storing sequence of all processed txs 4

Bottlenecks to Scaling



Category #1: impose constraints on the validator set.
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Category #1: impose constraints on the validator set.

Category #2: better protocols and client implementations.
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Category #1: impose constraints on the validator set.

Category #2: better protocols and client implementations.

Category #3: outsourcing validator responsibilities to 3rd parties.
– 3rd parties may be specialized, centralized, and largely untrusted

7

Approaches to Scaling



Category #1: impose constraints on the validator set.

Category #2: better protocols and client implementations.

Category #3: outsourcing validator responsibilities to 3rd parties.
– 3rd parties may be specialized, centralized, and largely untrusted

Category #4: “sharding”/horizontal scaling.
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Approaches to Scaling

main blockchain protocol
(coordinates shards)

shard #2shard #1 shard #s…………
…….

…………
…….



1. Introduction to “rollups.”
– an approach to sharding blockchain state and execution
– piggyback on an “L1” for data availability, liveness, etc.
– central to the Ethereum ecosystem

2. EIP-4844.
– modern solution to DA required by rollups: “blob” storage

3. Optimistic rollups. (e.g., Arbitrum, Base, Optimism)
– rollup state commitments verified via “bisection game”
– security derived from economic penalties (confiscated collateral)
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Goals for Lecture #15



Assume: a decentralized “layer-one” blockchain (“L1”) with strong 
consistency and liveness guarantees.  (e.g., Ethereum)
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Introduction to Rollups
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L1 ó Rollup Architecture

decentralized blockchain       
protocol (“L1”)



Assume: a decentralized “layer-one” blockchain (“L1”) with strong 
consistency and liveness guarantees.  (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
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Assume: a decentralized “layer-one” blockchain (“L1”) with strong 
consistency and liveness guarantees.  (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
– associated with smart contract(s) running on the L1
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Assume: a decentralized “layer-one” blockchain (“L1”) with strong 
consistency and liveness guarantees.  (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
– associated with smart contract(s) running on the L1
– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

16

Introduction to Rollups



17

L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain       
protocol (“L1”)

rollup 
contract

publish “tx1 tx2 … tx100”



Assume: a decentralized “layer-one” blockchain (“L1”) with strong 
consistency and liveness guarantees.  (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
– associated with smart contract(s) running on the L1
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)
– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment 18
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L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain       
protocol (“L1”)

rollup 
contract

set new state root := r



“Classic” rollup: a blockchain/virtual machine with its own state
– performs its own consensus (i.e., tx sequencing) and execution
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
– periodically publishes commitment to rollup state (e.g. state root) to L1
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“Classic” rollup: a blockchain/virtual machine with its own state
– performs its own consensus (i.e., tx sequencing) and execution
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork” 
rollup to resume execution from most recent state commitment.

– tx data available on L1 è blockchain state (not just state root) is known
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“Classic” rollup: a blockchain/virtual machine with its own state
– performs its own consensus (i.e., tx sequencing) and execution
– publishes tx sequence via L1 contract (i.e., uses L1 for data availability)
– periodically publishes commitment to rollup state (e.g. state root) to L1

Protection against rollup liveness failure: can “reboot” or “fork” 
rollup to resume execution from most recent state commitment.

– tx data available on L1 è blockchain state (not just state root) is known

Protection against rollup safety failure: any full node can detect an 
incorrect state commitment and raise an alarm.
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Dealing with Rollup Failures



1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs
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Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain       
protocol (“L1”)

rollup 
contract

add tx t to queue               
(sent by end user)



1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid
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Forcing the Inclusion of a Rollup Tx

(possibly centralized) rollup

decentralized blockchain       
protocol (“L1”)

rollup 
contract

publish “tx1 tx2 … tx100”
(invalid unless includes all 
txs in the contract’s queue)



1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure è can use L1 for liveness until reboot completes
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1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1
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1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in 

the next batch of rollup txs
– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
– as opposed to relying on full nodes
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1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in 

the next batch of rollup txs
– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
– as opposed to relying on full nodes
– naïve/infeasible approach: L1 re-computes rollup’s state commitment

• defeats purpose of rollup (to offload execution from L1 validators)
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1. Escape hatch/forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force its inclusion in 

the next batch of rollup txs
– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1

2. State commitment correctness verified by L1.
– as opposed to relying on full nodes
– naïve/infeasible approach: L1 re-computes rollup’s state commitment

• defeats purpose of rollup (to offload execution from L1 validators)

Question: how can L1 verify correctness without tx re-execution?
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short 

proof of incorrectness (which L1 can verify directly)
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short 

proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short 

proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness 

(“SNARK”) along with each new tx batch + state commitment, L1 can 
verify SNARK directly
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct unless dispute raised, re-

execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short 

proof of incorrectness (which L1 can verify directly)

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness 

(“SNARK”) along with each new tx batch + state commitment, L1 can 
verify SNARK directly

– SNARKs known since mid-1990s, becoming practical in mid-2020s
36
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new 

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:

37

Two Approaches to Verification



1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new 

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new 

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex
– economic guarantees (optimistic) vs. cryptographic guarantees (validity)
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new 

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex
– economic guarantees (optimistic) vs. cryptographic guarantees (validity)
– common case requires little work (optimistic) vs. lots of work (validity)
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1. Optimistic rollups.  (examples: Arbitrum, Base, Optimism)
– L1 assumes state commitment correct, re-execution only as needed to resolve dispute
– rely on watchdogs to catch incorrect state commitments, submit short proof of incorrectness

2. Validity (a.k.a. “zk”/“proof-based”) rollups. (ex: StarkWare, zkSync)
– rollup sequencer publishes easy-to-verify proof of correctness (“SNARK”) along with each new 

tx batch + state commitment, L1 can verify SNARK directly

Question: which is better? Summary of trade-offs:
– dispute resolution logic complex; SNARKs really complex
– economic guarantees (optimistic) vs. cryptographic guarantees (validity)
– common case requires little work (optimistic) vs. lots of work (validity)
– rollup txs might get reversed (optimistic) vs. final (validity)
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Rollup: uses L1 for availability of tx data.
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Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data
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Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.
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Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.
– introduces “blob” txs, max 6 blobs/block, ≈ 125kB/block
– blob data only at consensus layer, validators can delete after 2-3 weeks
– KZG commitments to blobs included in tx data (verified by validators)
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Rollup: uses L1 for availability of tx data.

Original approach: stuff compressed tx descriptions into calldata.
– not stored in blockchain state, only in historical tx data

EIP-4844: specifically reserve portion of block for data availability.
– introduces “blob” txs, max 6 blobs/block, ≈ 125kB/block
– blob data only at consensus layer, validators can delete after 2-3 weeks
– KZG commitments to blobs included in tx data (verified by validators)

Upshot: rollup txs became much cheaper (by 10-100x).
– blobs priced separately from regular txs 46
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Idea: watchdogs correct inaccurate state commitments.
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Idea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
– includes new state commitment with each batch
– deposits bounty (i.e., lots of money) for catching bogus commitments
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Idea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
– includes new state commitment with each batch
– deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose an alternative state 
commitment any published batch of rollup txs.

– deposits money (to L1 contract) along with its challenge
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Idea: watchdogs correct inaccurate state commitments.

Sequencer: party authorized to publish rollup txs to L1 contract.
– includes new state commitment with each batch
– deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose an alternative state 
commitment any published batch of rollup txs.

– deposits money (to L1 contract) along with its challenge

Dispute resolution: L1 contract determines correct commitment.
– idea: re-execute minimal amount to determine winner 50

Optimistic Rollups: The High-Level Idea



Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»
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Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»

Resolving 𝜎′" 𝑣𝑠. 𝜎": view processing of txs in L as a sequence 
𝜇", 𝜇#, … , 𝜇$ of EVM states (≈ one per line of EVM bytecode executed)
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Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»

Resolving 𝜎′" 𝑣𝑠. 𝜎": view processing of txs in L as a sequence 
𝜇", 𝜇#, … , 𝜇$ of EVM states (≈ one per line of EVM bytecode executed)

– sequencer posts Merkle tree root r committing to its EVM computation
• leaves = 𝜇"’s  [𝜇! = consistent with 𝜎#, 𝜇$ = consistent with 𝜎!]
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Canonical scenario: initial state commitment 𝜎!, assumed correct.
– ordered batch L = t1,t2,…,tk of txs
– sequencer alleges that 𝜎! is correct state commitment after executing L
– defender disagrees, posts alternative commitment 𝜎′! ≠ 𝜎!

»

Resolving 𝜎′" 𝑣𝑠. 𝜎": view processing of txs in L as a sequence 
𝜇", 𝜇#, … , 𝜇$ of EVM states (≈ one per line of EVM bytecode executed)

– sequencer posts Merkle tree root r committing to its EVM computation
• leaves = 𝜇"’s  [𝜇! = consistent with 𝜎#, 𝜇$ = consistent with 𝜎!]

– defender posts commitment r’ to its computation 𝜇′!, 𝜇′%, … , 𝜇′$
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof 
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof 

– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof 

– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)
– if 𝜇$/% = 𝜇′$/% è recurse on second half of computation trace

58

Bisection Games



Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof 

– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)
– if 𝜇$/% = 𝜇′$/% è recurse on second half of computation trace
– if 𝜇$/% ≠ 𝜇′$/% è recurse on first half of computation trace
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer reveals midpoint 𝜇$/% of its computation (with Merkle proof)
– defender reveals midpoint 𝜇′$/% of its computation (with Merkle proof)
– if 𝜇$/% = 𝜇′$/% è recurse on second half of computation trace
– if 𝜇$/% ≠ 𝜇′$/% è recurse on first half of computation trace
– repeat until locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer, defender reveal midpoints 𝜇$/%,𝜇′$/% of computations 
– repeatedly recurse on first or second half of computation trace until 

locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer, defender reveal midpoints 𝜇$/%,𝜇′$/% of computations 
– repeatedly recurse on first or second half of computation trace until 

locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!
– L1 contract directly verifies if transition 𝜇" → 𝜇"'! correctly computed
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game:
– sequencer, defender reveal midpoints 𝜇$/%,𝜇′$/% of computations 
– repeatedly recurse on first or second half of computation trace until 

locate position i of computation s.t. 𝜇" = 𝜇′" and 𝜇"'! ≠ 𝜇′"'!
– L1 contract directly verifies if transition 𝜇" → 𝜇"'! correctly computed

• ≈ simulating one step of the EVM (inside a smart contract)
• if not, contract rejects 𝜎! as invalid, confiscates sequencer’s stake
• if so, contract confiscates challenger’s stake 63
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game: sequencer, defender reveal midpoints of computations 
– repeatedly recurse on first or second half of computation trace until locate position i of 

computation s.t. 𝜇$ = 𝜇′$ and 𝜇$%! ≠ 𝜇′$%!
– L1 contract directly verifies if transition 𝜇$ → 𝜇$%! correctly computed
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game: sequencer, defender reveal midpoints of computations 
– repeatedly recurse on first or second half of computation trace until locate position i of 

computation s.t. 𝜇$ = 𝜇′$ and 𝜇$%! ≠ 𝜇′$%!
– L1 contract directly verifies if transition 𝜇$ → 𝜇$%! correctly computed

Good news: incorrect state commitment è big economic penalty.
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Resolving 𝜎′! 𝑣𝑠. 𝜎!: view processing of txs in as a sequence of EVM states
– sequencer posts commitment r to its computation 𝜇!, 𝜇", … , 𝜇#
– defender posts commitment r’ to its computation 𝜇′!, 𝜇′", … , 𝜇′#

Bisection game: sequencer, defender reveal midpoints of computations 
– repeatedly recurse on first or second half of computation trace until locate position i of 

computation s.t. 𝜇$ = 𝜇′$ and 𝜇$%! ≠ 𝜇′$%!
– L1 contract directly verifies if transition 𝜇$ → 𝜇$%! correctly computed

Good news: incorrect state commitment è big economic penalty.

Bad news: requires time (days) for dispute resolution to play out.
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