Lecture #16:
Optimistic Rollups

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Lecture #16

1. Rollups review.
— an approach to sharding blockchain state and execution
— piggyback on an “L1” for data availability, liveness, etc.
— central to the Ethereum ecosystem

2. Optimistic rollups. (e.g., Arbitrum, Base, Optimism)
— rollup state commitments verified via “bisection game”

— “cryptoeconomic” security: derived from economic penalties
(confiscation of staked collateral)

Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

(possibly centralized) rollup

Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution
— associated with smart contract(s) running on the L1

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

rollup
contract

(possibly centralized) rollup

Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state
— not necessarily decentralized, subject to crash or Byzantine failure
— performs its own consensus (i.e., tx sequencing) and execution
— associated with smart contract(s) running on the L1
— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)
* pre-EIP-4844: via call data
* post-EIP-4844: via blobs 10

L1 < Rollup Architecture

(possibly centralized) rollup

publish “tx; tx, ... tX;00”

decentralized blockchain
protocol (“L17)

rollup
contract

11

Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment 12

L1 < Rollup Architecture

(possibly centralized) rollup

set new state root :=r

decentralized blockchain
protocol (“L17)

rollup
contract

13

Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment

14

Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment

— (hard part) state commitment correctness verified by L1

15

Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment

— (hard part) state commitment correctness verified by L1

* question: how can L1 do this without re-executing rollup txs itself?
16

Optimistic Rollups

High-level idea: innocent until proven guilty.
— examples: Arbitrum, Base, Optimism

17

Optimistic Rollups

High-level idea: innocent until proven guilty.

— examples: Arbitrum, Base, Optimism

L1 assumes by default that each state commitment is correct
— should be the common case; no work needed

18

Optimistic Rollups

High-level idea: innocent until proven guilty.

— examples: Arbitrum, Base, Optimism
L1 assumes by default that each state commitment is correct
— should be the common case; no work needed

rely on watchdogs to catch incorrect state commitments,
submit short proof of incorrectness (“fault proof”)

— Intuitively, a specific line of code that was executed incorrectly

19

Optimistic Rollups

High-level idea: innocent until proven guilty.

— examples: Arbitrum, Base, Optimism
L1 assumes by default that each state commitment is correct
— should be the common case; no work needed

rely on watchdogs to catch incorrect state commitments,
submit short proof of incorrectness (“fault proof”)

— Intuitively, a specific line of code that was executed incorrectly

L1 verifies proof of incorrectness directly
— L1 performs minimal re-execution necessary to resolve dispute
— details quite complex, hard to get right

20

Seqguencers vs. Challengers

Sequencer: party authorized to publish rollup txs to L1 contract.

— Includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

21

Seqguencers vs. Challengers

Sequencer: party authorized to publish rollup txs to L1 contract.

— Includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose (to the L1 contract) an
alternative state commitment for any published batch of rollup txs.

— deposits money (to L1 contract) along with its challenge
— only need “1 out of N honest” assumption

22

L1 < Rollup Architecture

(possibly centralized) rollup

challenger proposes
alternative state root r’

decentralized blockchain
protocol (“L17)

rollup
contract

23

Seqguencers vs. Challengers

Sequencer: party authorized to publish rollup txs to L1 contract.

— Includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose (to the L1 contract) an
alternative state commitment for any published batch of rollup txs.

— deposits money (to L1 contract) along with its challenge
— only need “1 out of N honest” assumption

Question: how can L1 know which state commitment is correct?

24

Dispute Resolution

ldea: L1 performs minimal amount of re-execution necessary to
determine winner (sequencer vs. challenger).

— easily the most complex + tricky component of an optimistic rollup

25

Dispute Resolution

ldea: L1 performs minimal amount of re-execution necessary to
determine winner (sequencer vs. challenger).

— easily the most complex + tricky component of an optimistic rollup

Canonical scenario: Iinitial state commitment ¢,, assumed correct.
— ordered batch L = t;,t,,...,t, of rollup txs
— seqguencer alleges that o, Is correct state commitment after executing L
— challenger disagrees, posts alternative commitment ¢'; # g,
— for simplicity, suppose both L1 + rollup execution layers are EVM-based

26

Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.
— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs.oy:

27

Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.
— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs. g,: execution trace = view execution of t;,t,,...,t,

as seguence uq, U,, ..., 4y of EVM states (= one per line of EVM
bytecode executed, in the rollup’s execution layer)

28

Visualizing an EVM State

Ethereum Virtual Machine (EVM)

Virtual ROM

(immutable)

Program counter Stack Memory (Account) storage
PC

Gas availabl
Gas

o

Machine state 1 World state ©
(volatile) {persistent)

[source: https://www.quicknode.com/guides/ethereum-development/smart-contracts/a-dive-into-evm-architecture-and-opcodes]

Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.

— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs. g,: execution trace = view execution of t;,t,,...,t,

as seguence uq, U,, ..., 4y of EVM states (= one per line of EVM
bytecode executed, in the rollup’s execution layer)

— seqguencer posts Merkle tree root r committing to its EVM computation
 leaves = u;'s [u,; = consistent with g,, uy = consistent with o,]

30

Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.

— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs. g,: execution trace = view execution of t;,t,,...,t,

as seguence uq, U,, ..., 4y of EVM states (= one per line of EVM
bytecode executed, in the rollup’s execution layer)

— seqguencer posts Merkle tree root r committing to its EVM computation
 leaves = u;'s [u,; = consistent with g,, uy = consistent with o,]
— challenger posts commitment r’ to its computation u'y, u’,, ..., 'y

31

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:

32

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy , of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof

33

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

34

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)
* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

Throughout: if one party fails to submit expected L1 tx in a
reasonable (TBA) amount of time =» lose dispute and its stake.

35

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

36

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

— if uy,, = u'y /2 = recurse on second half of computation trace

37

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

— if uy,, = u'y /2 = recurse on second half of computation trace
— if uy,, # u'y/, = recurse on first half of computation trace

38

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

— challenger reveals midpoint u'y /, of its computation (with Merkle proof)
— if 2 = W'y /2 =P recurse on second half of computation trace

— if uy 2 # W'y 2 =P recurse on first half of computation trace

— repeat until locate position i of computation s.t. u; = u'; and p;q1 # 144

39

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4

40

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4

— L1 contract directly verifies if transition u; — u;,, correctly computed

41

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4

— L1 contract directly verifies if transition u; — u;,, correctly computed
« = simulating one step of the EVM (inside a smart contract)

42

Visualizing an EVM State

Ethereum Virtual Machine (EVM)

Virtual ROM

(immutable)

Program counter Stack Memory (Account) storage
PC

Gas availabl
Gas

o

Machine state 1 World state ©
(volatile) {persistent)

[source: https://www.quicknode.com/guides/ethereum-development/smart-contracts/a-dive-into-evm-architecture-and-opcodes]

Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:

— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4

— L1 contract directly verifies if transition u; — u;,, correctly computed

« = simulating one step of the EVM (inside a smart contract)
« if not, contract rejects o, as invalid, confiscates sequencer’s stake
* if so, contract confiscates challenger’s stake

44

Key Property of Optimistic Rollups

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game: sequencer, challenger reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and p;pq # 1

— L1 contract directly verifies if transition u; — u;44 correctly computed

45

Key Property of Optimistic Rollups

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game: sequencer, challenger reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and p;pq # 1

— L1 contract directly verifies if transition u; — u;44 correctly computed

Key property: If sequencer posts incorrect state commitment, any
honest challenger can win dispute resolution

46

Key Property of Optimistic Rollups

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game: sequencer, challenger reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and p;pq # 1

— L1 contract directly verifies if transition u; — u;44 correctly computed

Key property: If sequencer posts incorrect state commitment, any
honest challenger can win dispute resolution = no safety
violation, and big economic penalty to sequencer.

— would expect sequencer to only publish correct state commitments 4

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

48

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

49

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)

30

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?

ol

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?
— DoS attacks (e.qg., if only whitelisted challengers)

52

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?
— DoS attacks (e.qg., if only whitelisted challengers)
— failure of L1 (i.e., not consistent/live/censorship-resistant)

53

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?
— DoS attacks (e.qg., if only whitelisted challengers)
— failure of L1 (i.e., not consistent/live/censorship-resistant)

— bribery (i.e., dishonest rollup sequencer pays L1 validators to exclude

challengers’ L1 txs)
54

Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

55

Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it's
been undisputed for sufficiently long number T of L1 blocks.

— e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

56

Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it's
been undisputed for sufficiently long number T of L1 blocks.

— e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

Fact: long delay before final rollup tx confirmation the biggest
drawback of optimistic rollups (cf., validity rollups).

S7

Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it's
been undisputed for sufficiently long number T of L1 blocks.

— e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

Fact: long delay before final rollup tx confirmation the biggest
drawback of optimistic rollups (cf., validity rollups).

— rollup users have option to treat rollups txs as finalized earlier, if desired
« cf., security parameter k in longest-chain consensus

58

Example: The Cost of Censorship

Simplified model:

39

Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks

60

Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks

» each block proposer includes challenger’s tx if and only If
challenger pays proposer at least as much as seqguencer

61

Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks

» each block proposer includes challenger’s tx if and only If
challenger pays proposer at least as much as seqguencer

HWG: as long as challenger’s budget for paying proposers is at
least = N/T times that of the sequencer =» guaranteed to win.

62

Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks

» each block proposer includes challenger’s tx if and only If
challenger pays proposer at least as much as seqguencer

HWG: as long as challenger’s budget for paying proposers is at
least = N/T times that of the sequencer =» guaranteed to win.

— In practice, N=60 and T = 50K (7 days), so N/T = 0.12%

63

	Slide 1: Lecture #16: Optimistic Rollups
	Slide 2: Goals for Lecture #16
	Slide 3: Recall: “Classic” Rollups
	Slide 4: L1  Rollup Architecture
	Slide 5: Recall: “Classic” Rollups
	Slide 6: L1  Rollup Architecture
	Slide 7: Recall: “Classic” Rollups
	Slide 8: L1  Rollup Architecture
	Slide 9: Recall: “Classic” Rollups
	Slide 10: Recall: “Classic” Rollups
	Slide 11: L1  Rollup Architecture
	Slide 12: Recall: “Classic” Rollups
	Slide 13: L1  Rollup Architecture
	Slide 14: Recall: “Classic” Rollups
	Slide 15: Recall: “Classic” Rollups
	Slide 16: Recall: “Classic” Rollups
	Slide 17: Optimistic Rollups
	Slide 18: Optimistic Rollups
	Slide 19: Optimistic Rollups
	Slide 20: Optimistic Rollups
	Slide 21: Sequencers vs. Challengers
	Slide 22: Sequencers vs. Challengers
	Slide 23: L1  Rollup Architecture
	Slide 24: Sequencers vs. Challengers
	Slide 25: Dispute Resolution
	Slide 26: Dispute Resolution
	Slide 27: Dispute Resolution
	Slide 28: Dispute Resolution
	Slide 29: Visualizing an EVM State
	Slide 30: Dispute Resolution
	Slide 31: Dispute Resolution
	Slide 32: Bisection Games
	Slide 33: Bisection Games
	Slide 34: Bisection Games
	Slide 35: Bisection Games
	Slide 36: Bisection Games
	Slide 37: Bisection Games
	Slide 38: Bisection Games
	Slide 39: Bisection Games
	Slide 40: Bisection Games
	Slide 41: Bisection Games
	Slide 42: Bisection Games
	Slide 43: Visualizing an EVM State
	Slide 44: Bisection Games
	Slide 45: Key Property of Optimistic Rollups
	Slide 46: Key Property of Optimistic Rollups
	Slide 47: Key Property of Optimistic Rollups
	Slide 48: Danger: Censorship by L1 Validators
	Slide 49: Danger: Censorship by L1 Validators
	Slide 50: Danger: Censorship by L1 Validators
	Slide 51: Danger: Censorship by L1 Validators
	Slide 52: Danger: Censorship by L1 Validators
	Slide 53: Danger: Censorship by L1 Validators
	Slide 54: Danger: Censorship by L1 Validators
	Slide 55: Choosing the Dispute Period
	Slide 56: Choosing the Dispute Period
	Slide 57: Choosing the Dispute Period
	Slide 58: Choosing the Dispute Period
	Slide 59: Example: The Cost of Censorship
	Slide 60: Example: The Cost of Censorship
	Slide 61: Example: The Cost of Censorship
	Slide 62: Example: The Cost of Censorship
	Slide 63: Example: The Cost of Censorship

