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Goals for Lecture #16

1. Rollups review.
— an approach to sharding blockchain state and execution
— piggyback on an “L1” for data availability, liveness, etc.
— central to the Ethereum ecosystem

2. Optimistic rollups. (e.g., Arbitrum, Base, Optimism)
— rollup state commitments verified via “bisection game”

— “cryptoeconomic” security: derived from economic penalties
(confiscation of staked collateral)



Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)
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Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)
* pre-EIP-4844: via call data
* post-EIP-4844: via blobs 10
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Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L17) with strong
consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment 12
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Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment
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— (hard part) state commitment correctness verified by L1
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Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
* note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
 note: any full node can check correctness of commitment

— (hard part) state commitment correctness verified by L1

* question: how can L1 do this without re-executing rollup txs itself?
16



Optimistic Rollups

High-level idea: innocent until proven guilty.
— examples: Arbitrum, Base, Optimism
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— Intuitively, a specific line of code that was executed incorrectly
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Optimistic Rollups

High-level idea: innocent until proven guilty.

— examples: Arbitrum, Base, Optimism
L1 assumes by default that each state commitment is correct
— should be the common case; no work needed

rely on watchdogs to catch incorrect state commitments,
submit short proof of incorrectness (“fault proof”)

— Intuitively, a specific line of code that was executed incorrectly

L1 verifies proof of incorrectness directly
— L1 performs minimal re-execution necessary to resolve dispute
— details quite complex, hard to get right

20



Seqguencers vs. Challengers

Sequencer: party authorized to publish rollup txs to L1 contract.

— Includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments
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Seqguencers vs. Challengers

Sequencer: party authorized to publish rollup txs to L1 contract.

— Includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose (to the L1 contract) an
alternative state commitment for any published batch of rollup txs.

— deposits money (to L1 contract) along with its challenge
— only need “1 out of N honest” assumption
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Seqguencers vs. Challengers

Sequencer: party authorized to publish rollup txs to L1 contract.

— Includes new state commitment with each batch
— deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose (to the L1 contract) an
alternative state commitment for any published batch of rollup txs.

— deposits money (to L1 contract) along with its challenge
— only need “1 out of N honest” assumption

Question: how can L1 know which state commitment is correct?
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Dispute Resolution

ldea: L1 performs minimal amount of re-execution necessary to
determine winner (sequencer vs. challenger).

— easily the most complex + tricky component of an optimistic rollup
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Dispute Resolution

ldea: L1 performs minimal amount of re-execution necessary to
determine winner (sequencer vs. challenger).

— easily the most complex + tricky component of an optimistic rollup

Canonical scenario: Iinitial state commitment ¢,, assumed correct.
— ordered batch L = t;,t,,...,t, of rollup txs
— seqguencer alleges that o, Is correct state commitment after executing L
— challenger disagrees, posts alternative commitment ¢'; # g,
— for simplicity, suppose both L1 + rollup execution layers are EVM-based
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Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.
— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs.oy:
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Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.
— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs. g,: execution trace = view execution of t;,t,,...,t,

as seguence uq, U,, ..., 4y of EVM states (= one per line of EVM
bytecode executed, in the rollup’s execution layer)
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Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.

— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs. g,: execution trace = view execution of t;,t,,...,t,

as seguence uq, U,, ..., 4y of EVM states (= one per line of EVM
bytecode executed, in the rollup’s execution layer)

— seqguencer posts Merkle tree root r committing to its EVM computation
 leaves = u;'s [u,; = consistent with g,, uy = consistent with o, ]
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Dispute Resolution

Canonical scenario: Iinitial state commitment ¢,, assumed correct.

— ordered batch L = t,,t,,...,t, of rollup txs
— seqguencer posts gy, challenger posts ¢'; # g,

Resolving ¢'; vs. g,: execution trace = view execution of t;,t,,...,t,

as seguence uq, U,, ..., 4y of EVM states (= one per line of EVM
bytecode executed, in the rollup’s execution layer)

— seqguencer posts Merkle tree root r committing to its EVM computation
 leaves = u;'s [u,; = consistent with g,, uy = consistent with o, ]
— challenger posts commitment r’ to its computation u'y, u’,, ..., 'y
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy , of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)
* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

Throughout: if one party fails to submit expected L1 tx in a
reasonable (TBA) amount of time =» lose dispute and its stake.
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
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— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

— if uy,, = u'y /2 = recurse on second half of computation trace
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

* i.e., submits to rollup’s L1 contract, which verifies the proof
— challenger reveals midpoint 'y, of its computation (with Merkle proof)

— if uy,, = u'y /2 = recurse on second half of computation trace
— if uy,, # u'y/, = recurse on first half of computation trace
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer reveals midpoint uy ,, of its computation (with Merkle proof)

— challenger reveals midpoint u'y /, of its computation (with Merkle proof)
— if 2 = W'y /2 =P recurse on second half of computation trace

— if uy 2 # W'y 2 =P recurse on first half of computation trace

— repeat until locate position i of computation s.t. u; = u'; and p;q1 # 144
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4

— L1 contract directly verifies if transition u; — u;,, correctly computed
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:
— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4

— L1 contract directly verifies if transition u; — u;,, correctly computed
« = simulating one step of the EVM (inside a smart contract)
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Visualizing an EVM State

Ethereum Virtual Machine (EVM)
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Bisection Games

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game:

— sequencer, challenger reveal midpoints uy ,,u'y , 0f computations

— repeatedly recurse on first or second half of computation trace until
locate position i of computation s.t. u; = u'; and p;.1 # U4

— L1 contract directly verifies if transition u; — u;,, correctly computed

« = simulating one step of the EVM (inside a smart contract)
« if not, contract rejects o, as invalid, confiscates sequencer’s stake
* if so, contract confiscates challenger’s stake
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Key Property of Optimistic Rollups

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game: sequencer, challenger reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and p;pq # 1

— L1 contract directly verifies if transition u; — u;44 correctly computed
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Key Property of Optimistic Rollups

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game: sequencer, challenger reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and p;pq # 1

— L1 contract directly verifies if transition u; — u;44 correctly computed

Key property: If sequencer posts incorrect state commitment, any
honest challenger can win dispute resolution
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Key Property of Optimistic Rollups

Resolving ¢'; vs. o, : view processing of txs in as a sequence of EVM states
— sequencer posts Merkle tree root r committing to its computation p4, u,, ..., Uy
— challenger posts Merkle tree root r' committing to its computation u'y, 1’5, ..., u'y

Bisection game: sequencer, challenger reveal midpoints of computations

— repeatedly recurse on first or second half of computation trace until locate position i of
computation s.t. u; = p'; and p;pq # 1

— L1 contract directly verifies if transition u; — u;44 correctly computed

Key property: If sequencer posts incorrect state commitment, any
honest challenger can win dispute resolution = no safety
violation, and big economic penalty to sequencer.

— would expect sequencer to only publish correct state commitments 4



Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?
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executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)
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— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)
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Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?
— DoS attacks (e.qg., if only whitelisted challengers)
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Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs
executed (by the L1) in time?

— note: attacker would need to block all honest challengers (recall “1 in N”)

— note: any honest challenger can pick up dispute resolution where
another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?
— DoS attacks (e.qg., if only whitelisted challengers)
— failure of L1 (i.e., not consistent/live/censorship-resistant)

— bribery (i.e., dishonest rollup sequencer pays L1 validators to exclude

challengers’ L1 txs)
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Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.
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Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it's
been undisputed for sufficiently long number T of L1 blocks.

— e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)
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Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it's
been undisputed for sufficiently long number T of L1 blocks.

— e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

Fact: long delay before final rollup tx confirmation the biggest
drawback of optimistic rollups (cf., validity rollups).
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Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it's
been undisputed for sufficiently long number T of L1 blocks.

— e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

Fact: long delay before final rollup tx confirmation the biggest
drawback of optimistic rollups (cf., validity rollups).

— rollup users have option to treat rollups txs as finalized earlier, if desired
« cf., security parameter k in longest-chain consensus
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Example: The Cost of Censorship

Simplified model:
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Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks
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Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks

» each block proposer includes challenger’s tx if and only If
challenger pays proposer at least as much as seqguencer
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Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks

» each block proposer includes challenger’s tx if and only If
challenger pays proposer at least as much as seqguencer

HWG: as long as challenger’s budget for paying proposers is at
least = N/T times that of the sequencer =» guaranteed to win.
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Example: The Cost of Censorship

Simplified model:

 to foil a rogue sequencer, honest challenger must successfully
submit N L1 txs over the course of T blocks

» each block proposer includes challenger’s tx if and only If
challenger pays proposer at least as much as seqguencer

HWG: as long as challenger’s budget for paying proposers is at
least = N/T times that of the sequencer =» guaranteed to win.

— In practice, N=60 and T = 50K (7 days), so N/T = 0.12%
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