
Lecture #16:

Optimistic Rollups

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Rollups review.

– an approach to sharding blockchain state and execution

– piggyback on an “L1” for data availability, liveness, etc.

– central to the Ethereum ecosystem

2. Optimistic rollups. (e.g., Arbitrum, Base, Optimism)

– rollup state commitments verified via “bisection game”

– “cryptoeconomic” security: derived from economic penalties

(confiscation of staked collateral)

2

Goals for Lecture #16

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

3

Recall: “Classic” Rollups

4

L1  Rollup Architecture

decentralized blockchain

protocol (“L1”)

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

5

Recall: “Classic” Rollups

6

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

7

Recall: “Classic” Rollups

8

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

9

Recall: “Classic” Rollups

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

• pre-EIP-4844: via call data

• post-EIP-4844: via blobs 10

Recall: “Classic” Rollups

11

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

publish “tx1 tx2 … tx100”

Assume: a decentralized “layer-one” blockchain (“L1”) with strong

consistency and liveness guarantees. (e.g., Ethereum)

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment 12

Recall: “Classic” Rollups

13

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

set new state root := r

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment

14

Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment

– (hard part) state commitment correctness verified by L1

15

Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

– not necessarily decentralized, subject to crash or Byzantine failure

– performs its own consensus (i.e., tx sequencing) and execution

– associated with smart contract(s) running on the L1

– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)

– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment

– (hard part) state commitment correctness verified by L1

• question: how can L1 do this without re-executing rollup txs itself?
16

Recall: “Classic” Rollups

High-level idea: innocent until proven guilty.

– examples: Arbitrum, Base, Optimism

17

Optimistic Rollups

High-level idea: innocent until proven guilty.

– examples: Arbitrum, Base, Optimism

• L1 assumes by default that each state commitment is correct

– should be the common case; no work needed

18

Optimistic Rollups

High-level idea: innocent until proven guilty.

– examples: Arbitrum, Base, Optimism

• L1 assumes by default that each state commitment is correct

– should be the common case; no work needed

• rely on watchdogs to catch incorrect state commitments,

submit short proof of incorrectness (“fault proof”)

– intuitively, a specific line of code that was executed incorrectly

19

Optimistic Rollups

High-level idea: innocent until proven guilty.

– examples: Arbitrum, Base, Optimism

• L1 assumes by default that each state commitment is correct

– should be the common case; no work needed

• rely on watchdogs to catch incorrect state commitments,

submit short proof of incorrectness (“fault proof”)

– intuitively, a specific line of code that was executed incorrectly

• L1 verifies proof of incorrectness directly

– L1 performs minimal re-execution necessary to resolve dispute

– details quite complex, hard to get right
20

Optimistic Rollups

Sequencer: party authorized to publish rollup txs to L1 contract.

– includes new state commitment with each batch

– deposits bounty (i.e., lots of money) for catching bogus commitments

21

Sequencers vs. Challengers

Sequencer: party authorized to publish rollup txs to L1 contract.

– includes new state commitment with each batch

– deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose (to the L1 contract) an

alternative state commitment for any published batch of rollup txs.

– deposits money (to L1 contract) along with its challenge

– only need “1 out of N honest” assumption

22

Sequencers vs. Challengers

23

L1  Rollup Architecture

(possibly centralized) rollup

decentralized blockchain

protocol (“L1”)

rollup

contract

challenger proposes

alternative state root r’

Sequencer: party authorized to publish rollup txs to L1 contract.

– includes new state commitment with each batch

– deposits bounty (i.e., lots of money) for catching bogus commitments

Challengers: anyone can propose (to the L1 contract) an

alternative state commitment for any published batch of rollup txs.

– deposits money (to L1 contract) along with its challenge

– only need “1 out of N honest” assumption

Question: how can L1 know which state commitment is correct?

24

Sequencers vs. Challengers

Idea: L1 performs minimal amount of re-execution necessary to

determine winner (sequencer vs. challenger).

– easily the most complex + tricky component of an optimistic rollup

25

Dispute Resolution

Idea: L1 performs minimal amount of re-execution necessary to

determine winner (sequencer vs. challenger).

– easily the most complex + tricky component of an optimistic rollup

Canonical scenario: initial state commitment 𝜎0, assumed correct.

– ordered batch L = t1,t2,…,tk of rollup txs

– sequencer alleges that 𝜎1 is correct state commitment after executing L

– challenger disagrees, posts alternative commitment 𝜎′1 ≠ 𝜎1

– for simplicity, suppose both L1 + rollup execution layers are EVM-based

26

Dispute Resolution

Canonical scenario: initial state commitment 𝜎0, assumed correct.

– ordered batch L = t1,t2,…,tk of rollup txs

– sequencer posts 𝜎1, challenger posts 𝜎′1 ≠ 𝜎1

Resolving 𝜎′1 𝑣𝑠. 𝜎1:

27

Dispute Resolution

Canonical scenario: initial state commitment 𝜎0, assumed correct.

– ordered batch L = t1,t2,…,tk of rollup txs

– sequencer posts 𝜎1, challenger posts 𝜎′1 ≠ 𝜎1

Resolving 𝜎′1 𝑣𝑠. 𝜎1: execution trace = view execution of t1,t2,…,tk

as sequence 𝜇1, 𝜇2, … , 𝜇𝑁 of EVM states (≈ one per line of EVM

bytecode executed, in the rollup’s execution layer)

28

Dispute Resolution

[source: https://www.quicknode.com/guides/ethereum-development/smart-contracts/a-dive-into-evm-architecture-and-opcodes]

29

Visualizing an EVM State

Canonical scenario: initial state commitment 𝜎0, assumed correct.

– ordered batch L = t1,t2,…,tk of rollup txs

– sequencer posts 𝜎1, challenger posts 𝜎′1 ≠ 𝜎1

Resolving 𝜎′1 𝑣𝑠. 𝜎1: execution trace = view execution of t1,t2,…,tk

as sequence 𝜇1, 𝜇2, … , 𝜇𝑁 of EVM states (≈ one per line of EVM

bytecode executed, in the rollup’s execution layer)

– sequencer posts Merkle tree root r committing to its EVM computation

• leaves = 𝜇𝑖 ’s [𝜇1 = consistent with 𝜎0, 𝜇𝑁 = consistent with 𝜎1]

30

Dispute Resolution

Canonical scenario: initial state commitment 𝜎0, assumed correct.

– ordered batch L = t1,t2,…,tk of rollup txs

– sequencer posts 𝜎1, challenger posts 𝜎′1 ≠ 𝜎1

Resolving 𝜎′1 𝑣𝑠. 𝜎1: execution trace = view execution of t1,t2,…,tk

as sequence 𝜇1, 𝜇2, … , 𝜇𝑁 of EVM states (≈ one per line of EVM

bytecode executed, in the rollup’s execution layer)

– sequencer posts Merkle tree root r committing to its EVM computation

• leaves = 𝜇𝑖 ’s [𝜇1 = consistent with 𝜎0, 𝜇𝑁 = consistent with 𝜎1]

– challenger posts commitment r’ to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

31

Dispute Resolution

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

32

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer reveals midpoint 𝜇𝑁/2 of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

33

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer reveals midpoint 𝜇𝑁/2 of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– challenger reveals midpoint 𝜇′𝑁/2 of its computation (with Merkle proof)

34

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer reveals midpoint 𝜇𝑁/2 of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– challenger reveals midpoint 𝜇′𝑁/2 of its computation (with Merkle proof)

Throughout: if one party fails to submit expected L1 tx in a

reasonable (TBA) amount of time ➔ lose dispute and its stake.

35

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer reveals midpoint 𝜇𝑁/2 of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– challenger reveals midpoint 𝜇′𝑁/2 of its computation (with Merkle proof)

36

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer reveals midpoint 𝜇𝑁/2 of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– challenger reveals midpoint 𝜇′𝑁/2 of its computation (with Merkle proof)

– if 𝜇𝑁/2 = 𝜇′𝑁/2 ➔ recurse on second half of computation trace

37

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer reveals midpoint 𝜇𝑁/2 of its computation (with Merkle proof)

• i.e., submits to rollup’s L1 contract, which verifies the proof

– challenger reveals midpoint 𝜇′𝑁/2 of its computation (with Merkle proof)

– if 𝜇𝑁/2 = 𝜇′𝑁/2 ➔ recurse on second half of computation trace

– if 𝜇𝑁/2 ≠ 𝜇′𝑁/2 ➔ recurse on first half of computation trace

38

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer reveals midpoint 𝜇𝑁/2 of its computation (with Merkle proof)

– challenger reveals midpoint 𝜇′𝑁/2 of its computation (with Merkle proof)

– if 𝜇𝑁/2 = 𝜇′𝑁/2 ➔ recurse on second half of computation trace

– if 𝜇𝑁/2 ≠ 𝜇′𝑁/2 ➔ recurse on first half of computation trace

– repeat until locate position i of computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

39

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer, challenger reveal midpoints 𝜇𝑁/2,𝜇′𝑁/2 of computations

– repeatedly recurse on first or second half of computation trace until

locate position i of computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

40

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer, challenger reveal midpoints 𝜇𝑁/2,𝜇′𝑁/2 of computations

– repeatedly recurse on first or second half of computation trace until

locate position i of computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

– L1 contract directly verifies if transition 𝜇𝑖 → 𝜇𝑖+1 correctly computed

41

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer, challenger reveal midpoints 𝜇𝑁/2,𝜇′𝑁/2 of computations

– repeatedly recurse on first or second half of computation trace until

locate position i of computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

– L1 contract directly verifies if transition 𝜇𝑖 → 𝜇𝑖+1 correctly computed

• ≈ simulating one step of the EVM (inside a smart contract)

42

Bisection Games

[source: https://www.quicknode.com/guides/ethereum-development/smart-contracts/a-dive-into-evm-architecture-and-opcodes]

43

Visualizing an EVM State

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game:

– sequencer, challenger reveal midpoints 𝜇𝑁/2,𝜇′𝑁/2 of computations

– repeatedly recurse on first or second half of computation trace until

locate position i of computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

– L1 contract directly verifies if transition 𝜇𝑖 → 𝜇𝑖+1 correctly computed

• ≈ simulating one step of the EVM (inside a smart contract)

• if not, contract rejects 𝜎1 as invalid, confiscates sequencer’s stake

• if so, contract confiscates challenger’s stake 44

Bisection Games

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game: sequencer, challenger reveal midpoints of computations

– repeatedly recurse on first or second half of computation trace until locate position i of

computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

– L1 contract directly verifies if transition 𝜇𝑖 → 𝜇𝑖+1 correctly computed

45

Key Property of Optimistic Rollups

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game: sequencer, challenger reveal midpoints of computations

– repeatedly recurse on first or second half of computation trace until locate position i of

computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

– L1 contract directly verifies if transition 𝜇𝑖 → 𝜇𝑖+1 correctly computed

Key property: if sequencer posts incorrect state commitment, any

honest challenger can win dispute resolution

46

Key Property of Optimistic Rollups

Resolving 𝜎′1 𝑣𝑠. 𝜎1: view processing of txs in as a sequence of EVM states

– sequencer posts Merkle tree root r committing to its computation 𝜇1, 𝜇2, … , 𝜇𝑁

– challenger posts Merkle tree root r’ committing to its computation 𝜇′1, 𝜇′2, … , 𝜇′𝑁

Bisection game: sequencer, challenger reveal midpoints of computations

– repeatedly recurse on first or second half of computation trace until locate position i of

computation s.t. 𝜇𝑖 = 𝜇′𝑖 and 𝜇𝑖+1 ≠ 𝜇′𝑖+1

– L1 contract directly verifies if transition 𝜇𝑖 → 𝜇𝑖+1 correctly computed

Key property: if sequencer posts incorrect state commitment, any

honest challenger can win dispute resolution ➔ no safety

violation, and big economic penalty to sequencer.

– would expect sequencer to only publish correct state commitments 47

Key Property of Optimistic Rollups

Issue: what if honest challengers can’t get the necessary L1 txs

executed (by the L1) in time?

48

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs

executed (by the L1) in time?

– note: attacker would need to block all honest challengers (recall “1 in N”)

49

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs

executed (by the L1) in time?

– note: attacker would need to block all honest challengers (recall “1 in N”)

– note: any honest challenger can pick up dispute resolution where

another one left off (due to uniqueness of the correct computation)

50

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs

executed (by the L1) in time?

– note: attacker would need to block all honest challengers (recall “1 in N”)

– note: any honest challenger can pick up dispute resolution where

another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?

51

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs

executed (by the L1) in time?

– note: attacker would need to block all honest challengers (recall “1 in N”)

– note: any honest challenger can pick up dispute resolution where

another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?

– DoS attacks (e.g., if only whitelisted challengers)

52

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs

executed (by the L1) in time?

– note: attacker would need to block all honest challengers (recall “1 in N”)

– note: any honest challenger can pick up dispute resolution where

another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?

– DoS attacks (e.g., if only whitelisted challengers)

– failure of L1 (i.e., not consistent/live/censorship-resistant)

53

Danger: Censorship by L1 Validators

Issue: what if honest challengers can’t get the necessary L1 txs

executed (by the L1) in time?

– note: attacker would need to block all honest challengers (recall “1 in N”)

– note: any honest challenger can pick up dispute resolution where

another one left off (due to uniqueness of the correct computation)

Question: how could things go wrong?

– DoS attacks (e.g., if only whitelisted challengers)

– failure of L1 (i.e., not consistent/live/censorship-resistant)

– bribery (i.e., dishonest rollup sequencer pays L1 validators to exclude

challengers’ L1 txs)
54

Danger: Censorship by L1 Validators

Issue: DoS attacks/L1 failure/censorship via bribery.

55

Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it’s

been undisputed for sufficiently long number T of L1 blocks.

– e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

56

Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it’s

been undisputed for sufficiently long number T of L1 blocks.

– e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

Fact: long delay before final rollup tx confirmation the biggest

drawback of optimistic rollups (cf., validity rollups).

57

Choosing the Dispute Period

Issue: DoS attacks/L1 failure/censorship via bribery.

Solution: rollup state commitment regarded as tentative until it’s

been undisputed for sufficiently long number T of L1 blocks.

– e.g., T = 7 days worth of blocks (hopefully makes an attack infeasible)

Fact: long delay before final rollup tx confirmation the biggest

drawback of optimistic rollups (cf., validity rollups).

– rollup users have option to treat rollups txs as finalized earlier, if desired

• cf., security parameter k in longest-chain consensus

58

Choosing the Dispute Period

Simplified model:

59

Example: The Cost of Censorship

Simplified model:

• to foil a rogue sequencer, honest challenger must successfully

submit N L1 txs over the course of T blocks

60

Example: The Cost of Censorship

Simplified model:

• to foil a rogue sequencer, honest challenger must successfully

submit N L1 txs over the course of T blocks

• each block proposer includes challenger’s tx if and only if

challenger pays proposer at least as much as sequencer

61

Example: The Cost of Censorship

Simplified model:

• to foil a rogue sequencer, honest challenger must successfully

submit N L1 txs over the course of T blocks

• each block proposer includes challenger’s tx if and only if

challenger pays proposer at least as much as sequencer

HW6: as long as challenger’s budget for paying proposers is at

least ≈ N/T times that of the sequencer ➔ guaranteed to win.

62

Example: The Cost of Censorship

Simplified model:

• to foil a rogue sequencer, honest challenger must successfully

submit N L1 txs over the course of T blocks

• each block proposer includes challenger’s tx if and only if

challenger pays proposer at least as much as sequencer

HW6: as long as challenger’s budget for paying proposers is at

least ≈ N/T times that of the sequencer ➔ guaranteed to win.

– in practice, N ≈ 60 and T ≈ 50K (7 days), so N/T ≈ 0.12%

63

Example: The Cost of Censorship

	Slide 1: Lecture #16: Optimistic Rollups
	Slide 2: Goals for Lecture #16
	Slide 3: Recall: “Classic” Rollups
	Slide 4: L1  Rollup Architecture
	Slide 5: Recall: “Classic” Rollups
	Slide 6: L1  Rollup Architecture
	Slide 7: Recall: “Classic” Rollups
	Slide 8: L1  Rollup Architecture
	Slide 9: Recall: “Classic” Rollups
	Slide 10: Recall: “Classic” Rollups
	Slide 11: L1  Rollup Architecture
	Slide 12: Recall: “Classic” Rollups
	Slide 13: L1  Rollup Architecture
	Slide 14: Recall: “Classic” Rollups
	Slide 15: Recall: “Classic” Rollups
	Slide 16: Recall: “Classic” Rollups
	Slide 17: Optimistic Rollups
	Slide 18: Optimistic Rollups
	Slide 19: Optimistic Rollups
	Slide 20: Optimistic Rollups
	Slide 21: Sequencers vs. Challengers
	Slide 22: Sequencers vs. Challengers
	Slide 23: L1  Rollup Architecture
	Slide 24: Sequencers vs. Challengers
	Slide 25: Dispute Resolution
	Slide 26: Dispute Resolution
	Slide 27: Dispute Resolution
	Slide 28: Dispute Resolution
	Slide 29: Visualizing an EVM State
	Slide 30: Dispute Resolution
	Slide 31: Dispute Resolution
	Slide 32: Bisection Games
	Slide 33: Bisection Games
	Slide 34: Bisection Games
	Slide 35: Bisection Games
	Slide 36: Bisection Games
	Slide 37: Bisection Games
	Slide 38: Bisection Games
	Slide 39: Bisection Games
	Slide 40: Bisection Games
	Slide 41: Bisection Games
	Slide 42: Bisection Games
	Slide 43: Visualizing an EVM State
	Slide 44: Bisection Games
	Slide 45: Key Property of Optimistic Rollups
	Slide 46: Key Property of Optimistic Rollups
	Slide 47: Key Property of Optimistic Rollups
	Slide 48: Danger: Censorship by L1 Validators
	Slide 49: Danger: Censorship by L1 Validators
	Slide 50: Danger: Censorship by L1 Validators
	Slide 51: Danger: Censorship by L1 Validators
	Slide 52: Danger: Censorship by L1 Validators
	Slide 53: Danger: Censorship by L1 Validators
	Slide 54: Danger: Censorship by L1 Validators
	Slide 55: Choosing the Dispute Period
	Slide 56: Choosing the Dispute Period
	Slide 57: Choosing the Dispute Period
	Slide 58: Choosing the Dispute Period
	Slide 59: Example: The Cost of Censorship
	Slide 60: Example: The Cost of Censorship
	Slide 61: Example: The Cost of Censorship
	Slide 62: Example: The Cost of Censorship
	Slide 63: Example: The Cost of Censorship

