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“Classic” rollup: a blockchain/virtual machine with its own state
– not necessarily decentralized, subject to crash or Byzantine failure
– performs its own consensus (i.e., tx sequencing) and execution
– associated with smart contract(s) running on the L1
– publishes rollup txs via L1 contract (i.e., uses L1 for data availability)

• note: anyone can run a rollup full node (i.e., maintain full rollup state)
– periodically publishes commitment to rollup state (e.g. state root) to L1

• note: any full node can check correctness of commitment
– (hard part) state commitment correctness verified by L1

• question: how can L1 do this without re-executing rollup txs itself?
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Recall: “Classic” Rollups
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L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain       
protocol (“L1”)

rollup 
contract

publish “tx1 tx2 … tx100”



1. Validity rollups. (e.g., Starknet, zkSync)
– rollup state commitments verified by L1 using “SNARK” proofs
– cryptographic (rather than cryptoeconomic) security

2. Probabilistic verification.
– need verification of correct tx execution << actual tx execution
– example: matrix multiplication (Freivalds’ algorithm)

3. The Fiat-Shamir heuristic.
– non-manipulable randomness from cryptographic hash functions
– “flattens” an iterative/interactive computation into a single proof

4

Goals for Lecture #17



Recall design: rely on watchdogs to catch incorrect state 
commitments, submit short proof of incorrectness (“fault proof”).

– L1 performs minimal re-execution necessary to resolve dispute

Drawbacks: 
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Drawbacks of Optimistic Rollups



Recall design: rely on watchdogs to catch incorrect state 
commitments, submit short proof of incorrectness (“fault proof”).

– L1 performs minimal re-execution necessary to resolve dispute

Drawbacks: 
• complex fault-proof logic  (warning: SNARKs far more complex)
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• “1 in N” trust assumption for watchdogs
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commitments, submit short proof of incorrectness (“fault proof”).
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• “1 in N” trust assumption for watchdogs
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Drawbacks of Optimistic Rollups



Recall design: rely on watchdogs to catch incorrect state 
commitments, submit short proof of incorrectness (“fault proof”).

– L1 performs minimal re-execution necessary to resolve dispute

Drawbacks: 
• complex fault-proof logic  (warning: SNARKs far more complex)
• “1 in N” trust assumption for watchdogs
• attacks preventing honest challengers from submitting L1 txs
• delay (≈ 7 days) before finalization of a state commitment

– users can proceed on basis of “preconfirmation,” if desired
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Drawbacks of Optimistic Rollups



Warning: often called “zk” rollups.  (even though not zero-knowledge)
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Validity Rollups



Warning: often called “zk” rollups.  (even though not zero-knowledge)

Recall: in a “classic” rollup (optimistic or validity), periodically 
publish rollup txs to L1, along with new state commitment.
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• L1 assumes by default that each state commitment is incorrect
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High-level idea of validity rollups: guilty until proven innocent.
• L1 assumes by default that each state commitment is incorrect
• rely on “provers” to submit proofs of correctness to L1

– if nothing else, rollup operator can run its own prover

13

Validity Rollups



Warning: often called “zk” rollups.  (even though not zero-knowledge)

Recall: in a “classic” rollup (optimistic or validity), periodically 
publish rollup txs to L1, along with new state commitment.

High-level idea of validity rollups: guilty until proven innocent.
• L1 assumes by default that each state commitment is incorrect
• rely on “provers” to submit proofs of correctness to L1

– if nothing else, rollup operator can run its own prover
• L1 verifies proof of correctness directly

– state commitment rejected if accompanying proof fails verification 14

Validity Rollups



Recall: in a “classic” rollup (optimistic or validity), periodically 
publish rollup txs to L1, along with new state commitment.

High-level idea of validity rollups: guilty until proven innocent.
• L1 assumes by default that each state commitment is incorrect
• rely on “provers” to submit proofs of correctness to L1
• L1 verifies proof of correctness directly

Hard part: verification of correctness proofs should be much
easier than tx re-execution --- i.e., need “SNARKs.”
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Validity Rollups
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Matrix Multiplication
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Matrix Multiplication
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Matrix Multiplication



Note: can compute the product of two 𝑛 × 𝑛 matrices in 𝑂(𝑛!) time.
– 𝑛! dot products, 𝑂(𝑛) time for each
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Matrix Multiplication (con’d)



Problem: matrix multiplication verification.

Input: three 𝑛 × 𝑛 matrices A, B, and C.
– C is allegedly the product of A and B
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Verifying Matrix Multiplication



Problem: matrix multiplication verification.

Input: three 𝑛 × 𝑛 matrices A, B, and C.
– C is allegedly the product of A and B

Output: “yes” if 𝐶 = 𝐴・𝐵 and “no” otherwise.
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Verifying Matrix Multiplication



Problem: matrix multiplication verification.

Input: three 𝑛 × 𝑛 matrices A, B, and C.
– C is allegedly the product of A and B

Output: “yes” if 𝐶 = 𝐴・𝐵 and “no” otherwise.

Obvious algorithm: compute A・B from scratch, compare result to C.
– running time = 𝑂(𝑛")
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Verifying Matrix Multiplication



Problem: matrix multiplication verification.

Input: three 𝑛 × 𝑛 matrices A, B, and C.
– C is allegedly the product of A and B

Output: “yes” if 𝐶 = 𝐴・𝐵 and “no” otherwise.

Obvious algorithm: compute A・B from scratch, compare result to C.
– running time = 𝑂(𝑛")
– or 𝑂(𝑛!."$) with the asymptotically best known (but hopelessly impractical)    

matrix multiplication algorithm
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Verifying Matrix Multiplication



Input: three 𝑛 × 𝑛 matrices A, B, and C.

Freivalds’ Algorithm (’77):
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Freivalds’ Algorithm



Input: three 𝑛 × 𝑛 matrices A, B, and C.

Freivalds’ Algorithm (’77):
• for i = 1,2,…,t:  [t = # of trials, parameter of our choosing]
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Freivalds’ Algorithm



Input: three 𝑛 × 𝑛 matrices A, B, and C.

Freivalds’ Algorithm (’77):
• for i = 1,2,…,t:  [t = # of trials, parameter of our choosing]

– choose 𝑥% ∈ 0,1 & uniformly at random [2! choices, each equally likely]
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Freivalds’ Algorithm



Input: three 𝑛 × 𝑛 matrices A, B, and C.

Freivalds’ Algorithm (’77):
• for i = 1,2,…,t:  [t = # of trials, parameter of our choosing]

– choose 𝑥% ∈ 0,1 & uniformly at random [2! choices, each equally likely]

– compute 𝑦% ≔ 𝐶 ⋅ 𝑥% [matrix-vector product]
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Freivalds’ Algorithm



Input: three 𝑛 × 𝑛 matrices A, B, and C.

Freivalds’ Algorithm (’77):
• for i = 1,2,…,t:  [t = # of trials, parameter of our choosing]

– choose 𝑥% ∈ 0,1 & uniformly at random [2! choices, each equally likely]

– compute 𝑦% ≔ 𝐶 ⋅ 𝑥% [matrix-vector product]

– compute 𝑧% ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥%) [two matrix-vector products]
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Freivalds’ Algorithm



Input: three 𝑛 × 𝑛 matrices A, B, and C.

Freivalds’ Algorithm (’77):
• for i = 1,2,…,t:  [t = # of trials, parameter of our choosing]

– choose 𝑥% ∈ 0,1 & uniformly at random [2! choices, each equally likely]

– compute 𝑦% ≔ 𝐶 ⋅ 𝑥% [matrix-vector product]

– compute 𝑧% ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥%) [two matrix-vector products]

– if 𝑦% ≠ 𝑧%, return “no”
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Freivalds’ Algorithm



Input: three 𝑛 × 𝑛 matrices A, B, and C.

Freivalds’ Algorithm (’77):
• for i = 1,2,…,t:  [t = # of trials, parameter of our choosing]

– choose 𝑥% ∈ 0,1 & uniformly at random [2! choices, each equally likely]

– compute 𝑦% ≔ 𝐶 ⋅ 𝑥% [matrix-vector product]

– compute 𝑧% ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥%) [two matrix-vector products]

– if 𝑦% ≠ 𝑧%, return “no”
• return “yes”
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Freivalds’ Algorithm



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Example: A = 1 0
0 0 , B = 0 0

0 1 , C = 0 1
0 0
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Freivalds’ Algorithm: Example



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Example: A = 1 0
0 0 , B = 0 0

0 1 , C = 0 1
0 0

• for all 𝑥 ∈ 0,0 , 1,0 , 0,1 , 1,1 : 𝐴 ⋅ 𝐵 ⋅ 𝑥 = (0,0)
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Freivalds’ Algorithm: Example



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Example: A = 1 0
0 0 , B = 0 0

0 1 , C = 0 1
0 0

• for all 𝑥 ∈ 0,0 , 1,0 , 0,1 , 1,1 : 𝐴 ⋅ 𝐵 ⋅ 𝑥 = (0,0)
• for 𝑥 ∈ 0,0 , 1,0 : 𝐶 ⋅ 𝑥 = (0,0)
• for 𝑥 ∈ 0,1 , 1,1 : 𝐶 ⋅ 𝑥 = (1,0)
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Freivalds’ Algorithm: Example



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Example: A = 1 0
0 0 , B = 0 0

0 1 , C = 0 1
0 0

• for all 𝑥 ∈ 0,0 , 1,0 , 0,1 , 1,1 : 𝐴 ⋅ 𝐵 ⋅ 𝑥 = (0,0)
• for 𝑥 ∈ 0,0 , 1,0 : 𝐶 ⋅ 𝑥 = (0,0)
• for 𝑥 ∈ 0,1 , 1,1 : 𝐶 ⋅ 𝑥 = (1,0)

– upshot: 𝐶 ⋅ 𝑥 ≠ 𝐴 ⋅ (𝐵 ⋅ 𝑥) with 50% probability (over choice of x)
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Freivalds’ Algorithm: Example



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Running time analysis:
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Freivalds’ Algorithm: Running Time



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Running time analysis:
• t iterations
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Freivalds’ Algorithm: Running Time



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Running time analysis:
• t iterations
• three matrix-vector products per iteration (𝑂(𝑛#) time each)
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Freivalds’ Algorithm: Running Time



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Running time analysis:
• t iterations
• three matrix-vector products per iteration (𝑂(𝑛#) time each)
• overall running time = 𝑂(𝑡 ⋅ 𝑛#)
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Freivalds’ Algorithm: Running Time



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Correctness [case 1]: suppose 𝐶 = 𝐴・𝐵.
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Freivalds’ Algorithm: Correctness



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Correctness [case 1]: suppose 𝐶 = 𝐴・𝐵.
• for every 𝑥 ∈ 0,1 $, 𝐶 ⋅ 𝑥 = 𝐴・(𝐵 ⋅ 𝑥)
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Freivalds’ Algorithm: Correctness



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Correctness [case 1]: suppose 𝐶 = 𝐴・𝐵.
• for every 𝑥 ∈ 0,1 $, 𝐶 ⋅ 𝑥 = 𝐴・(𝐵 ⋅ 𝑥)
• algorithm guaranteed to (correctly) return “yes”

– i.e., no false negatives
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Freivalds’ Algorithm: Correctness



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Correctness [case 2]: suppose 𝐶 ≠ 𝐴・𝐵.
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Freivalds’ Algorithm: Correctness



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Correctness [case 2]: suppose 𝐶 ≠ 𝐴・𝐵.
• claim: every iteration i, ≥ 50% chance that 𝐶 ⋅ 𝑥% ≠ 𝐴・(𝐵 ⋅ 𝑥%)
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Freivalds’ Algorithm: Correctness



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Correctness [case 2]: suppose 𝐶 ≠ 𝐴・𝐵.
• claim: every iteration i, ≥ 50% chance that 𝐶 ⋅ 𝑥% ≠ 𝐴・(𝐵 ⋅ 𝑥%)
• thus: ≤ 2-t probability that 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
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Freivalds’ Algorithm: Correctness



• for i = 1,2,…,t:
– choose 𝑥! ∈ 0,1 " uniformly at random, compute 𝑦! ≔ 𝐶 ⋅ 𝑥! and 𝑧! ≔ 𝐴 ⋅ (𝐵 ⋅ 𝑥!)
– if 𝑦! ≠ 𝑧!, return “no”

• return “yes”

Correctness [case 2]: suppose 𝐶 ≠ 𝐴・𝐵.
• claim: every iteration i, ≥ 50% chance that 𝐶 ⋅ 𝑥% ≠ 𝐴・(𝐵 ⋅ 𝑥%)
• thus: ≤ 2-t probability that 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
• è algorithm (correctly) returns “no” except with ≤ 2-t probability

– i.e., false positive probability ≤ 2-t
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Freivalds’ Algorithm: Correctness



Claim: if 𝐶 ≠ 𝐴・𝐵 and 𝑥 ∈ 0,1 $ chosen uniformly at random, then   
𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥) with probability ≥ ½.

Proof of claim: 
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Freivalds’ Algorithm: Correctness



Claim: if 𝐶 ≠ 𝐴・𝐵 and 𝑥 ∈ 0,1 $ chosen uniformly at random, then   
𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥) with probability ≥ ½.

Proof of claim: 
• 𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥)ó 𝑀 ⋅ 𝑥 ≠ 0, where 𝑀 ≔ 𝐶 − 𝐴 ⋅ 𝐵
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Freivalds’ Algorithm: Correctness



Claim: if 𝐶 ≠ 𝐴・𝐵 and 𝑥 ∈ 0,1 $ chosen uniformly at random, then   
𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥) with probability ≥ ½.

Proof of claim: 
• 𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥)ó 𝑀 ⋅ 𝑥 ≠ 0, where 𝑀 ≔ 𝐶 − 𝐴 ⋅ 𝐵
• let j be index of non-zero column of 𝑀 (exists because 𝐶 ≠ 𝐴・𝐵)

48

Freivalds’ Algorithm: Correctness



Claim: if 𝐶 ≠ 𝐴・𝐵 and 𝑥 ∈ 0,1 $ chosen uniformly at random, then   
𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥) with probability ≥ ½.

Proof of claim: 
• 𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥)ó 𝑀 ⋅ 𝑥 ≠ 0, where 𝑀 ≔ 𝐶 − 𝐴 ⋅ 𝐵
• let j be index of non-zero column of 𝑀 (exists because 𝐶 ≠ 𝐴・𝐵)
• note: if 𝑥, 𝑥′ differ only in jth coordinate, 𝑀 ⋅ 𝑥 ≠ 𝑀 ⋅ 𝑥′

– 𝑀 ⋅ 𝑥 − 𝑥6 = ± jth column of M
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Freivalds’ Algorithm: Correctness



Claim: if 𝐶 ≠ 𝐴・𝐵 and 𝑥 ∈ 0,1 $ chosen uniformly at random, then   
𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥) with probability ≥ ½.

Proof of claim: 
• 𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥)ó 𝑀 ⋅ 𝑥 ≠ 0, where 𝑀 ≔ 𝐶 − 𝐴 ⋅ 𝐵
• let j be index of non-zero column of 𝑀 (exists because 𝐶 ≠ 𝐴・𝐵)
• note: if 𝑥, 𝑥′ differ only in jth coordinate, 𝑀 ⋅ 𝑥 ≠ 𝑀 ⋅ 𝑥′
• è either 𝑀 ⋅ 𝑥 ≠ 0 or 𝑀 ⋅ 𝑥′ ≠ 0 (or both)
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Freivalds’ Algorithm: Correctness



Claim: if 𝐶 ≠ 𝐴・𝐵 and 𝑥 ∈ 0,1 $ chosen uniformly at random, then   
𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥) with probability ≥ ½.

Proof of claim: 
• 𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥)ó 𝑀 ⋅ 𝑥 ≠ 0, where 𝑀 ≔ 𝐶 − 𝐴 ⋅ 𝐵
• let j be index of non-zero column of 𝑀 (exists because 𝐶 ≠ 𝐴・𝐵)
• note: if 𝑥, 𝑥′ differ only in jth coordinate, 𝑀 ⋅ 𝑥 ≠ 𝑀 ⋅ 𝑥′
• è either 𝑀 ⋅ 𝑥 ≠ 0 or 𝑀 ⋅ 𝑥′ ≠ 0 (or both)
• è number of x’s with 𝑀 ⋅ 𝑥 = 0 ≤ number of x’s with 𝑀 ⋅ 𝑥 ≠ 0
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Freivalds’ Algorithm: Correctness



Claim: if 𝐶 ≠ 𝐴・𝐵 and 𝑥 ∈ 0,1 $ chosen uniformly at random, then   
𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥) with probability ≥ ½.

Proof of claim: 
• 𝐶 ⋅ 𝑥 ≠ 𝐴・(𝐵 ⋅ 𝑥)ó 𝑀 ⋅ 𝑥 ≠ 0, where 𝑀 ≔ 𝐶 − 𝐴 ⋅ 𝐵
• let j be index of non-zero column of 𝑀 (exists because 𝐶 ≠ 𝐴・𝐵)
• note: if 𝑥, 𝑥′ differ only in jth coordinate, 𝑀 ⋅ 𝑥 ≠ 𝑀 ⋅ 𝑥′
• è either 𝑀 ⋅ 𝑥 ≠ 0 or 𝑀 ⋅ 𝑥′ ≠ 0 (or both)
• è number of x’s with 𝑀 ⋅ 𝑥 = 0 ≤ number of x’s with 𝑀 ⋅ 𝑥 ≠ 0
• è 𝑀 ⋅ 𝑥 ≠ 0 with probability ≥ ½ over choice of 𝑥 ∈ 0,1 $
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Freivalds’ Algorithm: Correctness



• running time = 𝑂(𝑡 ⋅ 𝑛#) [t = number of trials]
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Freivalds’ Algorithm: Report Card



• running time = 𝑂(𝑡 ⋅ 𝑛#) [t = number of trials]
• “completeness” = 1

– i.e., 0% false negative probability on “yes” inputs
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Freivalds’ Algorithm: Report Card



• running time = 𝑂(𝑡 ⋅ 𝑛#) [t = number of trials]
• “completeness” = 1

– i.e., 0% false negative probability on “yes” inputs
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• running time = 𝑂(𝑡 ⋅ 𝑛#) [t = number of trials]
• “completeness” = 1

– i.e., 0% false negative probability on “yes” inputs
• “soundness” = ≤ 2-t

– i.e., ≤ 2-t false positive probability on “no” inputs

Upshot: can verify correctness of matrix multiplication in 𝑂(𝑛#) time 
with arbitrarily small constant error.

– cf., “recompute from scratch” algorithm that takes 𝑂(𝑛") (or 𝑂(𝑛!."$)) time
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Question: how can a layer-one blockchain protocol verify that 𝐶 =
𝐴・𝐵 without recomputing 𝐴・𝐵 from scratch?
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Question: how can a layer-one blockchain protocol verify that 𝐶 =
𝐴・𝐵 without recomputing 𝐴・𝐵 from scratch?

Idea: post C along with x1,x2,…,xt. [assume L1 knows A and B] 
• L1 accepts answer ó 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t

– L1 only has to carry out matrix-vector products, not matrix multiplication
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– L1 only has to carry out matrix-vector products, not matrix multiplication

Problem: could post 𝐶 ≠ 𝐴・𝐵 along with 𝑥& = 𝑥# = ⋯ = 𝑥$ = 0.
– adversarially chosen xi’s can trick L1 into accepting incorrect answer
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Idea: post C along with x1,x2,…,xt. [assume L1 knows A and B] 
– L1 accepts answer ó 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
– need to somehow ensure that the xi’s are (as good as) random

Fiat-Shamir heuristic: derive the xi’s from the outputs of a 
cryptographic hash function h (e.g., h = SHA-256).
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Idea: post C along with x1,x2,…,xt. [assume L1 knows A and B] 
– L1 accepts answer ó 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
– need to somehow ensure that the xi’s are (as good as) random

Fiat-Shamir heuristic: derive the xi’s from the outputs of a 
cryptographic hash function h (e.g., h = SHA-256).
• e.g., if n=256, set 𝑥% = ℎ(𝐶||𝑖) for each i=1,2,…,t

– interpret output of hash function as a 0-1 vector
– for larger n, apply this idea to each “chunk” of 256 coordinates
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Idea: post C along with x1,x2,…,xt. [assume L1 knows A and B] 
– L1 accepts answer ó 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
– need to somehow ensure that the xi’s are (as good as) random

Fiat-Shamir heuristic: derive the xi’s from the outputs of a 
cryptographic hash function h (e.g., h = SHA-256).
• e.g., if n=256, set 𝑥% = ℎ(𝐶||𝑖) for each i=1,2,…,t  (e.g., t=128)
• assuming h acts like a random function, would need ≈ 2t  attempts 

to find a matrix 𝐶 ≠ 𝐴・𝐵 with 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
– “computational soundness” (i.e., infeasible to produce false proof) 
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Idea: post C along with x1,x2,…,xt. [assume L1 knows A and B] 
– L1 accepts answer ó 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
– need to somehow ensure that the xi’s are (as good as) random

Fiat-Shamir heuristic: derive the xi’s from the outputs of a 
cryptographic hash function h (e.g., h = SHA-256).
• e.g., if n=256, set 𝑥% = ℎ(𝐶||𝑖) for each i=1,2,…,t  (e.g., t=128)
• assuming h acts like a random function, would need ≈ 2t  attempts 

to find a matrix 𝐶 ≠ 𝐴・𝐵 with 𝐶 ⋅ 𝑥% = 𝐴・(𝐵 ⋅ 𝑥%) for all i=1,2,…,t
– “computational soundness” (i.e., infeasible to produce false proof) 
– question: what goes wrong if instead set 𝑥% = ℎ(𝑖) for all i? 65
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• Freivalds’ algorithm + Fiat-Shamir heuristic è proofs of matrix 
multiplication such that:
– size = 𝑂(𝑛!) [size of the answer]
– proof verification = 𝑂(𝑛!) time  [thinking of t as constant]
– perfect completeness  [correct answers always successfully verify]
– computational soundness  [computationally infeasible to find false proofs]
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• for validity rollups, need:
– verification of arbitrary computation (not just matrix multiplication)
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• Freivalds’ algorithm + Fiat-Shamir heuristic è proofs of matrix 
multiplication such that:
– size = 𝑂(𝑛!) [size of the answer]
– proof verification = 𝑂(𝑛!) time  [thinking of t as constant]
– perfect completeness  [correct answers always successfully verify]
– computational soundness  [computationally infeasible to find false proofs]

• for validity rollups, need:
– verification of arbitrary computation (not just matrix multiplication)
– short proofs that can be posted to an L1 (along with state commitment)

• i.e., “SNARKs” (see next lecture)
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