Lecture #17:
Validity Rollups

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Recall: “Classic” Rollups

“Classic” rollup: a blockchain/virtual machine with its own state

— not necessarily decentralized, subject to crash or Byzantine failure

— performs its own consensus (i.e., tx sequencing) and execution

— associated with smart contract(s) running on the L1

— publishes rollup txs via L1 contract (i.e., uses L1 for data availability)
 note: anyone can run a rollup full node (i.e., maintain full rollup state)

— periodically publishes commitment to rollup state (e.g. state root) to L1
- note: any full node can check correctness of commitment

— (hard part) state commitment correctness verified by L1

- question: how can L1 do this without re-executing rollup txs itself?
2

L1 < Rollup Architecture

decentralized blockchain
protocol (“L17)

rollup
contract

(possibly centralized) rollup publish “tx; X, ... X0’

Goals for Lecture #17

1. Validity rollups. (e.g., Starknet, zkSync)
— rollup state commitments verified by L1 using “SNARK” proofs
— cryptographic (rather than cryptoeconomic) security

2. Probabilistic verification.
— need verification of correct tx execution << actual tx execution
— example: matrix multiplication (Freivalds’ algorithm)

3. The Fiat-Shamir heuristic.

— non-manipulable randomness from cryptographic hash functions
— “flattens” an iterative/interactive computation into a single proof

Drawbacks of Optimistic Rollups

Recall design: rely on watchdogs to catch incorrect state
commitments, submit short proof of incorrectness (“fault proof”).

— L1 performs minimal re-execution necessary to resolve dispute

Drawbacks:

Drawbacks of Optimistic Rollups

Recall design: rely on watchdogs to catch incorrect state
commitments, submit short proof of incorrectness (“fault proof”).

— L1 performs minimal re-execution necessary to resolve dispute

Drawbacks:
« complex fault-proof logic (warning: SNARKSs far more complex)

Drawbacks of Optimistic Rollups

Recall design: rely on watchdogs to catch incorrect state
commitments, submit short proof of incorrectness (“fault proof”).

— L1 performs minimal re-execution necessary to resolve dispute

Drawbacks:
« complex fault-proof logic (warning: SNARKSs far more complex)
« “1in N” trust assumption for watchdogs

Drawbacks of Optimistic Rollups

Recall design: rely on watchdogs to catch incorrect state
commitments, submit short proof of incorrectness (“fault proof”).

— L1 performs minimal re-execution necessary to resolve dispute

Drawbacks:

« complex fault-proof logic (warning: SNARKSs far more complex)

« “1in N” trust assumption for watchdogs

- attacks preventing honest challengers from submitting L1 txs

Drawbacks of Optimistic Rollups

Recall design: rely on watchdogs to catch incorrect state
commitments, submit short proof of incorrectness (“fault proof”).

— L1 performs minimal re-execution necessary to resolve dispute

Drawbacks:

« complex fault-proof logic (warning: SNARKSs far more complex)

« “1in N” trust assumption for watchdogs

- attacks preventing honest challengers from submitting L1 txs

- delay (= 7 days) before finalization of a state commitment
— users can proceed on basis of “preconfirmation,” if desired

Validity Rollups

Warning: often called “zk” rollups. (even though not zero-knowledge)

10

Validity Rollups

Warning: often called “zk” rollups. (even though not zero-knowledge)

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment.

11

Validity Rollups

Warning: often called “zk” rollups. (even though not zero-knowledge)

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment.

High-level idea of validity rollups: guilty until proven innocent.
« L1 assumes by default that each state commitment is incorrect

12

Validity Rollups

Warning: often called “zk” rollups. (even though not zero-knowledge)

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment.

High-level idea of validity rollups: guilty until proven innocent.
« L1 assumes by default that each state commitment is incorrect

« rely on “provers” to submit proofs of correctness to L1
— if nothing else, rollup operator can run its own prover

13

Validity Rollups

Warning: often called “zk” rollups. (even though not zero-knowledge)

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment.

High-level idea of validity rollups: guilty until proven innocent.
« L1 assumes by default that each state commitment is incorrect

« rely on “provers” to submit proofs of correctness to L1
— if nothing else, rollup operator can run its own prover

- L1 verifies proof of correctness directly
— state commitment rejected if accompanying proof fails verification 14

Validity Rollups

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment.

High-level idea of validity rollups: guilty until proven innocent.
« L1 assumes by default that each state commitment is incorrect

« rely on “provers” to submit proofs of correctness to L1
- L1 verifies proof of correctness directly

Hard part: verification of correctness proofs should be much
easier than tx re-execution --- i.e., need “SNARKS.”

15

Matrix Multiplication

16

Matrix Multiplication

Let’s drill down on the n = 2 case. We can describe two 2 X 2 matrices using eight

parameters:
a b e f
[e d } and { 2 &b] :

——) S —
X Y

In the matrix product X - Y, the upper-left entry is the dot product of the first row of X and
the first column of Y, or ae + bg. In general, for X and Y as above,

(3.2)

X.Y:{ae+bg af+bh:|.

ce+dg cf+dh

17

Matrix Multiplication

Let’s drill down on the n = 2 case. We can describe two 2 X 2 matrices using eight

parameters:
a b e f
[e d } and { 2 &b] .

——) S —
X Y

In the matrix product X - Y, the upper-left entry is the dot product of the first row of X and
the first column of Y, or ae + bg. In general, for X and Y as above,

(3.2)

X.Y:{ae+bg a,f+bhj|.

ce+dg cf+dh

<
o
jt® column
=
I
N

Figure 3.2: The (3, j) entry of the matrix product X - Y is the dot product of the ith row of X and
the jth column of Y.

18

Matrix Multiplication (con’d)

Note: can compute the product of two n x n matrices in 0(n®) time.
- n? dot products, 0(n) time for each

Straightforward Matrix Multiplication

Input: n X n integer matrices X and Y.
Output: Z=X-Y.

for::=1tondo // loop over rows of X

for j :=1tondo // loop over columns of Y
Zi][5] =0

for £k :=1tondo // compute dot product

Zi)[j] := Z[s][5] + X[¢][k] - Y[k][j
return Z

19

Verifying Matrix Multiplication

Problem: matrix multiplication verification.

Input: three n X n matrices A, B, and C.
— C is allegedly the product of A and B

20

Verifying Matrix Multiplication

Problem: matrix multiplication verification.

Input: three n X n matrices A, B, and C.
— C is allegedly the product of A and B

Output: “yes” if C = A + B and “no” otherwise.

21

Verifying Matrix Multiplication

Problem: matrix multiplication verification.

Input: three n X n matrices A, B, and C.
— C is allegedly the product of A and B

Output: “yes” if C = A + B and “no” otherwise.

Obvious algorithm: compute A - B from scratch, compare result to C.
— running time = 0(n?)

22

Verifying Matrix Multiplication

Problem: matrix multiplication verification.

Input: three n X n matrices A, B, and C.
— C is allegedly the product of A and B

Output: “yes” if C = A + B and “no” otherwise.

Obvious algorithm: compute A - B from scratch, compare result to C.
— running time = 0(n?)

— or 0(n*37) with the asymptotically best known (but hopelessly impractical)
matrix multiplication algorithm

23

Freivalds’ Algorithm

Input: three n X n matrices A, B, and C.

Freivalds’ Algorithm ('77):

24

Freivalds’ Algorithm

Input: three n X n matrices A, B, and C.

Freivalds’ Algorithm ('77):

« fori=1,2,....t

[t = # of trials, parameter of our choosing]

25

Freivalds’ Algorithm

Input: three n X n matrices A, B, and C.

Freivalds’ Algorithm ('77):
« fori=1,2,....t

[t = # of trials, parameter of our choosing]

— choose x; € {0,1}" uniformly at random [2" choices, each equally likely]
y

26

Freivalds’ Algorithm

Input: three n X n matrices A, B, and C.

Freivalds’ Algorithm ('77):
« fori=1,2,....t

[t = # of trials, parameter of our choosing]

— choose x; € {0,1}" uniformly at random [2" choices, each equally likely]

— compute y; == C - x;

[matrix-vector product]

27

Freivalds’ Algorithm

Input: three n X n matrices A, B, and C.

Freivalds’ Algorithm ('77):
« fori=1,2,....1: [t = # of trials, parameter of our choosing]

— choose x; € {0,1}" uniformly at random [2" choices, each equally likely]

— compute y; == C - x; 'matrix-vector product]

— compute z; := A - (B - x;) two matrix-vector products]

28

Freivalds’ Algorithm

Input: three n X n matrices A, B, and C.

Freivalds’ Algorithm ('77):

« fori=1,2,....1: [t = # of trials, parameter of our choosing]
— choose x; € {0,1}" uniformly at random [2" choices, each equally likely]
— compute y; == C - x; 'matrix-vector product]
— compute z; := A - (B - x;) two matrix-vector products]

— if y; # z;, return “no”

29

Freivalds’ Algorithm

Input: three n X n matrices A, B, and C.

Freivalds’ Algorithm ('77):

« fori=1,2,....1: [t = # of trials, parameter of our choosing]
— choose x; € {0,1}" uniformly at random [2" choices, each equally likely]
— compute y; == C - x; 'matrix-vector product]
— compute z; := A - (B - x;) two matrix-vector products]

— if y; # z;, return “no”
* return “yes”

30

Freivalds’ Algorithm: Example

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Example:Az[(l) 8]3:[8 (1)](;:[8 (1)

31

Freivalds’ Algorithm: Example

« fori=1,2,....t

— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)

- ity

* z;, return “no”

« return “yes”

Examp

* for al

a=y olB=ly 1he=ly ¢

x € {(0,0),(1,0),(0,1),(1,1)}: A" (B -x) = (0,0)

32

Freivalds’ Algorithm: Example

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Example: A = [(1) 8] []C—[

« for all x € {(0,0),(1,0),(0,1),(1,1)}: A- (B x) = (0,0)
+ for x € {(0,0),(1,0) }: C-x = (0,0)
- forx € {(0,1),(1,1) }: C-x=(1,0)

33

Freivalds’ Algorithm: Example

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Example: A = [(1) 8] []C—[

« for all x € {(0,0),(1,0),(0,1),(1,1)}: A- (B -x) = (0,0)
- forx € {(0,0),(1,0) }: C-x = (0,0)
- forx € {(0,1),(1,1) }: C-x=(1,0)
— upshot: C - x # A - (B - x) with 50% probability (over choice of x)

34

Freivalds’ Algorithm: Running Time

fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

return “yes”

Running time analysis:

35

Freivalds’ Algorithm: Running Time

fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

return “yes”

Running time analysis:
» titerations

36

Freivalds’ Algorithm: Running Time

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Running time analysis:
- titerations
- three matrix-vector products per iteration (0(n?) time each)

37

Freivalds’ Algorithm: Running Time

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”
Running time analysis:
- titerations

- three matrix-vector products per iteration (0(n?) time each)
- overall running time = 0(t - n%)

38

Freivalds’ Algorithm: Correctness

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Correctness [case 1]: suppose C = A * B.

39

Freivalds’ Algorithm: Correctness

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Correctness [case 1]: suppose C = A * B.
- foreveryx € {0,1}*,C-x =A* (B x)

40

Freivalds’ Algorithm: Correctness

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Correctness [case 1]: suppose C = A * B.

- forevery x € {0,1}",C-x = A (B -x)

- algorithm guaranteed to (correctly) return “yes”
— i.e., no false negatives

41

Freivalds’ Algorithm: Correctness

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Correctness [case 2]: suppose C # A * B.

42

Freivalds’ Algorithm: Correctness

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Correctness [case 2]: suppose C # A * B.
- claim: every iteration i, = 50% chance that C - x; # A - (B - x;)

43

Freivalds’ Algorithm: Correctness

« fori=1,2,....t
— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Correctness [case 2]: suppose C # A * B.
- claim: every iteration i, = 50% chance thatC - x; # A - (B - x;)
» thus: = 21 probabilitythat C - x; = A < (B - x;) for all i=1,2,...,t

44

Freivalds’ Algorithm: Correctness

« fori=1,2,....t

— choose x; € {0,1}" uniformly at random, compute y; :=C - x; and z; == A - (B - x;)
— if y; # z;, return “no”

« return “yes”

Correctness [case 2]: suppose C # A * B.

- claim: every iteration i, = 50% chance thatC - x; # A - (B - x;)
» thus: = 21 probabilitythat C - x; = A < (B - x;) for all i=1,2,...,t

- =>» algorithm (correctly) returns “no” except with < 2t probability
— i.e., false positive probability < 2

45

Freivalds’ Algorithm: Correctness

Claim:if C # A - Band x € {0,1}" chosen uniformly at random, then
C-x+ A- (B-x) with probability = 1>.

Proof of claim:

46

Freivalds’ Algorithm: Correctness

Claim:if C # A - Band x € {0,1}" chosen uniformly at random, then
C-x+ A- (B-x) with probability = 1>.

Proof of claim:
e C-x#¥A*(B-x)®M-x#+0,whereM =C—A-B

47

Freivalds’ Algorithm: Correctness

Claim:if C # A - Band x € {0,1}" chosen uniformly at random, then
C-x+ A- (B-x) with probability = 1>.

Proof of claim:
e C-x#¥A*(B-x)®M-x#+0,whereM =C—A-B
- let j be index of non-zero column of M (exists because C # A * B)

48

Freivalds’ Algorithm: Correctness

Claim:if C # A - Band x € {0,1}" chosen uniformly at random, then
C-x+ A- (B-x) with probability = 1>.

Proof of claim:
e C-x#¥A*(B-x)®M-x#+0,whereM =C—A-B
- let j be index of non-zero column of M (exists because C # A * B)

- note: if x, x" differ only in jth coordinate, M - x # M - x’
- M- (x—x") = +jth column of M

49

Freivalds’ Algorithm: Correctness

Claim:if C # A - Band x € {0,1}" chosen uniformly at random, then
C-x+ A- (B-x) with probability = 1>.

Proof of claim:

e C-x#+A*B-x)®»M-x+0,whereM =C—-A-B

- let j be index of non-zero column of M (exists because C # A * B)
- note: if x, x" differ only in jth coordinate, M - x # M - x’

« =»eitherM-x#00or M- x"# 0 (or both)

50

Freivalds’ Algorithm: Correctness

Claim:if C # A - Band x € {0,1}" chosen uniformly at random, then
C-x+ A- (B-x) with probability = 1>.

Proof of claim:

e C-x#+A*B-x)®»M-x+0,whereM =C—-A-B

- let j be index of non-zero column of M (exists because C # A * B)
- note: if x, x" differ only in jth coordinate, M - x # M - x’

« =»eitherM-x#00or M- x"# 0 (or both)

« =» number of x’s with M - x = 0 s number of X’swith M - x # 0

51

Freivalds’ Algorithm: Correctness

Claim:if C # A - Band x € {0,1}" chosen uniformly at random, then
C-x+ A- (B-x) with probability = 1>.

Proof of claim:

e C-x#+A*B-x)®»M-x+0,whereM =C—-A-B
let | be index of non-zero column of M (exists because C # A * B)
- note: if x, x" differ only in jth coordinate, M - x # M - x’

= either M - x # 0 or M - x" # 0 (or both)

= number of X’s with M - x = 0 = number of X'swith M - x = 0
« = M - x # 0 with probability = ¥2 over choice of x € {0,1}"

52

Freivalds’ Algorithm: Report Card

* running time = 0(t - n*) [t = number of trials]

53

Freivalds’ Algorithm: Report Card

* running time = 0(t - n*) [t = number of trials]
« “completeness” = 1
— i.e., 0% false negative probability on “yes” inputs

54

Freivalds’ Algorithm: Report Card

* running time = 0(t - n*) [t = number of trials]
« “completeness” = 1
— i.e., 0% false negative probability on “yes” inputs

+ “soundness” = < 2
— i.e., = 2t false positive probability on “no” inputs

55

Freivalds’ Algorithm: Report Card

* running time = 0(t - n*) [t = number of trials]
« “completeness” = 1

— i.e., 0% false negative probability on “yes” inputs
+ “soundness” = < 2

— i.e., = 2t false positive probability on “no” inputs

Upshot: can verify correctness of matrix multiplication in 0(n?) time
with arbitrarily small constant error.

— cf., “recompute from scratch” algorithm that takes 0(n3) (or 0(n%37)) time

56

From Algorithms to Proofs

Question: how can a layer-one blockchain protocol verify that C =
A - B without recomputing A + B from scratch?

57

From Algorithms to Proofs

Question: how can a layer-one blockchain protocol verify that C =
A - B without recomputing A + B from scratch?

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
* L1 acceptsanswer = C-x; =A -+ (B-x;) foralli=1,2,...,t
— L1 only has to carry out matrix-vector products, not matrix multiplication

58

From Algorithms to Proofs

Question: how can a layer-one blockchain protocol verify that C
A - B without recomputing A + B from scratch?

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
* L1 acceptsanswer = C-x; =A -+ (B-x;) foralli=1,2,...,t
— L1 only has to carry out matrix-vector products, not matrix multiplication

Problem: could post C # A + B along with x;, = x, = - = x,, = 0.
— adversarially chosen x;’s can trick L1 into accepting incorrect answer

59

From Algorithms to Proofs

Question: how can a layer-one blockchain protocol verify that C
A - B without recomputing A + B from scratch?

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
* L1 acceptsanswer = C-x; =A -+ (B-x;) foralli=1,2,...,t
— L1 only has to carry out matrix-vector products, not matrix multiplication

Problem: could post C # A + B along with x;, = x, = - = x,, = 0.
— adversarially chosen x;’s can trick L1 into accepting incorrect answer
— need to somehow ensure that the x;’s are (as good as) random

60

The Fiat-Shamir Heuristic

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
— L1 accepts answer & C-x; = A - (B - x;) forall i=1,2,...,t
— need to somehow ensure that the x;’s are (as good as) random

61

The Fiat-Shamir Heuristic

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
— L1 accepts answer & C-x; = A - (B - x;) forall i=1,2,...,t
— need to somehow ensure that the x;’s are (as good as) random

Fiat-Shamir heuristic: derive the x;’s from the outputs of a
cryptographic hash function h (e.g., h = SHA-256).

62

The Fiat-Shamir Heuristic

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
— L1 accepts answer & C-x; = A - (B - x;) forall i=1,2,...,t
— need to somehow ensure that the x;’s are (as good as) random

Fiat-Shamir heuristic: derive the x;’s from the outputs of a
cryptographic hash function h (e.g., h = SHA-256).

* e.g., If n=256, set x; = h(C||i) for each i=1,2,...,t
— interpret output of hash function as a 0-1 vector
— for larger n, apply this idea to each “chunk” of 256 coordinates

63

The Fiat-Shamir Heuristic

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
— L1 accepts answer & C-x; = A - (B - x;) forall i=1,2,...,t
— need to somehow ensure that the x;’s are (as good as) random

Fiat-Shamir heuristic: derive the x;’s from the outputs of a

cryptographic hash function h (e.g., h = SHA-256).

* e.g., If n=256, set x; = h(C||i) for each i=1,2,...,t (e.qg., t=128)

« assuming h acts like a random function, would need = 2! attempts
tofindamatrixC +# A-BwithC-x; =A4 - (B - x;) forall i=1,2,...,t
— “computational soundness” (i.e., infeasible to produce false proof)

64

The Fiat-Shamir Heuristic

ldea: post C along with X4,X,...,X;. [assume L1 knows A and B]
— L1 accepts answer & C-x; = A - (B - x;) forall i=1,2,...,t
— need to somehow ensure that the x;’s are (as good as) random

Fiat-Shamir heuristic: derive the x;’s from the outputs of a

cryptographic hash function h (e.g., h = SHA-256).

* e.g., If n=256, set x; = h(C||i) for each i=1,2,...,t (e.qg., t=128)

« assuming h acts like a random function, would need = 2! attempts
tofindamatrixC +# A-BwithC-x; =A4 - (B - x;) forall i=1,2,...,t
— “computational soundness” (i.e., infeasible to produce false proof)
— question: what goes wrong if instead set x; = h(i) for all i? 65

Recap

 Freivalds’ algorithm + Fiat-Shamir heuristic =» proofs of matrix
multiplication such that:

— size = 0(n?) [size of the answer]

— proof verification = 0(n?) time [thinking of t as constant]

— perfect completeness [correct answers always successfully verify]

— computational soundness [computationally infeasible to find false proofs]

66

Recap

 Freivalds’ algorithm + Fiat-Shamir heuristic =» proofs of matrix
multiplication such that:

— size = 0(n?) [size of the answer]

— proof verification = 0(n?) time [thinking of t as constant]

— perfect completeness [correct answers always successfully verify]

— computational soundness [computationally infeasible to find false proofs]
- for validity rollups, need:

— verification of arbitrary computation (not just matrix multiplication)

67

Recap

 Freivalds’ algorithm + Fiat-Shamir heuristic =» proofs of matrix
multiplication such that:

— size = 0(n?) [size of the answer]

— proof verification = 0(n?) time [thinking of t as constant]

— perfect completeness [correct answers always successfully verify]

— computational soundness [computationally infeasible to find false proofs]
- for validity rollups, need:

— verification of arbitrary computation (not just matrix multiplication)

— short proofs that can be posted to an L1 (along with state commitment)

- i.e., “SNARKSs” (see next lecture)
68

