
Lecture #18:
SNARKs

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

2

Scaling Execution via Rollups

main blockchain protocol
(coordinates shards)

shard #2shard #1 shard #s……………….

……………….

3

L1 ó Rollup Architecture

(possibly centralized) rollup

decentralized blockchain
protocol (“L1”)

rollup
contract

publish “tx1 tx2 … tx100”

1. Defining the state root verification problem.
– “proactive proof of correctness” - the key problem for validity rollups

2. Witnesses and NP statements.
– NP problem = easy to check correctness of purported solution

3. SNARKs.
– short (<< witness length) & easy-to-verify proofs of an NP statement
– suitable for posting to an L1 blockchain

4. General probabilistic verification and the PCP Theorem.
– can derive SNARKS from one of the deepest results in theory CS 4

Goals for Lecture #18

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment/root.

5

Rollups Review

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment/root.

Hard part: ensure that L1 can programmatically verify correctness
of each state root.
• without the L1 re-executing the rollup txs itself

6

Rollups Review

Recall: in a “classic” rollup (optimistic or validity), periodically
publish rollup txs to L1, along with new state commitment/root.

Hard part: ensure that L1 can programmatically verify correctness
of each state root.
• without the L1 re-executing the rollup txs itself
• possibly with assistance from 3rd parties like watchdogs

(optimistic rollups) or provers (validity rollups)
– generally require a “1 in N” trust assumption for these parties

7

Rollups Review

Warning: often called “zk” rollups. (even though not zero-knowledge)

8

Validity Rollups

Warning: often called “zk” rollups. (even though not zero-knowledge)

High-level idea of validity rollups: guilty until proven innocent.
• L1 assumes by default that each state commitment is incorrect
• rely on “provers” to submit proofs of correctness to L1

– if nothing else, rollup operator can run its own prover
• L1 verifies proof of correctness directly

– state commitment rejected if accompanying proof fails verification

9

Validity Rollups

Warning: often called “zk” rollups. (even though not zero-knowledge)

High-level idea of validity rollups: guilty until proven innocent.
• L1 assumes by default that each state commitment is incorrect
• rely on “provers” to submit proofs of correctness to L1

– if nothing else, rollup operator can run its own prover
• L1 verifies proof of correctness directly

– state commitment rejected if accompanying proof fails verification

Hard part: verification of correctness proofs should be much
easier than tx re-execution --- i.e., need “SNARKs.” 10

Validity Rollups

Question: what is the problem a validity rollup needs to solve?
– i.e., logic in L1 contract to proactively verify correctness of each state root

11

State Root Verification (Attempt 1)

Question: what is the problem a validity rollup needs to solve?
– i.e., logic in L1 contract to proactively verify correctness of each state root

Input: (i) previous state root r0 (assumed correct); (ii) latest batch B =
t1,t2,…,tk of rollup txs published to L1; (iii) alleged new state root r1.

12

State Root Verification (Attempt 1)

Question: what is the problem a validity rollup needs to solve?
– i.e., logic in L1 contract to proactively verify correctness of each state root

Input: (i) previous state root r0 (assumed correct); (ii) latest batch B =
t1,t2,…,tk of rollup txs published to L1; (iii) alleged new state root r1.

Output: “yes” if, starting from r0, executing the txs of B (in order)
results in r1, and “no” otherwise.

13

State Root Verification (Attempt 1)

Question: what is the problem a validity rollup needs to solve?
– i.e., logic in L1 contract to proactively verify correctness of each state root

Input: (i) previous state root r0 (assumed correct); (ii) latest batch B =
t1,t2,…,tk of rollup txs published to L1; (iii) alleged new state root r1.

Output: “yes” if, starting from r0, executing the txs of B (in order)
results in r1, and “no” otherwise.

Issue: execution of a rollup tx is defined with respect to the full rollup
state, not just the (256-bit) state root.

14

State Root Verification (Attempt 1)

Input:
• previous rollup state root r0 (assumed correct)
• latest batch B = t1,t2,…,tk of rollup txs published to L1
• alleged new rollup state root r1

15

State Root Verification (Attempt 2)

Input:
• previous rollup state root r0 (assumed correct)
• latest batch B = t1,t2,…,tk of rollup txs published to L1
• alleged new rollup state root r1

Output: “yes” if there exists a state 𝜎! with root(𝜎!)= r0 s.t. executing
the txs of B results in state 𝜎" with root(𝜎")= r1, and “no” otherwise.

– assuming no hash function collisions, 𝜎! must be correct new rollup state

16

State Root Verification (Attempt 2)

Input:
• previous rollup state root r0 (assumed correct)
• latest batch B = t1,t2,…,tk of rollup txs published to L1
• alleged new rollup state root r1

Output: “yes” if there exists a state 𝜎! with root(𝜎!)= r0 s.t. executing
the txs of B results in state 𝜎" with root(𝜎")= r1, and “no” otherwise.

– assuming no hash function collisions, 𝜎! must be correct new rollup state

Question: is full rollup state necessary to verify correctness of r1?
– cf., stateless validation 17

State Root Verification (Attempt 2)

Inputs to verification problem: initial state root r0, list of txs, alleged new state root r1.

Question: how much of the actual state is necessary to verify the correctness of r1?

• sufficient to supply Merkle proofs for balances of A and B
– this is enough info to compute new Merkle root

A’s balance
x à x-z

18

Example: Simple Transfers

B’s balance
y à y+z

Inputs to verification problem: initial state root r0, list of txs, alleged new state root r1.

Question: how much of the actual state is necessary to verify the correctness of r1?

19

Verifying General Transactions

[source: https://www.quicknode.com/guides/ethereum-development/smart-contracts/a-dive-into-evm-architecture-and-opcodes]

20

Example: EVM State

Inputs to verification problem: initial state root r0, list of txs, alleged new state root r1.

Question: how much of the actual state is necessary to verify the correctness of r1?

• need Merkle pf for each part of rollup state accessed by some tx
– Merkle proofs supply state info on need-to-know basis

21

Verifying General Transactions

Inputs to verification problem: initial state root r0, list of txs, alleged new state root r1.

Question: how much of the actual state is necessary to verify the correctness of r1?

• need Merkle pf for each part of rollup state accessed by some tx
– Merkle proofs supply state info on need-to-know basis

• after each update to state, recompute new state root
– increment nonce, write new value to variable in contract storage, etc.

22

Verifying General Transactions

Inputs to verification problem: initial state root r0, list of txs, alleged new state root r1.

Question: how much of the actual state is necessary to verify the correctness of r1?

• need Merkle pf for each part of rollup state accessed by some tx
– Merkle proofs supply state info on need-to-know basis

• after each update to state, recompute new state root
– increment nonce, write new value to variable in contract storage, etc.

• after processing all txs, can check if new state root = r’

23

Verifying General Transactions

Input:
• previous rollup state root r0 (assumed correct)
• latest batch B = t1,t2,…,tk of rollup txs published to L1
• alleged new rollup state root r1

24

State Root Verification (Final Attempt)

Input:
• previous rollup state root r0 (assumed correct)
• latest batch B = t1,t2,…,tk of rollup txs published to L1
• alleged new rollup state root r1

Output: “yes” if there exists Merkle proofs 𝜋", 𝜋#, … , 𝜋$ such that
starting from r0 and executing the txs of B (with relevant state
supplied by the 𝜋% ’s) results in r1, and “no” otherwise.

– assuming no hash function collisions, r1 must be the Merkle root of the
correct new rollup state

25

State Root Verification (Final Attempt)

Input: (i) previous state root r0 (assumed correct); (ii) latest batch B = t1,t2,…,tk of
rollup txs published to L1; (iii) alleged new state root r1.

Output: “yes” if there exists Merkle proofs 𝜋!, 𝜋", … , 𝜋# such that starting from r0
and executing the txs of B (with relevant state supplied by the 𝜋$’s) results in r1,
and “no” otherwise.

26

How Can L1 Verify State Root Correctness?

Input: (i) previous state root r0 (assumed correct); (ii) latest batch B = t1,t2,…,tk of
rollup txs published to L1; (iii) alleged new state root r1.

Output: “yes” if there exists Merkle proofs 𝜋!, 𝜋", … , 𝜋# such that starting from r0
and executing the txs of B (with relevant state supplied by the 𝜋$’s) results in r1,
and “no” otherwise.

Bad idea: sequencer posts relevant Merkle proofs to L1 (along with
tx data and the new state root) so L1 can check correctness.

– turns the L1 contract into a stateless validator (for the rollup)
– impractical: Merkle proofs too big, re-execution of rollup txs too much work

27

How Can L1 Verify State Root Correctness?

Input: (i) previous state root r0 (assumed correct); (ii) latest batch B = t1,t2,…,tk of rollup txs
published to L1; (iii) alleged new state root r1.

Output: “yes” if there exists Merkle proofs 𝜋!, 𝜋", … , 𝜋# such that starting from r0 and executing
the txs of B (with relevant state supplied by the 𝜋$’s) results in r1, and “no” otherwise.

Bad idea: sequencer posts relevant Merkle proofs to L1 (along with tx data and the new state
root) so L1 can check correctness.

Revised idea: sequencer posts to L1 a proof that it knows a solution
(i.e., relevant Merkle proofs) to the state root verification problem.

– Merkle proofs themselves not posted, only “proof of knowledge”
– L1 need only verify correctness of proof of knowledge (no tx re-execution)

28

How Can L1 Verify State Root Correctness?

Recall: NP = problems that have efficiently verifiable solutions.
– example: Traveling Salesman Problem (TSP)

29

Witness and NP Statements

Recall: NP = problems that have efficiently verifiable solutions.
– example: Traveling Salesman Problem (TSP)
– example: Satisfiability (SAT)

30

Witness and NP Statements

Recall: NP = problems that have efficiently verifiable solutions.
– example: Traveling Salesman Problem (TSP)
– example: Satisfiability (SAT)
– example: state root verification (SRV)

31

Witness and NP Statements

Recall: NP = problems that have efficiently verifiable solutions.
– example: Traveling Salesman Problem (TSP)
– example: Satisfiability (SAT)
– example: state root verification (SRV)

In general: an NP problem is defined by a poly-time algorithm C that,
given an input x and purported solution/witness w, outputs 0 or 1.

– x is a “yes” instance if there exists a witness w with C(x,w)=1
– x is a “no” instance if C(x,w)=0 for every w

32

Witness and NP Statements

Recall: NP = problems that have efficiently verifiable solutions.
– examples: TSP, SAT, SRV

In general: an NP problem is defined by a poly-time algorithm C that,
given an input x and purported solution/witness w, outputs 0 or 1.

– x is a “yes” instance if there exists a witness w with C(x,w)=1
– x is a “no” instance if C(x,w)=0 for every w

What we need: (for SRV)

33

Witness and NP Statements

Recall: NP = problems that have efficiently verifiable solutions.
– examples: TSP, SAT, SRV

In general: an NP problem is defined by a poly-time algorithm C that,
given an input x and purported solution/witness w, outputs 0 or 1.

– x is a “yes” instance if there exists a witness w with C(x,w)=1
– x is a “no” instance if C(x,w)=0 for every w

What we need: (for SRV) convincing proof that a witness exists, with:
– proof length << witness length
– proof verification time << time to evaluate C

34

Witness and NP Statements

Definition: a SNARK for an NP problem (defined by C) is a way to
generate short and easy-to-verify proofs 𝜋 of existence of a witness.

35

SNARKs

Definition: a SNARK for an NP problem (defined by C) is a way to
generate short and easy-to-verify proofs 𝜋 of existence of a witness.

– verification algorithm V takes (x, 𝜋) as input, outputs “yes”/”no”
• in validity rollups, 𝜋 posted to L1, L1 smart contract runs V

36

SNARKs

Definition: a SNARK for an NP problem (defined by C) is a way to
generate short and easy-to-verify proofs 𝜋 of existence of a witness.

– verification algorithm V takes (x, 𝜋) as input, outputs “yes”/”no”
• in validity rollups, 𝜋 posted to L1, L1 smart contract runs V

– running time of V << running time of C (ideally, RT of V = O(log(RT of C)))
• note: length of 𝜋 will be at most running time of V (hence, short)

37

SNARKs

Definition: a SNARK for an NP problem (defined by C) is a way to
generate short and easy-to-verify proofs 𝜋 of existence of a witness.

– verification algorithm V takes (x, 𝜋) as input, outputs “yes”/”no”
• in validity rollups, 𝜋 posted to L1, L1 smart contract runs V

– running time of V << running time of C (ideally, RT of V = O(log(RT of C)))
• note: length of 𝜋 will be at most running time of V (hence, short)

– given w with C(x,w)=1, easy to generate 𝜋 s.t. V(x, 𝜋)=“yes”
• “prover time,” ideally O(RT of C)

38

SNARKs

Definition: a SNARK for an NP problem (defined by C) is a way to
generate short and easy-to-verify proofs 𝜋 of existence of a witness.

– verification algorithm V takes (x, 𝜋) as input, outputs “yes”/”no”
• in validity rollups, 𝜋 posted to L1, L1 smart contract runs V

– running time of V << running time of C (ideally, RT of V = O(log(RT of C)))
• note: length of 𝜋 will be at most running time of V (hence, short)

– given w with C(x,w)=1, easy to generate 𝜋 s.t. V(x, 𝜋)=“yes”
• “prover time,” ideally O(RT of C)

– if x a “no” instance, computationally infeasible to find 𝜋 s.t. V(x, 𝜋)=“yes”
• i.e., practically impossible to convince verifier of a false statement

39

SNARKs

Definition: a SNARK for an NP problem (defined by C) is a way to
generate short and easy-to-verify proofs 𝜋 of existence of a witness.

– verification algorithm V takes (x, 𝜋) as input, outputs “yes”/”no”
– running time of V << running time of C (ideally, RT of V = O(log(RT of C)))
– given w with C(x,w)=1, easy to generate 𝜋 s.t. V(x, 𝜋)=“yes”
– if x a “no” instance, computationally infeasible to find 𝜋 s.t. V(x, 𝜋)=“yes”

40

SNARKs in Validity Rollups

Definition: a SNARK for an NP problem (defined by C) is a way to
generate short and easy-to-verify proofs 𝜋 of existence of a witness.

– verification algorithm V takes (x, 𝜋) as input, outputs “yes”/”no”
– running time of V << running time of C (ideally, RT of V = O(log(RT of C)))
– given w with C(x,w)=1, easy to generate 𝜋 s.t. V(x, 𝜋)=“yes”
– if x a “no” instance, computationally infeasible to find 𝜋 s.t. V(x, 𝜋)=“yes”

Application to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes” 41

SNARKs in Validity Rollups

Application of SNARKs to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes”

42

Measuring SNARK Performance

Application of SNARKs to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes”
– note: will be feasible ó 𝜋 sufficiently short and V sufficient fast (and 𝜋 not

too hard for prover to generate, given a witness w)

Key SNARK metrics:

43

Measuring SNARK Performance

Application of SNARKs to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes”
– note: will be feasible ó 𝜋 sufficiently short and V sufficient fast (and 𝜋 not

too hard for prover to generate, given a witness w)

Key SNARK metrics:
– proof length (<< running time of original computation C)

44

Measuring SNARK Performance

Application of SNARKs to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes”
– note: will be feasible ó 𝜋 sufficiently short and V sufficient fast (and 𝜋 not

too hard for prover to generate, given a witness w)

Key SNARK metrics:
– proof length (<< running time of original computation C)

45

Measuring SNARK Performance

pay on L1
for this

Application of SNARKs to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes”
– note: will be feasible ó 𝜋 sufficiently short and V sufficient fast (and 𝜋 not

too hard for prover to generate, given a witness w)

Key SNARK metrics:
– proof length (<< running time of original computation C)
– verifier time (<< running time of C)

46

Measuring SNARK Performance

pay on L1
for this

Application of SNARKs to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes”
– note: will be feasible ó 𝜋 sufficiently short and V sufficient fast (and 𝜋 not

too hard for prover to generate, given a witness w)

Key SNARK metrics:
– proof length (<< running time of original computation C)
– verifier time (<< running time of C)
– prover time/memory (not too much worse than running C “natively”)

47

Measuring SNARK Performance

pay on L1
for this

Application of SNARKs to validity rollups:
– each state root posted to L1 should be accompanied by SNARK proof 𝜋 of

existence of a witness to the corresponding state root verification input x
– L1 (smart contract) accepts state root ó V(x, 𝜋) = “yes”
– note: will be feasible ó 𝜋 sufficiently short and V sufficient fast (and 𝜋 not

too hard for prover to generate, given a witness w)

Key SNARK metrics:
– proof length (<< running time of original computation C)
– verifier time (<< running time of C)
– prover time/memory (not too much worse than running C “natively”)

48

Measuring SNARK Performance

pay on L1
for this

off-chain

49

What Does “SNARK” Stand For?

• “succinct”: length of proof of knowledge 𝜋 << length of witness w
and verifier time V(x, 𝜋) << running time of C(x,w)

50

What Does “SNARK” Stand For?

• “succinct”: length of proof of knowledge 𝜋 << length of witness w
and verifier time V(x, 𝜋) << running time of C(x,w)

• “noninteractive”: can just post 𝜋 to L1 (“one and done”)
– as opposed to interactive, e.g. repeated challenge-response

51

What Does “SNARK” Stand For?

• “succinct”: length of proof of knowledge 𝜋 << length of witness w
and verifier time V(x, 𝜋) << running time of C(x,w)

• “noninteractive”: can just post 𝜋 to L1 (“one and done”)
– as opposed to interactive, e.g. repeated challenge-response

• “argument”: (i.e., 𝜋 really is a convincing proof)
– completeness: if x a “yes” instance, there exists 𝜋 with V(x, 𝜋)=“yes”
– computational soundness: if x a “no” instance, computationally infeasible to

find a 𝜋 with V(x, 𝜋)=“yes” (cf., “proof” and “perfect soundness”)

52

What Does “SNARK” Stand For?

• “succinct”: length of proof of knowledge 𝜋 << length of witness w
and verifier time V(x, 𝜋) << running time of C(x,w)

• “noninteractive”: can just post 𝜋 to L1 (“one and done”)
– as opposed to interactive, e.g. repeated challenge-response

• “argument”: (i.e., 𝜋 really is a convincing proof)
– completeness: if x a “yes” instance, there exists 𝜋 with V(x, 𝜋)=“yes”
– computational soundness: if x a “no” instance, computationally infeasible to

find a 𝜋 with V(x, 𝜋)=“yes” (cf., “proof” and “perfect soundness”)
• “of knowledge”: 𝜋 proves existence of a witness w, not just

correctness of the computation C(x,w)
– cf., verification of matrix multiplication 53

What Does “SNARK” Stand For?

54

Do SNARKs Exist?

1990s (Killian, Micali): In principle, SNARKs exist.

55

Do SNARKs Exist?

1990s (Killian, Micali): In principle, SNARKs exist.

2020s (…): SNARKs can be made practical.

56

Do SNARKs Exist?

1990s (Killian, Micali): In principle, SNARKs exist.

2020s (…): SNARKs can be made practical.

Key ingredients: (cf., matrix multiplication)
• probabilistic verification (catches false claims e.g. 50% of the time)
• Fiat-Shamir heuristic “flattens” iterated checks into one-shot proof

57

Do SNARKs Exist?

1990s (Killian, Micali): In principle, SNARKs exist.

2020s (…): SNARKs can be made practical.

Key ingredients: (cf., matrix multiplication)
• probabilistic verification (catches false claims e.g. 50% of the time)
• Fiat-Shamir heuristic “flattens” iterated checks into one-shot proof

Question: how to probabilistically verify arbitrary computations?

58

Do SNARKs Exist?

Amazing fact: every NP problem can be probabilistically verified.

59

The PCP Theorem

Amazing fact: every NP problem can be probabilistically verified.

PCP Theorem: (1992) for the satisfiability problem

60

The PCP Theorem

Amazing fact: every NP problem can be probabilistically verified.

PCP Theorem: (1992) for the satisfiability problem

61

The PCP Theorem

Amazing fact: every NP problem can be probabilistically verified.

PCP Theorem: (1992) for the satisfiability problem (SAT), there is a
format for purported proofs 𝜋 of satisfiability and a verification
algorithm V such that, for every SAT formula 𝜑:

62

The PCP Theorem

Amazing fact: every NP problem can be probabilistically verified.

PCP Theorem: (1992) for the satisfiability problem (SAT), there is a
format for purported proofs 𝜋 of satisfiability and a verification
algorithm V such that, for every SAT formula 𝜑:
1. V makes O(1) random queries to learn bits of 𝜋, outputs “yes”/”no”.

63

The PCP Theorem

Amazing fact: every NP problem can be probabilistically verified.

PCP Theorem: (1992) for the satisfiability problem (SAT), there is a
format for purported proofs 𝜋 of satisfiability and a verification
algorithm V such that, for every SAT formula 𝜑:
1. V makes O(1) random queries to learn bits of 𝜋, outputs “yes”/”no”.
2. If 𝜑 is satisfiable, there is a proof 𝜋 s.t. Pr[V(𝜑, 𝜋)=“yes”] = 1.

64

The PCP Theorem

Amazing fact: every NP problem can be probabilistically verified.

PCP Theorem: (1992) for the satisfiability problem (SAT), there is a
format for purported proofs 𝜋 of satisfiability and a verification
algorithm V such that, for every SAT formula 𝜑:
1. V makes O(1) random queries to learn bits of 𝜋, outputs “yes”/”no”.
2. If 𝜑 is satisfiable, there is a proof 𝜋 s.t. Pr[V(𝜑, 𝜋)=“yes”] = 1.
3. If 𝜑 is not satisfiable, then for every alleged proof 𝜋,

Pr[V(𝜑, 𝜋)=“yes”] ≤ ½.

65

The PCP Theorem

Amazing fact: every NP problem can be probabilistically verified.

PCP Theorem: (1992) for the satisfiability problem (SAT), there is a
format for purported proofs 𝜋 of satisfiability and a verification
algorithm V such that, for every SAT formula 𝜑:
1. V makes O(1) random queries to learn bits of 𝜋, outputs “yes”/”no”.
2. If 𝜑 is satisfiable, there is a proof 𝜋 s.t. Pr[V(𝜑, 𝜋)=“yes”] = 1.
3. If 𝜑 is not satisfiable, then for every alleged proof 𝜋,

Pr[V(𝜑, 𝜋)=“yes”] ≤ ½. [repeat t times è false positive probability ≤ 2-t]

66

The PCP Theorem

PCP Theorem: (1992) for the satisfiability problem (SAT), there is a
format for purported proofs 𝜋 of satisfiability and a verification
algorithm V such that, for every SAT formula 𝜑:
1. V makes O(1) random queries to learn bits of 𝜋, outputs “yes”/”no”.
2. If 𝜑 is satisfiable, there is a proof 𝜋 s.t. Pr[V(𝜑, 𝜋)=“yes”] = 1.
3. If 𝜑 is not satisfiable, then for every alleged proof 𝜋,

Pr[V(𝜑, 𝜋)=“yes”] ≤ ½. [repeat t times è false positive probability ≤ 2-t]

Because SAT is NP-complete: every NP problem L can be likewise
probabilistically verified. [Convert L to 3-SAT, use PCP theorem.]

67

The PCP Theorem

From the PCP theorem to a SNARK for state root verification:

68

PCP Theorem è SNARKs

From the PCP theorem to a SNARK for state root verification:
• prover converts execution trace of SRV computation C(x,⋅) into an

instance 𝜑 of 3-SAT [as in proof of Cook-Levin theorem]

69

PCP Theorem è SNARKs

From the PCP theorem to a SNARK for state root verification:
• prover converts execution trace of SRV computation C(x,⋅) into an

instance 𝜑 of 3-SAT [as in proof of Cook-Levin theorem]
• prover knows witness w for x (i.e., correct Merkle proofs),

computes PCP 𝜋 for 𝜑, forms Merkle tree T with leaves = bits of 𝜋

70

PCP Theorem è SNARKs

From the PCP theorem to a SNARK for state root verification:
• prover converts execution trace of SRV computation C(x,⋅) into an

instance 𝜑 of 3-SAT [as in proof of Cook-Levin theorem]
• prover knows witness w for x (i.e., correct Merkle proofs),

computes PCP 𝜋 for 𝜑, forms Merkle tree T with leaves = bits of 𝜋
• SNARK proof = root of T + Merkle proofs for O(t) “random” bits of 𝜋

– use Fiat-Shamir heuristic to derive which “random” bits of 𝜋 to include
– accept SNARK proof ó corresponds to the transcript of an accepting

computation for the PCP verifier

71

PCP Theorem è SNARKs

