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A Multi-Chain World

decentralized blockchain       
protocol #2

(e.g., Solana)

decentralized blockchain       
protocol #1

(e.g., Ethereum)
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Scaling Execution via Rollups

main blockchain protocol
(coordinates rollups)

rollup #2rollup #1 rollup #s……………….

……………….



1. Rollup bridges.
– moving assets from an L1 to its rollups via “minting” and “burning"

2. General bridges and cross-chain messaging.
– how can blockchain Y “know” that some tx executed on blockchain X?

3. Externally validated bridges.
– rely on third parties to attest to what’s happened on blockchain X

4. “Trustless” bridges.
– blockchain Y runs (as a smart contract) light client for blockchain X
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Goals for Lecture #19



Running example: L1 = Ethereum, user wants to moving native 
currency ETH from L1 to a (optimistic or validity) rollup.
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Rollup Bridges

main blockchain protocol
(coordinates rollups)

rollup #2rollup #1 rollup #s……………….

……………….



Running example: L1 = Ethereum, user wants to moving native 
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.
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Rollup Bridges

e.g., Ethereum
e.g., Arbitrum

bridge 
contract

bridge 
contract



Requirement for “classic” rollups: forced tx inclusion via the L1.
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Recall: Forced Transaction Inclusion



Requirement for “classic” rollups: forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid
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Recall: Forced Transaction Inclusion



Requirement for “classic” rollups: forced tx inclusion via the L1.
– any user can send a rollup tx direct to the rollup’s L1 contract to force 

its inclusion in the next batch of rollup txs
• L1 tx records the specified rollup tx in queue in rollup’s L1 contract
• next publication of rollup txs must “clear the queue” to be valid

– rollup liveness failure è can use L1 for liveness until reboot completes
– rollup inherits the “censorship-resistance” of the L1
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Recall: Forced Transaction Inclusion



Running example: L1 = Ethereum, user wants to moving native 
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design:
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Rollup Bridges

e.g., Ethereum
lock/ 

unlock 
ETH

mint/burn 
wETH

e.g., Arbitrum



Running example: L1 = Ethereum, user wants to moving native 
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.
– L1 contract exports a “deposit” function, any L1 user can send ETH to it
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Running example: L1 = Ethereum, user wants to moving native 
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.
– L1 contract exports a “deposit” function, any L1 user can send ETH to it
– deposit generates rollup tx to mint equal amt of “wrapped ETH (wETH)”

• e.g., could add rollup tx to “forced inclusion” list in rollup’s L1 contract
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Running example: L1 = Ethereum, user wants to moving native 
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.
– L1 contract exports a “deposit” function, any L1 user can send ETH to it
– deposit generates rollup tx to mint equal amt of “wrapped ETH (wETH)”

• e.g., could add rollup tx to “forced inclusion” list in rollup’s L1 contract
– one rollup tx executed, new wETH transferred to user’s (rollup) account
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Rollup Bridges

e.g., Ethereum
lock/ 

unlock 
ETH

mint/burn 
wETH

e.g., Arbitrum



Canonical design (con’d): to “withdraw” ETH from rollup:
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Rollup Bridges (con’d)
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lock/ 

unlock 
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Canonical design (con’d): to “withdraw” ETH from rollup:
– user sends x wETH to bridge contract on rollup, which is burned

• note: if necessary, user can submit tx directly to L1 to force inclusion
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Rollup Bridges (con’d)
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Canonical design (con’d): to “withdraw” ETH from rollup:
– user sends x wETH to bridge contract on rollup, which is burned

• note: if necessary, user can submit tx directly to L1 to force inclusion
– once rollup tx executed and corresponding rollup state root finalized on 

L1, user submits L1 tx (to rollup’s L1 bridge contract) to claim x ETH
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Canonical design (con’d): to “withdraw” ETH from rollup:
– user sends x wETH to bridge contract on rollup, which is burned

• note: if necessary, user can submit tx directly to L1 to force inclusion
– once rollup tx executed and corresponding rollup state root finalized on 

L1, user submits L1 tx (to rollup’s L1 bridge contract) to claim x ETH
• validity rollups è as soon as requisite SNARK proof posted to L1
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Rollup Bridges (con’d)
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Canonical design (con’d): to “withdraw” ETH from rollup:
– user sends x wETH to bridge contract on rollup, which is burned

• note: if necessary, user can submit tx directly to L1 to force inclusion
– once rollup tx executed and corresponding rollup state root finalized on 

L1, user submits L1 tx (to rollup’s L1 bridge contract) to claim x ETH
• validity rollups è as soon as requisite SNARK proof posted to L1
• optimistic rollups è after 7 days, assuming no disputes
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Rollup Bridges (con’d)
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lock/ 
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Key property: any user can convert ETH (on L1) to wETH (on 
rollup) and back through submission of suitable L1 and rollup txs.
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Rollup Bridges: Assumptions



Key property: any user can convert ETH (on L1) to wETH (on 
rollup) and back through submission of suitable L1 and rollup txs.
• assumes no bugs in bridge contracts

– e.g., can’t mint unless there’s been a corresponding deposit
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Rollup Bridges: Assumptions



Key property: any user can convert ETH (on L1) to wETH (on 
rollup) and back through submission of suitable L1 and rollup txs.
• assumes no bugs in bridge contracts

– e.g., can’t mint unless there’s been a corresponding deposit
• assumes consistency and liveness of L1

– else could freeze/revert rollup updates
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Rollup Bridges: Assumptions



Key property: any user can convert ETH (on L1) to wETH (on 
rollup) and back through submission of suitable L1 and rollup txs.
• assumes no bugs in bridge contracts

– e.g., can’t mint unless there’s been a corresponding deposit
• assumes consistency and liveness of L1

– else could freeze/revert rollup updates
• assumes liveness of rollup sequencer

– i.e., eventually posts new state commitments accepted by the L1
– forced inclusion mechanism ensures withdraws get processed
– escape hatch: liveness failure è let anyone take over as sequencer

22

Rollup Bridges: Assumptions



Scenario: two independent blockchain protocols, X & Y.
• e.g., want to transfer assets from one to the other
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General Bridges
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Scenario: two independent blockchain protocols, X & Y.
• validators of X unaware of Y and vice versa

– cf., rollup sequencer, very aware of underlying L1
– bridge contracts generally deployed by third party using only the 

application layers of X and Y
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General Bridges



Scenario: two independent blockchain protocols, X & Y.
• validators of X unaware of Y and vice versa
• no DA: X’s txs not posted to Y, Y’s txs not posted to X

– cf., rollup txs posted to underlying L1
– X, Y each do their own DA (e.g., anyone can run full node for X or Y)
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General Bridges



Scenario: two independent blockchain protocols, X & Y.
• validators of X unaware of Y and vice versa
• no DA: X’s txs not posted to Y, Y’s txs not posted to X
• even if commitments to X’s state posted to Y and vice versa, 

neither blockchain can block the other’s commitments
– cf., L1’s ability to block invalid rollup state commitments

• if rollup fails to execute all the txs in the forced inclusion list
• if rollup tries to commit a safety violation (i.e., steal funds)

– though could perhaps at least recognize invalid commitments (more later)
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General Bridges



Scenario: two independent blockchain protocols, X & Y.
• validators of X unaware of Y and vice versa
• no DA: X’s txs not posted to Y, Y’s txs not posted to X
• even if commitments to X’s state posted to Y and vice versa, 

neither blockchain can block the other’s commitments

Summary: ground truth for a rollup’s state controlled by underlying 
L1, ground truth for the state of independent blockchains X and Y 
is controlled by themselves (i.e., their validators).

– most general bridges resort to additional trust assumptions
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General Bridges



General solution: cross-chain messaging system.
• pair (Mx,My) of coupled contracts that allow other contracts (e.g., 

bridge contracts) on X and Y to “send messages” to each other
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Cross-Chain Messaging System
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Ideal communication flow: (X à Y)
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Ideal communication flow: (X à Y)
• Alice sends tx to AX (e.g., deposit k coins)
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Ideal communication flow: (X à Y)
• Alice sends tx to AX (e.g., deposit k coins)
• AX puts msg in MX’s outbound msg queue:

< recipient = AY, data = “Alice deposited k coins” >
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Ideal communication flow: (X à Y)
• Alice sends tx to AX (e.g., deposit k coins)
• AX puts msg in MX’s outbound msg queue:

< recipient = AY, data = “Alice deposited k coins” >
• [abstraction] X signs msg, MX sends signed msg to MY
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Ideal communication flow: (X à Y)
• Alice sends tx to AX (e.g., deposit k coins)
• AX puts msg in MX’s outbound msg queue:

< recipient = AY, data = “Alice deposited k coins” >
• [abstraction] X signs msg, MX sends signed msg to MY

• when MY receives msg < AY, m>, verifies signature (by X) è if 
valid, sends payload m to recipient contract AY
– e.g., AY mints k wrapped coins and sends to Alice’s account on Y
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Ideal communication flow: (X à Y)
• Alice sends tx to AX (e.g., deposit k coins)
• AX puts msg in MX’s outbound msg queue:

< recipient = AY, data = “Alice deposited k coins” >
• [abstraction] X signs msg, MX sends signed msg to MY

• when MY receives msg < AY, m>, verifies signature (by X) è if 
valid, sends payload m to recipient contract AY
– e.g., AY mints k wrapped coins and sends to Alice’s account on Y
– in effect, AY trusting X’s signature that Alice’s tx finalized on X
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Note: can build a bridge (to transfer assets)
from such a messaging system. 

– lock/unlock via AX, mint/burn via AY

Assumptions:
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Note: can build a bridge (to transfer assets)
from such a messaging system. 

– lock/unlock via AX, mint/burn via AY

Assumptions:
• no smart contract bugs

– e.g., AX doesn’t send fabricated deposits to MX
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Note: can build a bridge (to transfer assets)
from such a messaging system. 

– lock/unlock via AX, mint/burn via AY

Assumptions:
• no smart contract bugs

– e.g., AX doesn’t send fabricated deposits to MX

• X, Y both consistent and live
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Note: can build a bridge (to transfer assets)
from such a messaging system. 

– lock/unlock via AX, mint/burn via AY

Assumptions:
• no smart contract bugs

– e.g., AX doesn’t send fabricated deposits to MX

• X, Y both consistent and live
• X, Y both sign + send messages whenever asked to (liveness)
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Note: can build a bridge (to transfer assets)
from such a messaging system. 

– lock/unlock via AX, mint/burn via AY

Assumptions:
• no smart contract bugs

– e.g., AX doesn’t send fabricated deposits to MX

• X, Y both consistent and live
• X, Y both sign + send messages whenever asked to (liveness)
• X, Y don’t sign + send messages they’re not asked to (safety)
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Messaging System è Bridge
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Recall abstraction: (X à Y)
• X signs msg, MX sends signed msg to MY
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Signing and Sending Messages

MX

AX

MY

AY

user

X Y



Recall abstraction: (X à Y)
• X signs msg, MX sends signed msg to MY

Questions:
1. what does it mean for a blockchain protocol to “sign a msg”?
2. who relays signed messages between X and Y?
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Recall abstraction: (X à Y)
• X signs msg, MX sends signed msg to MY

Questions:
1. what does it mean for a blockchain protocol to “sign a msg”?
2. who relays signed messages between X and Y?

Answer to question #2: user themselves, or a third party.
– important, but not the hard part
– next: menu of answers to question #1
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

– e.g., that Alice really did lock k coins in AX

– proxy for “<AY,m> signed by X”
– ideally, app-specific (each pair (AX, AY) specifies its own rules) 
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

– e.g., that Alice really did lock k coins in AX

– proxy for “<AY,m> signed by X”
– ideally, app-specific (each pair (AX, AY) specifies its own rules) 

Solution #1: trusted third party (TTP).
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

– e.g., that Alice really did lock k coins in AX

– proxy for “<AY,m> signed by X”
– ideally, app-specific (each pair (AX, AY) specifies its own rules) 

Solution #1: trusted third party (TTP).
• TTP’s pk hard-wired into AY

– TTP responsible for monitoring all confirmed txs (on X) involving AX
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

– e.g., that Alice really did lock k coins in AX

– proxy for “<AY,m> signed by X”
– ideally, app-specific (each pair (AX, AY) specifies its own rules) 

Solution #1: trusted third party (TTP).
• TTP’s pk hard-wired into AY

– TTP responsible for monitoring all confirmed txs (on X) involving AX

• message <AY,m> regarded as valid by MY/AY ó signed by TTP
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

– e.g., that Alice really did lock k coins in AX

– proxy for “<AY,m> signed by X”
– ideally, app-specific (each pair (AX, AY) specifies its own rules) 

Solution #1: trusted third party (TTP).
• TTP’s pk hard-wired into AY

– TTP responsible for monitoring all confirmed txs (on X) involving AX

• message <AY,m> regarded as valid by MY/AY ó signed by TTP
– note: safety and liveness both depend entirely on TTP 47
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

Solution #1: trusted third party (TTP).

Solution #2: k-of-n multisig. (k,n = app-specific parameters)
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

Solution #1: trusted third party (TTP).

Solution #2: k-of-n multisig. (k,n = app-specific parameters)
• n pks hard-wired into AY

• message <AY,m> regarded as valid by MY/AY ó signed by at 
least k of the n corresponding private keys
– k closer to n è favors safety over liveness (k closer to 1 è the reverse)
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

Solution #1: trusted third party (TTP).

Solution #2: k-of-n multisig. (k,n = app-specific parameters)

Solution #3: consensus protocol w/permissionless validator set.
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

Solution #1: trusted third party (TTP).

Solution #2: k-of-n multisig. (k,n = app-specific parameters)

Solution #3: consensus protocol w/permissionless validator set.
– specific to bridge, distinct from validators for X and Y
– e.g., using proof-of-stake for sybil-resistance/voting weights (see Pt III)
– like a multisig but allow free entry/exit to set of signing parties 
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

Solutions: (in increasing order of sophistication) 
trusted third party, k-of-n multisig, permissionless consensus. 

To discourage safety violations: (i.e., signing fake messages)
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Wanted: convincing proof (to MY or AY) that
AX really did want to send a msg m to AY.

Solutions: (in increasing order of sophistication) 
trusted third party, k-of-n multisig, permissionless consensus. 

To discourage safety violations: (i.e., signing fake messages)
– require all parties to lock up collateral in MX/AX (for X à Y direction)
– anyone can post a signed fake message to MX/AX (via a tx on X), 

triggers the confiscation of collateral of all signing parties
• could prove msg is fake using e.g. Merkle proof of non-membership
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY:
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY:
• header of appropriate block B of X

– assume block header includes root of Merkle tree with leaves = txs
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY:
• header of appropriate block B of X

– assume block header includes root of Merkle tree with leaves = txs
• Merkle proof showing that t was included in B
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY:
• header of appropriate block B of X

– assume block header includes root of Merkle tree with leaves = txs
• Merkle proof showing that t was included in B
• evidence that B was indeed finalized by validators of X

– e.g., for Tendermint, signatures from > 2n/3 of X’s validators
– piggyback on existing trust assumption on validators of X
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY:
• header of appropriate block B of X

– assume block header includes root of Merkle tree with leaves = txs
• Merkle proof showing that t was included in B
• evidence that B was indeed finalized by validators of X

– e.g., for Tendermint, signatures from > 2n/3 of X’s validators
– piggyback on existing trust assumption on validators of X

• è AY accepts msg from MY ó accompanied by such evidence
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY:
• header of appropriate block B of X
• Merkle proof showing that t was included in B
• evidence that B was indeed finalized by validators of X

– e.g., for Tendermint, signatures from > 2n/3 of X’s validators
– piggyback on existing trust assumption on validators of X

• è AY accepts msg from MY ó accompanied by such evidence

Note: AY effectively acting as a light client for X.
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY a block header, 
Merkle pf of tx inclusion, evidence of finalization.
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY a block header, 
Merkle pf of tx inclusion, evidence of finalization.

Challenge #1: Assumes public keys of X’s validators hard-wired 
into AY.
• much harder if X’s validator set changing over time

– in many cases, still possible in principle (with additional evidence) 
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY a block header, 
Merkle pf of tx inclusion, evidence of finalization.

Challenge #1: Assumes pks of X’s validators hard-wired into AY.

Challenge #2: Verification of evidence (i.e., light client logic) too 
much work/too expensive for an L1 to carry out.
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Idea: to prove to AY that tx t really was 
finalized on X, post to AY a block header, 
Merkle pf of tx inclusion, evidence of finalization.

Challenge #1: Assumes pks of X’s validators hard-wired into AY.

Challenge #2: Verification of evidence (i.e., light client logic) too 
much work/too expensive for an L1 to carry out.
• possible solution: provide SNARK proof of existence of such 

evidence that a light client would accept as valid
– only post proof of knowledge, not evidence itself; L1 only verifies 

correctness of SNARK proof, does not carry out light client logic 63
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