Lecture #19:
Bridges

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden



A Multi-Chain World

decentralized blockchain
protocol #2
(e.g., Solana)

decentralized blockchain
protocol #1
(e.g., Ethereum)



Scaling Execution via Rollups

main blockchain protocol
(coordinates rollups)



Goals for Lecture #19

1. Rollup bridges.
— moving assets from an L1 to its rollups via “minting” and “burning"

2. General bridges and cross-chain messaging.
— how can blockchain Y “know” that some tx executed on blockchain X?

3. Externally validated bridges.
— rely on third parties to attest to what’s happened on blockchain X

4. “Trustless” bridges.
— blockchain Y runs (as a smart contract) light client for blockchain X



Rollup Bridges

Running example: L1 = Ethereum, user wants to moving native
currency ETH from L1 to a (optimistic or validity) rollup.

main blockchain protocol
(coordinates rollups)



Rollup Bridges

Running example: L1 = Ethereum, user wants to moving native
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.

e.g., Arbitrum
e.g., Ethereum

bridge
contract

bridge
contract




Recall: Forced Transaction Inclusion

Requirement for “classic” rollups: forced tx inclusion via the L1.



Recall: Forced Transaction Inclusion

Requirement for “classic” rollups: forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
its inclusion in the next batch of rollup txs

L1 tx records the specified rollup tx in queue in rollup’s L1 contract
next publication of rollup txs must “clear the queue” to be valid



Recall: Forced Transaction Inclusion

Requirement for “classic” rollups: forced tx inclusion via the L1.

— any user can send a rollup tx direct to the rollup’s L1 contract to force
its inclusion in the next batch of rollup txs

- L1 tx records the specified rollup tx in queue in rollup’s L1 contract

- next publication of rollup txs must “clear the queue” to be valid
— rollup liveness failure =» can use L1 for liveness until reboot completes
— rollup inherits the “censorship-resistance” of the L1



Rollup Bridges

Running example: L1 = Ethereum, user wants to moving native
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design:

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

10



Rollup Bridges

Running example: L1 = Ethereum, user wants to moving native
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.
— L1 contract exports a “deposit” function, any L1 user can send ETH to it

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

11



Rollup Bridges

Running example: L1 = Ethereum, user wants to moving native
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.
— L1 contract exports a “deposit” function, any L1 user can send ETH to it
— deposit generates rollup tx to mint equal amt of “wrapped ETH (WETH)”
* e.g., could add rollup tx to “forced inclusion” list in rollup’s L1 contract

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

12



Rollup Bridges

Running example: L1 = Ethereum, user wants to moving native
currency ETH from L1 to a (optimistic or validity) rollup.

Canonical design: coupled “bridge contracts” on L1 and rollup.
— L1 contract exports a “deposit” function, any L1 user can send ETH to it
— deposit generates rollup tx to mint equal amt of “wrapped ETH (WETH)”
* e.g., could add rollup tx to “forced inclusion” list in rollup’s L1 contract
— one rollup tx executed, new wETH transferred to user’s (rollup) account

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

13



Rollup Bridges (con’d)

Canonical design (con’d): to “withdraw” ETH from rollup:

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

14



Rollup Bridges (con’d)

Canonical design (con’d): to “withdraw” ETH from rollup:
— user sends x WETH to bridge contract on rollup, which is burned
- note: if necessary, user can submit tx directly to L1 to force inclusion

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

15



Rollup Bridges (con’d)

Canonical design (con’d): to “withdraw” ETH from rollup:
— user sends x WETH to bridge contract on rollup, which is burned

* note: if necessary, user can submit tx directly to L1 to force inclusion

— once rollup tx executed and corresponding rollup state root finalized on
L1, user submits L1 tx (to rollup’s L1 bridge contract) to claim x ETH

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

16



Rollup Bridges (con’d)

Canonical design (con’d): to “withdraw” ETH from rollup:
— user sends x WETH to bridge contract on rollup, which is burned

* note: if necessary, user can submit tx directly to L1 to force inclusion

— once rollup tx executed and corresponding rollup state root finalized on
L1, user submits L1 tx (to rollup’s L1 bridge contract) to claim x ETH

- validity rollups =» as soon as requisite SNARK proof posted to L1

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

17



Rollup Bridges (con’d)

Canonical design (con’d): to “withdraw” ETH from rollup:
— user sends x WETH to bridge contract on rollup, which is burned

* note: if necessary, user can submit tx directly to L1 to force inclusion

— once rollup tx executed and corresponding rollup state root finalized on
L1, user submits L1 tx (to rollup’s L1 bridge contract) to claim x ETH

- validity rollups =» as soon as requisite SNARK proof posted to L1
- optimistic rollups =» after 7 days, assuming no disputes

e.g., Arbitrum e.g., Ethereum

mint/burn
wETH

lock/
unlock
ETH

18



Rollup Bridges: Assumptions

Key property: any user can convert ETH (on L1) to wETH (on
rollup) and back through submission of suitable L1 and rollup txs.

19



Rollup Bridges: Assumptions

Key property: any user can convert ETH (on L1) to wETH (on
rollup) and back through submission of suitable L1 and rollup txs.

* assumes no bugs in bridge contracts
— e.dg., can’t mint unless there’s been a corresponding deposit

20



Rollup Bridges: Assumptions

Key property: any user can convert ETH (on L1) to wETH (on
rollup) and back through submission of suitable L1 and rollup txs.

* assumes no bugs in bridge contracts
— e.g., can’t mint unless there’s been a corresponding deposit

« assumes consistency and liveness of L1
— else could freeze/revert rollup updates

21



Rollup Bridges: Assumptions

Key property: any user can convert ETH (on L1) to wETH (on
rollup) and back through submission of suitable L1 and rollup txs.
* assumes no bugs in bridge contracts

— e.g., can’t mint unless there’s been a corresponding deposit
« assumes consistency and liveness of L1

— else could freeze/revert rollup updates

- assumes liveness of rollup sequencer
— 1.e., eventually posts new state commitments accepted by the L1
— forced inclusion mechanism ensures withdraws get processed

— escape hatch: liveness failure =» let anyone take over as sequencer



General Bridges

Scenario: two independent blockchain protocols, X & Y.
* e.g., want to transfer assets from one to the other

e.g., Ethereum e.g., Solana

bridge
contract

bridge
contract

23



General Bridges

Scenario: two independent blockchain protocols, X & Y.

- validators of X unaware of Y and vice versa
— cf., rollup sequencer, very aware of underlying L1

— bridge contracts generally deployed by third party using only the
application layers of X and Y

24



General Bridges

Scenario: two independent blockchain protocols, X & Y.
 validators of X unaware of Y and vice versa

* no DA: X’s txs not posted to Y, Y’s txs not posted to X
— cf., rollup txs posted to underlying L1
— X, Y each do their own DA (e.g., anyone can run full node for X or Y)

25



General Bridges

Scenario: two independent blockchain protocols, X & Y.

validators of X unaware of Y and vice versa
no DA: X’s txs not posted to Y, Y’s txs not posted to X

even if commitments to X’s state posted to Y and vice versa,
neither blockchain can block the other’s commitments
— cf., L1’s ability to block invalid rollup state commitments

- if rollup fails to execute all the txs in the forced inclusion list

- if rollup tries to commit a safety violation (i.e., steal funds)

— though could perhaps at least recognize invalid commitments (more later)

26



General Bridges

Scenario: two independent blockchain protocols, X & Y.
- validators of X unaware of Y and vice versa
* no DA: X’s txs not posted to Y, Y’s txs not posted to X

+ even if commitments to X’s state posted to Y and vice versa,
neither blockchain can block the other’'s commitments

Summary: ground truth for a rollup’s state controlled by underlying
L1, ground truth for the state of independent blockchains X and Y
is controlled by themselves (i.e., their validators).

— most general bridges resort to additional trust assumptions

27



Cross-Chain Messaging System

General solution: cross-chain messaging system.

* pair (M,,M,) of coupled contracts that allow other contracts (e.g.,
bridge contracts) on X and Y to “send messages” to each other

user.

Ax

Ay
M, "I My //
X Y

28



Cross-Chain Messaging System

ldeal communication flow: (X - Y)
x LK

29



Cross-Chain Messaging System

ldeal communication flow: (X - Y)
» Alice sends tx to Ay (e.g., deposit k coins) N,

30



Cross-Chain Messaging System

ldeal communication flow: (X - Y)
» Alice sends tx to Ay (e.g., deposit k coins) N,

* Ay puts msg in My’s outbound msg queue:
< recipient = Ay, data = “Alice deposited k coins” >

31



Cross-Chain Messaging System

ldeal communication flow: (X - Y)
» Alice sends tx to Ay (e.g., deposit k coins) N,

* Ay puts msg in My’s outbound msg queue:
< recipient = Ay, data = “Alice deposited k coins” >

- [abstraction] X signs msg, My sends signed msg to My

32



ldeal communication flow: (X - Y)

Cross-Chain Messaging System

Alice sends tx to Ay (e.g., deposit k coins) X

Ay puts msg in My’s outbound msg queue:
< recipient = Ay, data = “Alice deposited k coins” >

[abstraction] X signs msg, My sends signed msg to My

when My receives msg < Ay, m>, verifies signature (by X) = if
valid, sends payload m to recipient contract Ay

— e.g., Ay mints k wrapped coins and sends to Alice’s accounton Y

33



ldeal communication flow: (X = Y)

Cross-Chain Messaging System

Alice sends tx to Ay (e.g., deposit k coins)

Ay puts msg in My’s outbound msg queue:
< recipient = Ay, data = “Alice deposited k coins” >
[abstraction] X signs msg, My sends signed msg to My

when My receives msg < Ay, m>, verifies signature (by X) = if
valid, sends payload m to recipient contract Ay

— e.g., Ay mints k wrapped coins and sends to Alice’s accounton Y

— in effect, Ay trusting X’s signature that Alice’s tx finalized on X

34



Messaging System =» Bridge

Note: can build a bridge (to transfer assets)
from such a messaging system. x LK

— lock/unlock via Ay, mint/burn via Ay

Assumptions:

35



Messaging System =» Bridge

Note: can build a bridge (to transfer assets)
from such a messaging system.

— lock/unlock via Ay, mint/burn via Ay

Assumptions:

* no smart contract bugs
— e.g., Ay doesn’t send fabricated deposits to My

36



Messaging System =» Bridge

Note: can build a bridge (to transfer assets)
from such a messaging system.

— lock/unlock via Ay, mint/burn via Ay

Assumptions:

* no smart contract bugs
— e.g., Ay doesn’t send fabricated deposits to My

« X, Y both consistent and live

37



Messaging System =» Bridge

Note: can build a bridge (to transfer assets)
from such a messaging system.

— lock/unlock via Ay, mint/burn via Ay

Assumptions:

* no smart contract bugs
— e.g., Ay doesn’t send fabricated deposits to My

« X, Y both consistent and live
+ X, Y both sign + send messages whenever asked to (liveness)

38



Messaging System =» Bridge

Note: can build a bridge (to transfer assets)
from such a messaging system.

— lock/unlock via Ay, mint/burn via Ay

Assumptions:

* no smart contract bugs
— e.g., Ay doesn’t send fabricated deposits to My

« X, Y both consistent and live
+ X, Y both sign + send messages whenever asked to (liveness)

« X, Y don't sign + send messages they’re not asked to (safety)

39



Signing and Sending Messages

Recall abstraction: (X = Y)
« X signs msg, My sends signed msg to My x

40



Signing and Sending Messages

Recall abstraction: (X = Y)
« X signs msg, My sends signed msg to My X

Questions:
1. what does it mean for a blockchain protocol to “sign a msg”?

2. who relays signed messages between X and Y?

41



Signing and Sending Messages

Recall abstraction: (X = Y)
« X signs msg, My sends signed msg to My

Questions:
1. what does it mean for a blockchain protocol to “sign a msg”?

2. who relays signed messages between X and Y?

Answer to question #2: user themselves, or a third party.
— important, but not the hard part
— next: menu of answers to question #1

42



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to A,.

— e.g., that Alice really did lock k coins in Ay

— proxy for “<Ay,m> signed by X”
— ideally, app-specific (each pair (Ay, Ay) specifies its own rules)

43



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to A,.

— e.g., that Alice really did lock k coins in Ay

— proxy for “<Ay,m> signed by X”
— ideally, app-specific (each pair (Ay, Ay) specifies its own rules)

Solution #1: trusted third party (TTP).

44



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to A,.

— e.g., that Alice really did lock k coins in Ay

— proxy for “<Ay,m> signed by X”
— ideally, app-specific (each pair (Ay, Ay) specifies its own rules)

Solution #1: trusted third party (TTP).

- TTP’s pk hard-wired into Ay
— TTP responsible for monitoring all confirmed txs (on X) involving Ay

45



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to A,.

— e.g., that Alice really did lock k coins in Ay
— proxy for “<Ay,m> signed by X”
— ideally, app-specific (each pair (Ay, Ay) specifies its own rules)

Solution #1: trusted third party (TTP).
- TTP’s pk hard-wired into Ay
— TTP responsible for monitoring all confirmed txs (on X) involving Ay
* message <Ay,m> regarded as valid by My/Ay < signed by TTP

46



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to A,.

— e.g., that Alice really did lock k coins in Ay
— proxy for “<Ay,m> signed by X”
— ideally, app-specific (each pair (Ay, Ay) specifies its own rules)

Solution #1: trusted third party (TTP).
- TTP’s pk hard-wired into Ay
— TTP responsible for monitoring all confirmed txs (on X) involving Ay

- message <Ay,m> regarded as valid by My/Ay < signed by TTP
— note: safety and liveness both depend entirely on TTP 47



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to Ay,. w

Solution #1: trusted third party (TTP).

Solution #2: k-of-n multisig. (k,n = app-specific parameters)

48



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to Ay,. w

Solution #1: trusted third party (TTP).

Solution #2: k-of-n multisig. (k,n = app-specific parameters)
* n pks hard-wired into Ay

* message <Ay,m> regarded as valid by M/Ay < signed by at
least k of the n corresponding private keys

— k closer to n = favors safety over liveness (k closer to 1 = the reverse)

49



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to Ay,. w

Solution #1: trusted third party (TTP).
Solution #2: k-of-n multisig. (k,n = app-specific parameters)

Solution #3: consensus protocol w/permissionless validator set.

50



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to A,.

Solution #1: trusted third party (TTP).
Solution #2: k-of-n multisig. (k,n = app-specific parameters)

Solution #3: consensus protocol w/permissionless validator set.
— specific to bridge, distinct from validators for X and Y
— e.g., using proof-of-stake for sybil-resistance/voting weights (see Pt lll)
— like a multisig but allow free entry/exit to set of signing parties

51



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to Ay,. w

Solutions: (in increasing order of sophistication)
trusted third party, k-of-n multisig, permissionless consensus.

To discourage safety violations: (i.e., signing fake messages)

52



Externally Validated Bridges

Wanted: convincing proof (to My or Ay) that
Ay really did want to send a msg m to A,.

Solutions: (in increasing order of sophistication)
trusted third party, k-of-n multisig, permissionless consensus.

To discourage safety violations: (i.e., signing fake messages)
— require all parties to lock up collateral in My/Ay (for X = Y direction)

— anyone can post a signed fake message to My/Ay (via a tx on X),
triggers the confiscation of collateral of all signing parties

- could prove msg is fake using e.g. Merkle proof of non-membership
33



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay: X

54



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay:

- header of appropriate block B of X
— assume block header includes root of Merkle tree with leaves = txs

55



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay:

- header of appropriate block B of X
— assume block header includes root of Merkle tree with leaves = txs

« Merkle proof showing that t was included in B

56



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay:

- header of appropriate block B of X
— assume block header includes root of Merkle tree with leaves = txs

« Merkle proof showing that t was included in B

» evidence that B was indeed finalized by validators of X

— e.g., for Tendermint, signatures from > 2n/3 of X’s validators
— piggyback on existing trust assumption on validators of X

57



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay:

- header of appropriate block B of X
— assume block header includes root of Merkle tree with leaves = txs

« Merkle proof showing that t was included in B

» evidence that B was indeed finalized by validators of X

— e.g., for Tendermint, signatures from > 2n/3 of X’s validators
— piggyback on existing trust assumption on validators of X

- = A, accepts msg from My < accompanied by such evidence

58



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay:

- header of appropriate block B of X
» Merkle proof showing that t was included in B

» evidence that B was indeed finalized by validators of X
— e.g., for Tendermint, signatures from > 2n/3 of X’s validators
— piggyback on existing trust assumption on validators of X

- = A, accepts msg from My <& accompanied by such evidence

Note: Ay effectively acting as a light client for X.

59



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay a block header, x L5
Merkle pf of tx inclusion, evidence of finalization.

60



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay a block header,
Merkle pf of tx inclusion, evidence of finalization.

Challenge #1: Assumes public keys of X’s validators hard-wired
into Ay.

- much harder if X’s validator set changing over time
— in many cases, still possible in principle (with additional evidence)

61



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay a block header,
Merkle pf of tx inclusion, evidence of finalization.

Challenge #1: Assumes pks of X’s validators hard-wired into Ay.

Challenge #2: Verification of evidence (i.e., light client logic) too
much work/too expensive for an L1 to carry out.

62



“Trustless” Bridges

ldea: to prove to Ay that tx t really was
finalized on X, post to Ay a block header,
Merkle pf of tx inclusion, evidence of finalization.

Challenge #1: Assumes pks of X’s validators hard-wired into Ay.

Challenge #2: Verification of evidence (i.e., light client logic) too
much work/too expensive for an L1 to carry out.

- possible solution: provide SNARK proof of existence of such
evidence that a light client would accept as valid

— only post proof of knowledge, not evidence itself; L1 only verifies
correctness of SNARK proof, does not carry out light client logic 0



