
Lecture #2: State Machine

Replication

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

2

Recap: A Cartoon of Web3

applications/smart contracts

blockchain protocol/virtual machine

Internet

user

Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

3

Recap: A Cartoon of Web3

applications/smart contracts

blockchain protocol/virtual machine

Internet

user

Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

• like the Internet, “decentralized” -- the product of collaboration

between many physical machines, no one owner/operator
4

Recap: A Cartoon of Web3

applications/smart contracts

blockchain protocol/virtual machine

Internet

user

5

The Computer in the Sky

network of physical computers

6

The Computer in the Sky

network of physical computers

+ blockchain protocol

simulated (virtual) computer

1. Consensus basics: validators, transactions, blocks.

7

Goals for Lecture #2

1. Consensus basics: validators, transactions, blocks.

2. State machine replication (SMR), consistency, liveness.

– the problem we need to solve and the basic guarantees that we want

8

Goals for Lecture #2

1. Consensus basics: validators, transactions, blocks.

2. State machine replication (SMR), consistency, liveness.

– the problem we need to solve and the basic guarantees that we want

3. Challenges to consensus: faulty validators (crash vs.

Byanztine), message delays (synchronous vs. asynchronous).

– validators, communication network might not behave as expected

9

Goals for Lecture #2

1. Consensus basics: validators, transactions, blocks.

2. State machine replication (SMR), consistency, liveness.

– the problem we need to solve and the basic guarantees that we want

3. Challenges to consensus: faulty validators (crash vs.

Byanztine), message delays (synchronous vs. asynchronous).

– validators, communication network might not behave as expected

4. Security thresholds.

– threshold of faulty validators at which consensus becomes impossible
10

Goals for Lecture #2

Validators: physical machines running a blockchain protocol.

• a.k.a. “nodes” (e.g., 22 or 100, communicating via Internet)

11

Some Terminology

Validators: physical machines running a blockchain protocol.

• a.k.a. “nodes” (e.g., 22 or 100, communicating via Internet)

Transaction: user-submitted action.

• e.g., make a payment or mint an NFT

• translates to snippet of low-level code to be executed in VM

12

Some Terminology

Validators: physical machines running a blockchain protocol.

• a.k.a. “nodes” (e.g., 22 or 100, communicating via Internet)

Transaction: user-submitted action.

• e.g., make a payment or mint an NFT

• translates to snippet of low-level code to be executed in VM

Block: sequence of transactions (➔ sequence of VM instructions).

• for now, assume can be of unbounded size

13

Some Terminology

Consensus: decide on a sequence (aka “chain”) of blocks.

• note: all validators must agree on this sequence!

• blocks keeping getting added (one-by-one) as long as there are

transactions to process

• not obvious how to do this, subject of next 5 lectures

14

Responsibilities of a Blockchain Protocol

15

The Consensus Layer

blockchain protocol

(consensus layer)

16

The Consensus Layer

blockchain protocol

(consensus layer)

tx1: 1010…..111

tx2: 0110…..110

tx3: 1110…..000

tx4: 0010…..101

transactions

(submitted by clients)
transactions

(submitted by clients)

17

The Consensus Layer

blockchain protocol

(consensus layer)

tx1: 1010…..111

tx2: 0110…..110

tx3: 1110…..000

tx4: 0010…..101

tx2 tx3 tx1 tx4

transactions

(submitted by clients)
transactions

(submitted by clients)

output log of ordered and

finalized transactions

Consensus: decide on a sequence (aka “chain”) of blocks.

• note: all validators must agree on this sequence!

• blocks keeping getting added (one-by-one) as long as there are

transactions to process

• not obvious how to do this, subject of next 5 lectures

Execution: keep state of the virtual machine up-to-date.

• new block added ➔ execute the corresponding snippets of

code (do computations, update variable values, etc.)

• subject of lectures 8+9 (concludes Part I of course)
18

Responsibilities of a Blockchain Protocol

Consensus: keep validators in sync despite failures and attacks.

• fundamental problem that any blockchain protocol must solve

• glue between the “Internet hardware” and the app-facing VM

19

Consensus: Getting Started

Consensus: keep validators in sync despite failures and attacks.

– fundamental problem that any blockchain protocol must solve

– glue between the “Internet hardware” and the app-facing VM

Standing assumptions:

1. Fixed and known set of n validators. (E.g., n=22 or 100.)

– each with known ID and IP address (will communicate over Internet)

– a.k.a. “permissioned” or “proof of authority” blockchain protocol

– i.e., randos can’t just join the validator set

– will relax in Part III of course (”permissionless” protocols including

Bitcoin, Ethereum, etc.) 20

Consensus: Getting Started

Consensus: keep validators in sync despite failures and attacks.

– fundamental problem that any blockchain protocol must solve

– glue between the “Internet hardware” and the app-facing VM

Standing assumptions:

1. Fixed and known set of n validators. (E.g., n=22 or 100.)

– each with known ID and IP address (will communicate over Internet)

– a.k.a. “permissioned” or “proof of authority” blockchain protocol

2. All validators have same notion of time (“synchronized clocks”).

– approximately true in practice, won’t worry about this further
21

Consensus: Getting Started

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

22

State Machine Replication (SMR)

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

23

State Machine Replication (SMR)

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

24

State Machine Replication (SMR)

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

Goal: a protocol that satisfies consistency and liveness.

25

State Machine Replication (SMR)

Protocol: code run by each validator. Each time step:

• perform local computations

• receive messages from other validators and txs from clients

• send messages to other validators

26

Protocols, Consistency, Liveness

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

27

Protocols, Consistency, Liveness

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

28

Protocols, Consistency, Liveness

acceptable:

validator #1:

validator #2:

B1 B2 B3

B1 B2

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

29

Protocols, Consistency, Liveness

unacceptable:

validator #1:

validator #2:

B1 B2 B3

B1 B2 B’3

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

• equivalently: all validators’ local chains

should be prefixes of a single chain

30

Protocols, Consistency, Liveness

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

• equivalently: all validators’ local chains

should be prefixes of a single chain

– i.e., no “forks” allowed
31

Protocols, Consistency, Liveness

B1 B2

B3

B’3

fork!

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• i.e., all validators’ local chains are prefixes of a single chain

32

Protocols, Consistency, Liveness

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• i.e., all validators’ local chains are prefixes of a single chain

Liveness: every valid transaction submitted by a client eventually

added to validators’ local histories/chains.

33

Protocols, Consistency, Liveness

Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• i.e., all validators’ local chains are prefixes of a single chain

Liveness: every valid transaction submitted by a client eventually

added to validators’ local histories/chains.

– practically relevant strengthening: also want bounded latency
34

Protocols, Consistency, Liveness

Protocol A:

• target one block per second (say)

35

Why Is Consensus Hard?

Protocol A:

• target one block per second (say)

1. validators take turns as “leader” (round-robin, one per second)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock

36

Why Is Consensus Hard?

Protocol A:

• target one block per second (say)

1. validators take turns as “leader” (round-robin, one per second)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock

2. current leader decides on a block of transactions

– e.g., all new transactions it’s heard of, ordered by time of arrival

37

Why Is Consensus Hard?

Protocol A:

• target one block per second (say)

1. validators take turns as “leader” (round-robin, one per second)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock

2. current leader decides on a block of transactions

– e.g., all new transactions it’s heard of, ordered by time of arrival

3. leader sends block to all the other validators

38

Why Is Consensus Hard?

Protocol A:

• target one block per second (say)

1. validators take turns as “leader” (round-robin, one per second)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock

2. current leader decides on a block of transactions

– e.g., all new transactions it’s heard of, ordered by time of arrival

3. leader sends block to all the other validators

Question: what could go wrong?
39

Why Is Consensus Hard?

Protocol A: [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

40

Why Is Consensus Hard?

Protocol A: [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

• what if a validator doesn’t hear from the current leader within

one second?

41

Why Is Consensus Hard?

Protocol A: [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

• what if a validator doesn’t hear from the current leader within

one second?

– perhaps due to problem with leader (e.g., might have crashed)

42

Why Is Consensus Hard?

Protocol A: [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

• what if a validator doesn’t hear from the current leader within

one second?

– perhaps due to problem with leader (e.g., might have crashed)

– perhaps due to problem with network (e.g., congestion, or DoS attack)
43

Why Is Consensus Hard?

Key challenges: [unavoidable in practice]

44

Why Is Consensus Hard?

Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty

45

Why Is Consensus Hard?

Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty

2. Unreliable communication network (i.e., doesn’t behave as

expected).

46

Why Is Consensus Hard?

Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty

2. Unreliable communication network (i.e., doesn’t behave as

expected).

Revised goal: an SMR protocol that satisfies consistency and

liveness, despite the presence of faulty validators and an

unreliable communication network.

47

Why Is Consensus Hard?

Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty

2. Unreliable communication network (i.e., doesn’t behave as

expected).

Revised goal: an SMR protocol that satisfies consistency and

liveness, despite the presence of faulty validators and an

unreliable communication network.

• next: can make SMR easier/harder by allowing less/more

severe validator faults and network unreliability 48

Why Is Consensus Hard?

Faulty validators (easy mode): crash faults.

• every validator dutifully follows the protocol, but may crash

(forever) at some point

49

Faulty Validators, Unreliable Network

Faulty validators (easy mode): crash faults.

• every validator dutifully follows the protocol, but may crash

(forever) at some point

Faulty validators (hard mode): “Byzantine” faults.

• a faulty validator can behave arbitrarily

– e.g., hard-to-model software bug, or maybe just a bad actor

50

Faulty Validators, Unreliable Network

Faulty validators (easy mode): crash faults.

• a faulty validator may crash (forever) at some point

Faulty validators (hard mode): Byzantine faults.

• a faulty validator can behave arbitrarily

Unreliable network (easy mode): synchronous network.

• for known parameter ∆, every msg delivered in ≤ ∆ time steps

– e.g., 1 time step = 1 millisecond, ∆=2000 (i.e., ≤ 2 seconds)

51

Faulty Validators, Unreliable Network

Faulty validators (easy mode): crash faults.

• a faulty validator may crash (forever) at some point

Faulty validators (hard mode): Byzantine faults.

• a faulty validator can behave arbitrarily

Unreliable network (easy mode): synchronous network.

• for known parameter ∆, every msg delivered in ≤ ∆ time steps

Unreliable network (hard mode): asynchronous network.

• all messages eventually delivered, but no bound on delay 52

Faulty Validators, Unreliable Network

53

A Road Map to Practical SMR Protocols

easier harder

54

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

easier harder

55

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network

easier harder

56

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network
Byzantine faults +

asynchronous network

easier harder

Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.

57

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network
Byzantine faults +

asynchronous network

easier harder

Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.

2. More impossibility results (i.e., SMR unsolvable) toward the right.

58

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network
Byzantine faults +

asynchronous network

easier harder

Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.

2. More impossibility results (i.e., SMR unsolvable) toward the right.

3. Simpler protocols toward the left, more complex toward the right.
59

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network
Byzantine faults +

asynchronous network

easier harder

Intuition: [mostly correct]

60

Security Thresholds

Intuition: [mostly correct]

1. Achieving consensus should be easy if 0% of the validators

are faulty.

– just wait for leaders’ block proposals to (eventually) arrive

61

Security Thresholds

Intuition: [mostly correct]

1. Achieving consensus should be easy if 0% of the validators

are faulty.

– just wait for leaders’ block proposals to (eventually) arrive

2. Achieving consensus should be impossible if ≈100% of the

validators are faulty.

– 98 colluding validators can convince the other 2 of different blocks

62

Security Thresholds

Intuition: [mostly correct]

1. Achieving consensus should be easy if 0% of the validators

are faulty.

– just wait for leaders’ block proposals to (eventually) arrive

2. Achieving consensus should be impossible if ≈100% of the

validators are faulty.

– 98 colluding validators can convince the other 2 of different blocks

Security threshold: fraction of faulty validators at which achieving

consensus flips from possible to impossible.

63

Security Thresholds

1. Achieving consensus should be easy if 0% of the validators

are faulty.

2. Achieving consensus should be impossible if ≈100% of the

validators are faulty.

Security threshold: fraction of faulty validators at which achieving

consensus flips from possible to impossible.

64

Security Thresholds

1. Achieving consensus should be easy if 0% of the validators

are faulty.

2. Achieving consensus should be impossible if ≈100% of the

validators are faulty.

Security threshold: fraction of faulty validators at which achieving

consensus flips from possible to impossible.

• threshold will depend on assumptions (on faults, network, etc.)

• typical values = 50% or 33%

65

Security Thresholds

1. Achieving consensus should be easy if 0% of the validators

are faulty.

2. Achieving consensus should be impossible if ≈100% of the

validators are faulty.

Security threshold: fraction of faulty validators at which achieving

consensus flips from possible to impossible.

• threshold will depend on assumptions (on faults, network, etc.)

• typical values = 50% or 33%

Moral: crucial to have validator set of mostly reliable operators! 66

Security Thresholds

	Slide 1: Lecture #2: State Machine Replication
	Slide 2: Recap: A Cartoon of Web3
	Slide 3: Recap: A Cartoon of Web3
	Slide 4: Recap: A Cartoon of Web3
	Slide 5: The Computer in the Sky
	Slide 6: The Computer in the Sky
	Slide 7: Goals for Lecture #2
	Slide 8: Goals for Lecture #2
	Slide 9: Goals for Lecture #2
	Slide 10: Goals for Lecture #2
	Slide 11: Some Terminology
	Slide 12: Some Terminology
	Slide 13: Some Terminology
	Slide 14: Responsibilities of a Blockchain Protocol
	Slide 15: The Consensus Layer
	Slide 16: The Consensus Layer
	Slide 17: The Consensus Layer
	Slide 18: Responsibilities of a Blockchain Protocol
	Slide 19: Consensus: Getting Started
	Slide 20: Consensus: Getting Started
	Slide 21: Consensus: Getting Started
	Slide 22: State Machine Replication (SMR)
	Slide 23: State Machine Replication (SMR)
	Slide 24: State Machine Replication (SMR)
	Slide 25: State Machine Replication (SMR)
	Slide 26: Protocols, Consistency, Liveness
	Slide 27: Protocols, Consistency, Liveness
	Slide 28: Protocols, Consistency, Liveness
	Slide 29: Protocols, Consistency, Liveness
	Slide 30: Protocols, Consistency, Liveness
	Slide 31: Protocols, Consistency, Liveness
	Slide 32: Protocols, Consistency, Liveness
	Slide 33: Protocols, Consistency, Liveness
	Slide 34: Protocols, Consistency, Liveness
	Slide 35: Why Is Consensus Hard?
	Slide 36: Why Is Consensus Hard?
	Slide 37: Why Is Consensus Hard?
	Slide 38: Why Is Consensus Hard?
	Slide 39: Why Is Consensus Hard?
	Slide 40: Why Is Consensus Hard?
	Slide 41: Why Is Consensus Hard?
	Slide 42: Why Is Consensus Hard?
	Slide 43: Why Is Consensus Hard?
	Slide 44: Why Is Consensus Hard?
	Slide 45: Why Is Consensus Hard?
	Slide 46: Why Is Consensus Hard?
	Slide 47: Why Is Consensus Hard?
	Slide 48: Why Is Consensus Hard?
	Slide 49: Faulty Validators, Unreliable Network
	Slide 50: Faulty Validators, Unreliable Network
	Slide 51: Faulty Validators, Unreliable Network
	Slide 52: Faulty Validators, Unreliable Network
	Slide 53: A Road Map to Practical SMR Protocols
	Slide 54: A Road Map to Practical SMR Protocols
	Slide 55: A Road Map to Practical SMR Protocols
	Slide 56: A Road Map to Practical SMR Protocols
	Slide 57: A Road Map to Practical SMR Protocols
	Slide 58: A Road Map to Practical SMR Protocols
	Slide 59: A Road Map to Practical SMR Protocols
	Slide 60: Security Thresholds
	Slide 61: Security Thresholds
	Slide 62: Security Thresholds
	Slide 63: Security Thresholds
	Slide 64: Security Thresholds
	Slide 65: Security Thresholds
	Slide 66: Security Thresholds

