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Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications
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Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

• like the Internet, “decentralized” -- the product of collaboration 

between many physical machines, no one owner/operator
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The Computer in the Sky

network of physical computers
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The Computer in the Sky

network of physical computers

+ blockchain protocol

simulated (virtual) computer



1. Consensus basics: validators, transactions, blocks.
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1. Consensus basics: validators, transactions, blocks.

2. State machine replication (SMR), consistency, liveness.

– the problem we need to solve and the basic guarantees that we want
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3. Challenges to consensus: faulty validators (crash vs. 

Byanztine), message delays (synchronous vs. asynchronous). 

– validators, communication network might not behave as expected
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1. Consensus basics: validators, transactions, blocks.

2. State machine replication (SMR), consistency, liveness.

– the problem we need to solve and the basic guarantees that we want

3. Challenges to consensus: faulty validators (crash vs. 

Byanztine), message delays (synchronous vs. asynchronous). 

– validators, communication network might not behave as expected

4. Security thresholds.

– threshold of faulty validators at which consensus becomes impossible
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Validators: physical machines running a blockchain protocol.

• a.k.a. “nodes” (e.g., 22 or 100, communicating via Internet)
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Validators: physical machines running a blockchain protocol.

• a.k.a. “nodes” (e.g., 22 or 100, communicating via Internet)

Transaction: user-submitted action.

• e.g., make a payment or mint an NFT

• translates to snippet of low-level code to be executed in VM
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Validators: physical machines running a blockchain protocol.

• a.k.a. “nodes” (e.g., 22 or 100, communicating via Internet)

Transaction: user-submitted action.

• e.g., make a payment or mint an NFT

• translates to snippet of low-level code to be executed in VM

Block: sequence of transactions (➔ sequence of VM instructions).

• for now, assume can be of unbounded size
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Consensus: decide on a sequence (aka “chain”) of blocks.

• note: all validators must agree on this sequence!

• blocks keeping getting added (one-by-one) as long as there are 

transactions to process

• not obvious how to do this, subject of next 5 lectures
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Responsibilities of a Blockchain Protocol
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The Consensus Layer

blockchain protocol

(consensus layer)
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The Consensus Layer

blockchain protocol

(consensus layer)

tx1: 1010…..111

tx2: 0110…..110

tx3: 1110…..000

tx4: 0010…..101

transactions

(submitted by clients)
transactions

(submitted by clients)
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The Consensus Layer

blockchain protocol

(consensus layer)

tx1: 1010…..111

tx2: 0110…..110

tx3: 1110…..000

tx4: 0010…..101

tx2 tx3 tx1 tx4

transactions

(submitted by clients)
transactions

(submitted by clients)

output log of ordered and 

finalized transactions



Consensus: decide on a sequence (aka “chain”) of blocks.

• note: all validators must agree on this sequence!

• blocks keeping getting added (one-by-one) as long as there are 

transactions to process

• not obvious how to do this, subject of next 5 lectures

Execution: keep state of the virtual machine up-to-date.

• new block added ➔ execute the corresponding snippets of 

code (do computations, update variable values, etc.)

• subject of lectures 8+9 (concludes Part I of course)
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Responsibilities of a Blockchain Protocol



Consensus: keep validators in sync despite failures and attacks.

• fundamental problem that any blockchain protocol must solve

• glue between the “Internet hardware” and the app-facing VM
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Consensus: keep validators in sync despite failures and attacks.

– fundamental problem that any blockchain protocol must solve

– glue between the “Internet hardware” and the app-facing VM

Standing assumptions:

1. Fixed and known set of n validators. (E.g., n=22 or 100.)

– each with known ID and IP address (will communicate over Internet)

– a.k.a. “permissioned” or “proof of authority” blockchain protocol

– i.e., randos can’t just join the validator set

– will relax in Part III of course (”permissionless” protocols including 

Bitcoin, Ethereum, etc.) 20
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Consensus: keep validators in sync despite failures and attacks.

– fundamental problem that any blockchain protocol must solve

– glue between the “Internet hardware” and the app-facing VM

Standing assumptions:

1. Fixed and known set of n validators. (E.g., n=22 or 100.)

– each with known ID and IP address (will communicate over Internet)

– a.k.a. “permissioned” or “proof of authority” blockchain protocol

2. All validators have same notion of time (“synchronized clocks”).

– approximately true in practice, won’t worry about this further
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SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions
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SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs 

(a.k.a. “log” or “history”)
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SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs 

(a.k.a. “log” or “history”)

Goal: a protocol that satisfies consistency and liveness.
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State Machine Replication (SMR)



Protocol: code run by each validator. Each time step:

• perform local computations

• receive messages from other validators and txs from clients

• send messages to other validators
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Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!
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Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!
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Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!
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unacceptable:

validator #1:

validator #2:

B1 B2 B3

B1 B2 B’3



Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

• equivalently: all validators’ local chains      

should be prefixes of a single chain
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Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

• equivalently: all validators’ local chains      

should be prefixes of a single chain

– i.e., no “forks” allowed
31
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Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• i.e., all validators’ local chains are prefixes of a single chain
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Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• i.e., all validators’ local chains are prefixes of a single chain

Liveness: every valid transaction submitted by a client eventually 

added to validators’ local histories/chains.
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Protocol: code run by each validator. Each time step:

– perform local computations

– receive messages from other validators and txs from clients

– send messages to other validators

Consistency: all validators agree on a transaction sequence.

• i.e., all validators’ local chains are prefixes of a single chain

Liveness: every valid transaction submitted by a client eventually 

added to validators’ local histories/chains.

– practically relevant strengthening: also want bounded latency
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Protocols, Consistency, Liveness



Protocol A: 

• target one block per second (say)
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Protocol A: 

• target one block per second (say)

1. validators take turns as “leader” (round-robin, one per second)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock
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Protocol A: 

• target one block per second (say)

1. validators take turns as “leader” (round-robin, one per second)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock

2. current leader decides on a block of transactions

– e.g., all new transactions it’s heard of, ordered by time of arrival

3. leader sends block to all the other validators

Question: what could go wrong?
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Protocol A:  [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

40

Why Is Consensus Hard?



Protocol A:  [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

• what if a validator doesn’t hear from the current leader within 

one second?
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Protocol A:  [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

• what if a validator doesn’t hear from the current leader within 

one second?

– perhaps due to problem with leader (e.g., might have crashed)

42

Why Is Consensus Hard?



Protocol A:  [target e.g. one block per second]

1. validators take turns as “leader” (round-robin, one per second)

2. current leader decides on a block of transactions

3. leader sends block to all the other validators

Question: what could go wrong?

• what if a validator doesn’t hear from the current leader within 

one second?

– perhaps due to problem with leader (e.g., might have crashed)

– perhaps due to problem with network (e.g., congestion, or DoS attack)
43
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Key challenges: [unavoidable in practice]
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Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty
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Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty

2. Unreliable communication network (i.e., doesn’t behave as 

expected).
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Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty

2. Unreliable communication network (i.e., doesn’t behave as 

expected).

Revised goal: an SMR protocol that satisfies consistency and 

liveness, despite the presence of faulty validators and an 

unreliable communication network.
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Key challenges: [unavoidable in practice]

1. Faulty validators (i.e., don’t behave as expected).

– and a protocol doesn’t automatically know which ones are faulty

2. Unreliable communication network (i.e., doesn’t behave as 

expected).

Revised goal: an SMR protocol that satisfies consistency and 

liveness, despite the presence of faulty validators and an 

unreliable communication network.

• next: can make SMR easier/harder by allowing less/more 

severe validator faults and network unreliability 48
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Faulty validators (easy mode): crash faults.

• every validator dutifully follows the protocol, but may crash 

(forever) at some point
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Faulty validators (easy mode): crash faults.

• every validator dutifully follows the protocol, but may crash 

(forever) at some point

Faulty validators (hard mode): “Byzantine” faults.

• a faulty validator can behave arbitrarily

– e.g., hard-to-model software bug, or maybe just a bad actor
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Faulty validators (easy mode): crash faults.

• a faulty validator may crash (forever) at some point

Faulty validators (hard mode): Byzantine faults.

• a faulty validator can behave arbitrarily

Unreliable network (easy mode): synchronous network.

• for known parameter ∆, every msg delivered in ≤ ∆ time steps

– e.g., 1 time step = 1 millisecond, ∆=2000 (i.e., ≤ 2 seconds)
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Faulty validators (easy mode): crash faults.

• a faulty validator may crash (forever) at some point

Faulty validators (hard mode): Byzantine faults.

• a faulty validator can behave arbitrarily

Unreliable network (easy mode): synchronous network.

• for known parameter ∆, every msg delivered in ≤ ∆ time steps

Unreliable network (hard mode): asynchronous network.

• all messages eventually delivered, but no bound on delay 52
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Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.
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Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.

2. More impossibility results (i.e., SMR unsolvable) toward the right.
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Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.

2. More impossibility results (i.e., SMR unsolvable) toward the right.

3. Simpler protocols toward the left, more complex toward the right.
59

A Road Map to Practical SMR Protocols
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synchronous network

crash faults +
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Intuition: [mostly correct]
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Intuition: [mostly correct]

1. Achieving consensus should be easy if 0% of the validators 

are faulty.

– just wait for leaders’ block proposals to (eventually) arrive
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Intuition: [mostly correct]

1. Achieving consensus should be easy if 0% of the validators 

are faulty.

– just wait for leaders’ block proposals to (eventually) arrive

2. Achieving consensus should be impossible if ≈100% of the 

validators are faulty.

– 98 colluding validators can convince the other 2 of different blocks
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Intuition: [mostly correct]

1. Achieving consensus should be easy if 0% of the validators 

are faulty.

– just wait for leaders’ block proposals to (eventually) arrive

2. Achieving consensus should be impossible if ≈100% of the 

validators are faulty.

– 98 colluding validators can convince the other 2 of different blocks

Security threshold: fraction of faulty validators at which achieving 

consensus flips from possible to impossible.

63

Security Thresholds



1. Achieving consensus should be easy if 0% of the validators 

are faulty.

2. Achieving consensus should be impossible if ≈100% of the 

validators are faulty.

Security threshold: fraction of faulty validators at which achieving 

consensus flips from possible to impossible.
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1. Achieving consensus should be easy if 0% of the validators 

are faulty.

2. Achieving consensus should be impossible if ≈100% of the 

validators are faulty.

Security threshold: fraction of faulty validators at which achieving 

consensus flips from possible to impossible.

• threshold will depend on assumptions (on faults, network, etc.)

• typical values = 50% or 33%
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1. Achieving consensus should be easy if 0% of the validators 

are faulty.

2. Achieving consensus should be impossible if ≈100% of the 

validators are faulty.

Security threshold: fraction of faulty validators at which achieving 

consensus flips from possible to impossible.

• threshold will depend on assumptions (on faults, network, etc.)

• typical values = 50% or 33%

Moral: crucial to have validator set of mostly reliable operators! 66
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