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1. Introduction to permissionless consensus protocols.
– will relax the assumption of a fixed and known validator set

2. Sybil attacks.
– permissionless è one participant can masquerade as many

3. Proof-of-work (PoW).
– sybil-resistant method of selecting a random validator as leader
– winner = first validator to partially invert a cryptographic hash function

4. Combining PoW with longest-chain (👍) or Tendermint (👎).
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Goals for Lecture #20



Consensus: keep validators in sync, despite failures and attacks.
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Permissioned Consensus



Consensus: keep validators in sync, despite failures and attacks.

State machine replication (SMR): clients submit txs to validators.
• want protocol that guarantees consistency and liveness

– no disagreements across validators or time, all txs eventually included
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Permissioned Consensus



Consensus: keep validators in sync, despite failures and attacks.

State machine replication (SMR): clients submit txs to validators.
• want protocol that guarantees consistency and liveness

– no disagreements across validators or time, all txs eventually included

Examples: Tendermint (quorums), longest-chain consensus.

Standing assumption in Parts I + II: fixed and known set of n 
validators, each with known name, public key, and IP address.
• a.k.a. “permissioned” or “proof-of-authority” protocols
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Permissioned Consensus



Permissionless setting: physical machines can enter/exit the 
validator set at any time.
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Permissionless setting: physical machines can enter/exit the 
validator set at any time.

– communication often via gossip protocol (rather than point-to-point)
– maximally “decentralized” version of the “computer in the sky”
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Question: is consensus even possible in the permissionless 
setting? E.g., can we extend our permissioned protocols to it?
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Permissionless setting: physical machines can enter/exit the 
validator set at any time.

– communication often via gossip protocol (rather than point-to-point)
– maximally “decentralized” version of the “computer in the sky”

Question: is consensus even possible in the permissionless 
setting? E.g., can we extend our permissioned protocols to it?

– issue for Tendermint: how many votes constitute a quorum? (n unknown)
– issue for Tendermint and longest-chain: how to choose the leader of a 

view? (unknown validator set è what does “round-robin order” mean?)

11

Permissionless Consensus



Issue: how to choose the leader (i.e., block proposer) of a view?

12

Sybil Attacks



Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: each view, choose a new leader at random.
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14

Sybil Attacks



Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: each view, choose a new leader at random.

Question: from which distribution? Uniformly at random?

Issue: “Sybil” attacks.
– single physical machine could masquerade as many via multiple pks
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Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: each view, choose a new leader at random.

Question: from which distribution? Uniformly at random?

Issue: “Sybil” attacks.
– single physical machine could masquerade as many via multiple pks
– sybil attack è can boost probability of being selected
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Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: each view, choose a new leader at random.

Question: from which distribution? Uniformly at random?

Issue: “Sybil” attacks.
– single physical machine could masquerade as many via multiple pks
– sybil attack è can boost probability of being selected
– need sybil-proof random sampling method

• probability of selection independent of number of pks used in protocol
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Sybil Attacks



Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: sybil-proof random sampling method.
– probability of selection independent of number of pks used in protocol
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Sybil-Proof Random Sampling



Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: sybil-proof random sampling method.
– probability of selection independent of number of pks used in protocol

Two dominant approaches: 
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Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: sybil-proof random sampling method.
– probability of selection independent of number of pks used in protocol

Two dominant approaches: 
– proof-of-work (PoW) (this week): sample with probability proportional to 

the amount of computational power contributed to protocol
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Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: sybil-proof random sampling method.
– probability of selection independent of number of pks used in protocol

Two dominant approaches: 
– proof-of-work (PoW) (this week): sample with probability proportional to 

the amount of computational power contributed to protocol
– proof-of-stake (PoS) (next week): sample with probability proportional to 

the amount of collateral (i.e., locked-up stake) contributed to protocol
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Sybil-Proof Random Sampling



Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: sybil-proof random sampling method.
– probability of selection independent of number of pks used in protocol

Two dominant approaches: 
– proof-of-work (PoW) (this week): sample with probability proportional to 

the amount of computational power contributed to protocol
– proof-of-stake (PoS) (next week): sample with probability proportional to 

the amount of collateral (i.e., locked-up stake) contributed to protocol
– NB: PoW/PoS are sybil-resistance mechanisms, not consensus protocols

22

Sybil-Proof Random Sampling



Idea: to propose next block, validator must solve a hard puzzle.
– publish solution along with a block proposal (substitutes for a signature)

23

Proof-of-Work



Idea: to propose next block, validator must solve a hard puzzle.
– publish solution along with a block proposal (substitutes for a signature)

Canonical hard puzzle: for a threshold t, find a valid x with h(x) ≤ t.
– h = cryptographic hash function (like SHA-256)
– t = difficulty parameter (auto-tuned by protocol to get desired block rate)
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Idea: to propose next block, validator must solve a hard puzzle.
– publish solution along with a block proposal (substitutes for a signature)

Canonical hard puzzle: for a threshold t, find a valid x with h(x) ≤ t.
– h = cryptographic hash function (like SHA-256)
– t = difficulty parameter (auto-tuned by protocol to get desired block rate)

Proof-of-work: next leader = first validator to find puzzle solution x.
– h as good as random è only solution approach = repeated guessing
– h as good as random è each guess equally likely to be a solution
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Idea: to propose next block, validator must solve a hard puzzle.
– publish solution along with a block proposal (substitutes for a signature)

Canonical hard puzzle: for a threshold t, find a valid x with h(x) ≤ t.
– h = cryptographic hash function (like SHA-256)
– t = difficulty parameter (auto-tuned by protocol to get desired block rate)

Proof-of-work: next leader = first validator to find puzzle solution x.
– h as good as random è only solution approach = repeated guessing
– h as good as random è each guess equally likely to be a solution
– probability of selection proportional to hashrate (sybil-resistant!)
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Proof-of-Work



Recall: (permissioned) longest-chain consensus.
• B0 = “genesis block”
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Longest-Chain Consensus Revisited



Recall: (permissioned) longest-chain consensus.
• B0 = “genesis block”
• define view = ∆ timesteps
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Recall: (permissioned) longest-chain consensus.
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader 
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Longest-Chain Consensus Revisited



Recall: (permissioned) longest-chain consensus.
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader 
• validator i maintains in-tree Ti of valid blocks, rooted at B0
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Longest-Chain Consensus Revisited
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Recall: (permissioned) longest-chain consensus.
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader 
• validator i maintains in-tree Ti of valid blocks, rooted at B0

– block B is valid in view v if:
• annotated with a view v’ ≤ v
• signed by leader of view v’
• annotated with (hash of header of) predecessor block B’’ from a view v’’ < v’ 
• contains only valid txs
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Longest-Chain Consensus Revisited

B0Ti :



Recall: (permissioned) longest-chain consensus.
• in view v:
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Longest-Chain Consensus (con’d)

B0Ti :



Recall: (permissioned) longest-chain consensus.
• in view v:

– let ℓ = leader of view
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Recall: (permissioned) longest-chain consensus.
• in view v:

– let ℓ = leader of view
– let C = longest chain in ℓ’s in-tree 
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Recall: (permissioned) longest-chain consensus.
• in view v:

– let ℓ = leader of view
– let C = longest chain in ℓ’s in-tree 
– let B := all not-yet-included (in C)

txs ℓ knows about
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B

Recall: (permissioned) longest-chain consensus.
• in view v:

– let ℓ = leader of view
– let C = longest chain in ℓ’s in-tree 
– let B := all not-yet-included (in C)

txs ℓ knows about
– ℓ adds B to its in-tree (extending C)
– ℓ sends B to all other validators
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Longest-Chain Consensus (con’d)

B0Ti :

C = longest chain



Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate
– random length of a view = time for someone to solve puzzle
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Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate
– random length of a view = time for someone to solve puzzle

Puzzle format: find x with h(x) ≤ t where:
– h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
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Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate
– random length of a view = time for someone to solve puzzle

Puzzle format: find x with h(x) ≤ t where:
– h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
– x = block header of the form…
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In Bitcoin: each block includes Merkle root of its txs (as metadata).
– block name = hash of its metadata (“block header”), not of entire block
– block name depends on each of its txs via Merkle root in block header
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Recall: Bitcoin Block Headers
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Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate
– random length of a view = time for someone to solve puzzle

Puzzle format: find x with h(x) ≤ t where:
– h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
– x = block header of the form < tx Merkle root || pred || pk || nonce >

• point of the nonce: “grind” through possibilities until find a solution
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Nakamoto Consensus

BB0Ti :

C = longest chain
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Some Recent Bitcoin Blocks
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Some Recent Bitcoin Blocks



Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate

Puzzle format: find x with h(x) ≤ t where:
– h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
– x = block header of the form < tx Merkle root || pred || pk || nonce >
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Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate

Puzzle format: find x with h(x) ≤ t where:
– h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
– x = block header of the form < tx Merkle root || pred || pk || nonce >

Note: unlike permissioned version, impossible for validator to:
– specify multiple predecessors for a block (i.e., equivocate)
– specify a predecessor from a later view
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Nakamoto Consensus

BB0Ti :

C = longest chain



Confirmation rule: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.
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Guarantees for Longest-Chain Consensus



Confirmation rule: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
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Confirmation rule: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine validators.
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Confirmation rule: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest.  [e.g., (n/2)-1 suffices]
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Confirmation rule: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest.  [e.g., (n/2)-1 suffices]

Recall guarantee: under these assumptions, (permissioned) 
longest-chain consensus is consistent and live. 52
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Assumptions: (all necessary)
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Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
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Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine hashrate …
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Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine hashrate at all times.
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Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine hashrate at all times.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest with high probability. 
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Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine hashrate at all times.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest with high probability. 
4. difficulty threshold t small enough that avg view length >> ∆
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Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine hashrate at all times.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest with high probability. 
4. difficulty threshold t small enough that avg view length >> ∆

Guarantee: under these assumptions, Nakamoto consensus is 
consistent and live ….
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Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine hashrate at all times.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest with high probability. 
4. difficulty threshold t small enough that avg view length >> ∆

Guarantee: under these assumptions, Nakamoto consensus is 
consistent and live with high probability.
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Guarantees for Nakamoto Consensus



New assumption: t small enough that avg view length >> ∆.
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New Challenge: Honestly Produced Forks



New assumption: t small enough that avg view length >> ∆.

Reason: new source of forks in Nakamoto consensus: two honest 
validators solve puzzle at almost the same time.
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New assumption: t small enough that avg view length >> ∆.

Reason: new source of forks in Nakamoto consensus: two honest 
validators solve puzzle at almost the same time.

Consequence: some honestly produced blocks are “wasted.”
– è threshold for probabilistic consistency + liveness therefore < 50%
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New assumption: t small enough that avg view length >> ∆.

Reason: new source of forks in Nakamoto consensus: two honest 
validators solve puzzle at almost the same time.

Consequence: some honestly produced blocks are “wasted.”
– è threshold for probabilistic consistency + liveness therefore < 50%
– but if honest forking is rare, threshold remains close to 50%
– primary reason for slow block rate in Bitcoin (one block/10 minutes) 64
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Drawbacks of Nakamoto consensus: 
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Drawbacks of Nakamoto consensus: 
• loses consistency in the partially synchronous setting

– true already for permissioned version
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Drawbacks of Nakamoto consensus: 
• loses consistency in the partially synchronous setting

– true already for permissioned version
• even in synchrony, consistency + liveness only probabilistic

– wasn’t a problem is permissioned case (deterministic round-robin)
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Drawbacks of Nakamoto consensus: 
• loses consistency in the partially synchronous setting

– true already for permissioned version
• even in synchrony, consistency + liveness only probabilistic

– wasn’t a problem is permissioned case (deterministic round-robin)

Questions: 
• tweak Nakamoto consensus so that one/both problems fixed?
• combine PoW with Tendermint rather than longest-chain?
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Limitations of Nakamoto Consensus



Facts: [Lewis-Pye/Roughgarden, 2020-3] 
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Facts: [Lewis-Pye/Roughgarden, 2020-3] 
1. no PoW protocol is consistent in partial synchrony
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Facts: [Lewis-Pye/Roughgarden, 2020-3] 
1. no PoW protocol is consistent in partial synchrony

– assuming protocol is live in synchrony with no Byzantine validators
– rules out combining PoW with Tendermint in any straightforward way
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Facts: [Lewis-Pye/Roughgarden, 2020-3] 
1. no PoW protocol is consistent in partial synchrony

– assuming protocol is live in synchrony with no Byzantine validators
– rules out combining PoW with Tendermint in any straightforward way

2. even in synchrony, no POW protocol always guarantees 
(deterministic) consistency + liveness
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Facts: [Lewis-Pye/Roughgarden, 2020-3] 
1. no PoW protocol is consistent in partial synchrony

– assuming protocol is live in synchrony with no Byzantine validators
– rules out combining PoW with Tendermint in any straightforward way

2. even in synchrony, no POW protocol always guarantees 
(deterministic) consistency + liveness

Upshot: drawbacks of Nakamoto consensus fundamental to all 
PoW protocols. 

– can be overcome (under extra assumptions) with proof-of-stake protocols
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1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. 
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1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator 
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
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1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator 
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed
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1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator 
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
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1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator 
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
• yes è might be in scenario (ii), cause a consistency violation
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1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator 
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
• yes è might be in scenario (ii), cause a consistency violation
• no è might be in scenario (i), liveness violation (in synchrony)
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1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator hears no messages for a 
long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
• yes è might be in scenario (ii), cause a consistency violation
• no è might be in scenario (i), liveness violation (in synchrony)

Proof of (2): similar to proof of FLP Impossibility Theorem.
– churning validators can substitute for unbounded message delays 80
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