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Goals for Lecture #20

1. Introduction to permissionless consensus protocols.
— will relax the assumption of a fixed and known validator set

2. Sybil attacks.
— permissionless =» one participant can masquerade as many

3. Proof-of-work (PoW).
— sybil-resistant method of selecting a random validator as leader
— winner = first validator to partially invert a cryptographic hash function

4. Combining PoW with longest-chain (<€) or Tendermint ().



Permissioned Consensus

Consensus: keep validators in sync, despite failures and attacks.



Permissioned Consensus

Consensus: keep validators in sync, despite failures and attacks.

State machine replication (SMR): clients submit txs to validators.

- want protocol that guarantees consistency and liveness
— no disagreements across validators or time, all txs eventually included




Permissioned Consensus

Consensus: keep validators in sync, despite failures and attacks.

State machine replication (SMR): clients submit txs to validators.

- want protocol that guarantees consistency and liveness
— no disagreements across validators or time, all txs eventually included

Examples: Tendermint (Quorums), longest-chain consensus.



Permissioned Consensus

Consensus: keep validators in sync, despite failures and attacks.

State machine replication (SMR): clients submit txs to validators.

- want protocol that guarantees consistency and liveness
— no disagreements across validators or time, all txs eventually included

Examples: Tendermint (Quorums), longest-chain consensus.

Standing assumption in Parts | + |l: fixed and known set of n
validators, each with known name, public key, and IP address.

- a.k.a. “permissioned” or “proof-of-authority” protocols
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Permissionless Consensus

Permissionless setting: physical machines can enter/exit the
validator set at any time.

— communication often via gossip protocol (rather than point-to-point)
— maximally “decentralized” version of the “computer in the sky”

Question: is consensus even possible in the permissionless
setting? E.g., can we extend our permissioned protocols to it?

— issue for Tendermint: how many votes constitute a quorum? (n unknown)

— issue for Tendermint and longest-chain: how to choose the leader of a
view? (unknown validator set = what does “round-robin order’” mean?)
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Sybil Attacks

Issue: how to choose the leader (i.e., block proposer) of a view?
Solution: each view, choose a new leader at random.
Question: from which distribution? Uniformly at random?

Issue: “Sybil” attacks.
— single physical machine could masquerade as many via multiple pks
— sybil attack =» can boost probability of being selected

— need sybil-proof random sampling method

- probability of selection independent of number of pks used in protocol
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Solution: sybil-proof random sampling method.
— probability of selection independent of number of pks used in protocol

Two dominant approaches:

— proof-of-work (PoW) (this week): sample with probability proportional to
the amount of computational power contributed to protocol
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Sybil-Proof Random Sampling

Issue: how to choose the leader (i.e., block proposer) of a view?

Solution: sybil-proof random sampling method.
— probability of selection independent of number of pks used in protocol

Two dominant approaches:

— proof-of-work (PoW) (this week): sample with probability proportional to
the amount of computational power contributed to protocol

— proof-of-stake (PoS) (next week): sample with probability proportional to
the amount of collateral (i.e., locked-up stake) contributed to protocol

— NB: PoOW/PoS are sybil-resistance mechanisms, not consensus protocols
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Proof-of-Work

ldea: to propose next block, validator must solve a hard puzzle.
— publish solution along with a block proposal (substitutes for a signature)

Canonical hard puzzle: for a threshold t, find a valid x with h(x) < t.
— h = cryptographic hash function (like SHA-256)
— t = difficulty parameter (auto-tuned by protocol to get desired block rate)

Proof-of-work: next leader = first validator to find puzzle solution x.
— h as good as random =» only solution approach = repeated guessing
— h as good as random =» each guess equally likely to be a solution

— probability of selection proportional to hashrate (sybil-resistant!) 2
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Longest-Chain Consensus Revisited

Recall: (permissioned) longest-chain consensus.

* By = “genesis block”

T : |Bo

* define view = A timesteps j<j<
- validators take turns as leader

- validator i maintains in-tree T, of valid blocks, rooted at B,
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Longest-Chain Consensus Revisited

Recall: (permissioned) longest-chain consensus.

* By = “genesis block” [
 define view = A timesteps — j<

« validators take turns as leader

- validator i maintains in-tree T, of valid blocks, rooted at B,

— block B is valid in view v if:
« annotated with aview v’ <v

* signed by leader of view Vv’
- annotated with (hash of header of) predecessor block B” from a view v’ <V’

+ contains only valid txs
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Longest-Chain Consensus (con’d)

Recall: (permissioned) longest-chain consensus.

* |Nn VIew V:

o
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Recall: (permissioned) longest-chain consensus.
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Recall: (permissioned) longest-chain consensus.
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— let ¢ = leader of view ) C = longest chain
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— let B := all not-yet-included (in C)
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Longest-Chain Consensus (con’d)

Recall: (permissioned) longest-chain consensus.
* In View V:

— let ¢ = leader of view ) C = longest chain

— let C =longest chain in £’s in-tree <
— let B := all not-yet-included (in C) . B

txs £ knows about
- ¢ adds B to its in-tree (extending C)
- ¢ sends B to all other validators
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Nakamoto Consensus

C = longest chain

Nakamoto consensus: longest-chain

/

consensus + PoW leader selection.

— selection probability proportional to hashrate

— random length of a view = time for someone to solve puzzle
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/

consensus + PoW leader selection.

— selection probability proportional to hashrate

— random length of a view = time for someone to solve puzzle

Puzzle format: find x with h(x) =t where:
— h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
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Nakamoto Consensus

C = longest chain

Nakamoto consensus: longest-chain

/

consensus + PoW leader selection.

— selection probability proportional to hashrate

— random length of a view = time for someone to solve puzzle

Puzzle format: find x with h(x) =t where:
— h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
— X = block header of the form...
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Recall; Bitcoin Block Headers

In Bitcoin: each block includes Merkle root of its txs (as metadata).
— block name = hash of its metadata (“block header”), not of entire block
— block name depends on each of its txs via Merkle root in block header
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From “Merkling in Ethereum” by Vitalik Buterin https:/blog.ethereum.org/2015/11/15/merkling-in-ethereum/ 42




Nakamoto Consensus

C = longest chain

Nakamoto consensus: longest-chain

/

consensus + PoW leader selection.

— selection probability proportional to hashrate

— random length of a view = time for someone to solve puzzle

Puzzle format: find x with h(x) =t where:
— h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
— X = block header of the form < tx Merkle root Il pred Il pk || nonce >
» point of the nonce: “grind” through possibilities until find a solution
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Some Recent Bitcoin Blocks

0 Block 891328

00000000000000000001f5831d1c2c6d9ed1536b6d66ef1164c462250b75d36a

O Block 891329

000000000000000000024eec6c0038843111d81decbf074e916401aee9¢eaef52

O Block 891330

000000000000000000003¢52639327ede237bf41b17ff73dcde093fde88ce579

) Block 891331

000000000000000000013029bd213f663a5b4472242efe0e74€2c3636153af78

O Block 891332

000000000000000000017296d2ac7ffde35a988¢c17c6d8728a3ed0036853d796
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Some Recent Bitcoin Blocks

) Block 891332

000000000000000000017296d2ac7ffde35a988¢c17c6d8728a3ed0036853d796 | B

Block was mined on 2025-04-07 07:01:06 GMT -4. It has 1 confirmation on the Bitcoin blockchain. There are 2800 transactions in block 891332.

PREVIOUS

DETAILS —

In best chain (1 confirmation)

2025-04-07 07:01:06 GMT -4

1617.481 KB

999 vKB

3993.379 KWU

0x23bdc000

1601e7d398911c9a6fa501e372fe84231acfbc5db9bf89aab5d43f8adobo61ea

0x17025105

121507793131898. 06

0x7951a124
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Nakamoto Consensus

C = longest chain

Nakamoto consensus: longest-chain

/

consensus + PoW leader selection.

— selection probability proportional to hashrate

Puzzle format: find x with h(x) =t where:

— h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
— X = block header of the form < tx Merkle root Il pred Il pk || nonce >
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Nakamoto Consensus

C = longest chain

Nakamoto consensus: longest-chain

/

consensus + PoW leader selection.

— selection probability proportional to hashrate

Puzzle format: find x with h(x) =t where:

— h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
— X = block header of the form < tx Merkle root Il pred Il pk || nonce >

Note: unlike permissioned version, impossible for validator to:

— specify multiple predecessors for a block (i.e., equivocate)

— specify a predecessor from a later view
47



Guarantees for Longest-Chain Consensus

Confirmation rule: for a security parameter k = 1, finalized txs = all
txs in the longest chain, except for those in the last k blocks.
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Guarantees for Longest-Chain Consensus

Confirmation rule: for a security parameter k = 1, finalized txs = all
txs in the longest chain, except for those in the last k blocks.

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay < A).
2. < 50% Byzantine validators.

3. klarge enough that, in every interval of = 2k+2 views, a strict
majority of the leaders are honest. [e.g., (n/2)-1 suffices]

Recall guarantee: under these assumptions, (permissioned)
longest-chain consensus is consistent and live.
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Guarantees for Nakamoto Consensus

Assumptions: (all necessary)
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Guarantees for Nakamoto Consensus

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay < A).
2. < 50% Byzantine hashrate at all times.
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Guarantees for Nakamoto Consensus

Assumptions: (all necessary)

1.
2.

3.

Synchronous network (i.e., max message delay < A).
< 50% Byzantine hashrate at all times.

k large enough that, in every interval of = 2k+2 views, a strict
majority of the leaders are honest with high probability.
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Guarantees for Nakamoto Consensus

Assumptions: (all necessary)

1.
2.
3.

Synchronous network (i.e., max message delay < A).
< 50% Byzantine hashrate at all times.

k large enough that, in every interval of = 2k+2 views, a strict
majority of the leaders are honest with high probability.

difficulty threshold t small enough that avg view length >> A
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Guarantees for Nakamoto Consensus

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay < A).
2. < 50% Byzantine hashrate at all times.

3. klarge enough that, in every interval of = 2k+2 views, a strict
majority of the leaders are honest with high probability.

4. difficulty threshold t small enough that avg view length >> A

Guarantee: under these assumptions, Nakamoto consensus is
consistent and live ....
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Guarantees for Nakamoto Consensus

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay < A).
2. < 50% Byzantine hashrate at all times.

3. klarge enough that, in every interval of = 2k+2 views, a strict
majority of the leaders are honest with high probability.

4. difficulty threshold t small enough that avg view length >> A

Guarantee: under these assumptions, Nakamoto consensus is
consistent and live with high probability.
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New Challenge: Honestly Produced Forks

New assumption: t small enough that avg view length >> A.
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New Challenge: Honestly Produced Forks

New assumption: t small enough that avg view length >> A.

Reason: new source of forks in Nakamoto consensus: two honest
validators solve puzzle at almost the same time.

Bo [*

B, [*

B, [*

B;

: Bv-1 \
Bv-2
B,

blocks by honest validators
found < A timesteps apart
/
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New assumption: t small enough that avg view length >> A.

Reason: new source of forks in Nakamoto consensus: two honest
validators solve puzzle at almost the same time.

Bo [

B, [

B, [

B;

Bv-2

Bv-1

B,

Conseqguence: some honestly produced b
— =» threshold for probabilistic consistency + liveness therefore < 50%

blocks by honest validators
found < A timesteps apart
/

ocks are “wasted.”
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New Challenge: Honestly Produced Forks

New assumption: t small enough that avg view length >> A.

Reason: new source of forks in Nakamoto consensus: two honest
validators solve puzzle at almost the same time.

Bo [

B, [

B, [

B;

Bv-2

Bv-1

B,

Conseqguence: some honestly produced b
— =» threshold for probabilistic consistency + liveness therefore < 50%
— but if honest forking is rare, threshold remains close to 50%
— primary reason for slow block rate in Bitcoin (one block/10 minutes) ,

blocks by honest validators
found < A timesteps apart
/

ocks are “wasted.”



Limitations of Nakamoto Consensus

Drawbacks of Nakamoto consensus:
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Limitations of Nakamoto Consensus

Drawbacks of Nakamoto consensus:

* loses consistency in the partially synchronous setting
— true already for permissioned version

* even in synchrony, consistency + liveness only probabilistic
— wasn’t a problem is permissioned case (deterministic round-robin)

Questions:
- tweak Nakamoto consensus so that one/both problems fixed?
« combine PoW with Tendermint rather than longest-chain?
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Limitations of Proof-of-Work

Facts: [Lewis-Pye/Roughgarden, 2020-3]
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Limitations of Proof-of-Work

Facts: [Lewis-Pye/Roughgarden, 2020-3]

1. no PoW protocol is consistent in partial synchrony
— assuming protocol is live in synchrony with no Byzantine validators
— rules out combining PoW with Tendermint in any straightforward way

2. even in synchrony, no POW protocol always guarantees
(deterministic) consistency + liveness

Upshot: drawbacks of Nakamoto consensus fundamental to all
PoW protocols.

— can be overcome (under extra assumptions) with proof-of-stake protocols

73



Limitations of Proof-of-Work (con’d)

1.  no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument.
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Limitations of Proof-of-Work (con’d)

1.  no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness
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Limitations of Proof-of-Work (con’d)

1.  no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator hears no messages for a
long time, can’t distinguish between:

(i) in synchrony, other validators turned off their machines
(i) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
yes = might be in scenario (ii), cause a consistency violation
no =» might be in scenario (i), liveness violation (in synchrony)

Proof of (2): similar to proof of FLP Impossibility Theorem.
— churning validators can substitute for unbounded message delays 30



