
Lecture #21: Nakamoto Consensus:
Difficulty Adjustment, Block Rewards,

and Selfish Mining

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Difficulty adjustment in Nakamoto consensus.
– tuning the difficulty threshold to achieve a target block rate

2. Limitations of proof-of-work.
– drawbacks of Nakamoto consensus hold for PoW protocols generally

3. Why cryptocurrencies?
– among other reasons, bootstrap a PoW blockchain protocol

4. Block rewards and selfish mining.
– incentivizes block production; does it incentive other behavior even more?

2

Goals for Lecture #21

Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate
– random length of a view = time for someone to solve puzzle

3

Recall: Nakamoto Consensus

BB0Ti :

C = longest chain

Nakamoto consensus: longest-chain
consensus + PoW leader selection.

– selection probability proportional to hashrate
– random length of a view = time for someone to solve puzzle

Puzzle format: find x with h(x) ≤ t where:
– h = cryptographic hash fn, t = difficulty parameter (both protocol-defined)
– x = block header of the form < tx Merkle root || pred || pk || nonce >

• point of the nonce: “grind” through possibilities until find a solution

4

Recall: Nakamoto Consensus

BB0Ti :

C = longest chain

Canonical PoW puzzle: for a threshold t, find a valid x with h(x) ≤ t.

Question: how to set t? [controls puzzle difficulty]

5

Difficulty Adjustment

Canonical PoW puzzle: for a threshold t, find a valid x with h(x) ≤ t.

Question: how to set t? [controls puzzle difficulty]

Answer: to achieve a target rate of block production.

6

Difficulty Adjustment

Canonical PoW puzzle: for a threshold t, find a valid x with h(x) ≤ t.

Question: how to set t? [controls puzzle difficulty]

Answer: to achieve a target rate of block production.
• to balance the pros of faster block production (lower latency)

7

Difficulty Adjustment

Canonical PoW puzzle: for a threshold t, find a valid x with h(x) ≤ t.

Question: how to set t? [controls puzzle difficulty]

Answer: to achieve a target rate of block production.
• to balance the pros of faster block production (lower latency)

with the cons (more wasted work due to inadvertent forks)

8

Difficulty Adjustment

B3B2B1B0 ….. Bv-2

Bv-1

Bv

blocks by honest validators
found < ∆ timesteps apart

Canonical PoW puzzle: for a threshold t, find a valid x with h(x) ≤ t.

Question: how to set t? [controls puzzle difficulty]

Answer: to achieve a target rate of block production.
• to balance the pros of faster block production (lower latency)

with the cons (more wasted work due to inadvertent forks)

Consequence: threshold most decrease (resp., increase) as total
amount of hashrate increases (resp., decreases).

– difficulty adjustment algorithm programmatically makes these updates
9

Difficulty Adjustment

• target rate = 1 block/10 minutes (è 144 blocks/day)

10

Case Study: The Bitcoin Protocol

• target rate = 1 block/10 minutes (è 144 blocks/day)
• update t every epoch := 2016 blocks

11

Case Study: The Bitcoin Protocol

• target rate = 1 block/10 minutes (è 144 blocks/day)
• update t every epoch := 2016 blocks
• if elapsed time in epoch = 𝛽 ⋅ (14 days), reset t := 𝛽 ⋅ t

– if next epoch like previous one, expect to see 1 block/10 minutes

12

Case Study: The Bitcoin Protocol

• target rate = 1 block/10 minutes (è 144 blocks/day)
• update t every epoch := 2016 blocks
• if elapsed time in epoch = 𝛽 ⋅ (14 days), reset t := 𝛽 ⋅ t

– if next epoch like previous one, expect to see 1 block/10 minutes

Question: how is time measured?

13

Case Study: The Bitcoin Protocol

• target rate = 1 block/10 minutes (è 144 blocks/day)
• update t every epoch := 2016 blocks
• if elapsed time in epoch = 𝛽 ⋅ (14 days), reset t := 𝛽 ⋅ t

– if next epoch like previous one, expect to see 1 block/10 minutes

Question: how is time measured?

Answer: timestamps.
• recorded in block headers

14

Case Study: The Bitcoin Protocol

• target rate = 1 block/10 minutes (è 144 blocks/day)
• update t every epoch := 2016 blocks
• if elapsed time in epoch = 𝛽 ⋅ (14 days), reset t := 𝛽 ⋅ t

– if next epoch like previous one, expect to see 1 block/10 minutes

Question: how is time measured?

Answer: timestamps.
• recorded in block headers

– rules to limit timestamp manipulation by
by Byzantine validators (see HW7) 15

Case Study: The Bitcoin Protocol

• target rate = 1 block/10 minutes (è 144 blocks/day)
• update t every epoch := 2016 blocks
• if elapsed time in epoch = 𝛽 ⋅ (14 days), reset t := 𝛽 ⋅ t

– if next epoch like previous one, expect to see 1 block/10 minutes
• time measured via timestamps in block headers

Also: need to redefine Nakamoto consensus so that (honest)
leaders extend the heaviest chain (rather than the longest chain).

– weight of block with threshold t := 2256/t [expected # of attempts to obtain]
– weight of chain = sum of weights of blocks in the chain

16

Case Study: The Bitcoin Protocol

Assumptions: (all necessary)
1. Synchronous network (i.e., max message delay ≤ ∆).
2. < 50% Byzantine hashrate at all times.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict

majority of the leaders are honest with high probability.
4. difficulty threshold t small enough that avg view length >> ∆

Guarantee: under these assumptions, Nakamoto consensus is
consistent and live with high probability.

17

Recall: Guarantees for Nakamoto Consensus

Drawbacks of Nakamoto consensus:

18

Limitations of Nakamoto Consensus

Drawbacks of Nakamoto consensus:
• loses consistency in the partially synchronous setting

– true already for permissioned version

19

Limitations of Nakamoto Consensus

B2B1B0 ….. Bv

created by X, unknown to Y

……………....

……………....

created by Y, unknown to X

Drawbacks of Nakamoto consensus:
• loses consistency in the partially synchronous setting

– true already for permissioned version
• even in synchrony, consistency + liveness only probabilistic

– wasn’t a problem is permissioned case (deterministic round-robin)

20

Limitations of Nakamoto Consensus

Drawbacks of Nakamoto consensus:
• loses consistency in the partially synchronous setting

– true already for permissioned version
• even in synchrony, consistency + liveness only probabilistic

– wasn’t a problem is permissioned case (deterministic round-robin)

Questions:
• tweak Nakamoto consensus so that one/both problems fixed?
• combine PoW with Tendermint rather than longest-chain?

21

Limitations of Nakamoto Consensus

Facts: [Lewis-Pye/Roughgarden, 2020-3]

22

Limitations of Proof-of-Work

Facts: [Lewis-Pye/Roughgarden, 2020-3]
1. no PoW protocol is consistent in partial synchrony

23

Limitations of Proof-of-Work

Facts: [Lewis-Pye/Roughgarden, 2020-3]
1. no PoW protocol is consistent in partial synchrony

– assuming protocol is live in synchrony with no Byzantine validators
– rules out combining PoW with Tendermint in any straightforward way

24

Limitations of Proof-of-Work

Facts: [Lewis-Pye/Roughgarden, 2020-3]
1. no PoW protocol is consistent in partial synchrony

– assuming protocol is live in synchrony with no Byzantine validators
– rules out combining PoW with Tendermint in any straightforward way

2. even in synchrony, no POW protocol always guarantees
(deterministic) consistency + liveness

25

Limitations of Proof-of-Work

Facts: [Lewis-Pye/Roughgarden, 2020-3]
1. no PoW protocol is consistent in partial synchrony

– assuming protocol is live in synchrony with no Byzantine validators
– rules out combining PoW with Tendermint in any straightforward way

2. even in synchrony, no POW protocol always guarantees
(deterministic) consistency + liveness

Upshot: drawbacks of Nakamoto consensus fundamental to all
PoW protocols.

– can be overcome (under extra assumptions) with proof-of-stake protocols
26

Limitations of Proof-of-Work

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument.

27

Limitations of Proof-of-Work (con’d)

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines

28

Limitations of Proof-of-Work (con’d)

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

29

Limitations of Proof-of-Work (con’d)

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?

30

Limitations of Proof-of-Work (con’d)

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
• yes è might be in scenario (ii), cause a consistency violation

31

Limitations of Proof-of-Work (con’d)

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
• yes è might be in scenario (ii), cause a consistency violation
• no è might be in scenario (i), liveness violation (in synchrony)

32

Limitations of Proof-of-Work (con’d)

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator hears no messages for a
long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
• yes è might be in scenario (ii), cause a consistency violation
• no è might be in scenario (i), liveness violation (in synchrony)

Proof of (2): similar to proof of FLP Impossibility Theorem.
– churning validators can substitute for unbounded message delays 33

Limitations of Proof-of-Work (con’d)

Question: why run a validator (e.g., for a PoW protocol)?

34

Incentivizing Validators

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol).

35

Why Cryptocurrencies?

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol). Uses (incomplete list):
1. interesting in its own right (e.g., Bitcoin)

36

Why Cryptocurrencies?

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol). Uses (incomplete list):
1. interesting in its own right (e.g., Bitcoin)
2. charge for usage (i.e., transaction fees)

37

Why Cryptocurrencies?

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol). Uses (incomplete list):
1. interesting in its own right (e.g., Bitcoin)
2. charge for usage (i.e., transaction fees)
3. rewards contributions to protocol (e.g., PoW validators)

38

Why Cryptocurrencies?

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol). Uses (incomplete list):
1. interesting in its own right (e.g., Bitcoin)
2. charge for usage (i.e., transaction fees)
3. rewards contributions to protocol (e.g., PoW validators)
4. proof-of-stake sybil-resistance

39

Why Cryptocurrencies?

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol). Uses (incomplete list):
1. interesting in its own right (e.g., Bitcoin)
2. charge for usage (i.e., transaction fees)
3. rewards contributions to protocol (e.g., PoW validators)
4. proof-of-stake sybil-resistance
5. punish protocol deviators (a.k.a. “slashing”)

40

Why Cryptocurrencies?

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol). Uses (incomplete list):
1. interesting in its own right (e.g., Bitcoin)
2. charge for usage (i.e., transaction fees)
3. rewards contributions to protocol (e.g., PoW validators)
4. proof-of-stake sybil-resistance
5. punish protocol deviators (a.k.a. “slashing”)

Questions: (i) how does cryptocurrency get distributed initially?

41

Why Cryptocurrencies?

Cryptocurrecy: currency native to a blockchain protocol (i.e.,
minted/burned/tracked by the protocol). Uses (incomplete list):
1. interesting in its own right (e.g., Bitcoin)
2. charge for usage (i.e., transaction fees)
3. rewards contributions to protocol (e.g., PoW validators)
4. proof-of-stake sybil-resistance
5. punish protocol deviators (a.k.a. “slashing”)

Questions: (i) how does cryptocurrency get distributed initially?
(ii) why a validator be “honest” (vs. profit-maximizing)?

42

Why Cryptocurrencies?

Question: why run a validator (e.g., for a PoW protocol)?

43

Block Rewards

Question: why run a validator (e.g., for a PoW protocol)?

Answer in Nakamoto consensus: block rewards in native currency.
– newly minted coins paid to the “miner” of each block on longest chain
– in Bitcoin: currently 3.125 BTC per block

44

Block Rewards

Question: why run a validator (e.g., for a PoW protocol)?

Answer in Nakamoto consensus: block rewards in native currency.
– newly minted coins paid to the “miner” of each block on longest chain
– in Bitcoin: currently 3.125 BTC per block

Worry: does incentivizing block production incentivize any
deviations from Nakamoto consensus?

– hope: validators maximize rewards by following the protocol

45

Block Rewards

Question: why run a validator (e.g., for a PoW protocol)?

Answer in Nakamoto consensus: block rewards in native currency.
– newly minted coins paid to the “miner” of each block on longest chain
– in Bitcoin: currently 3.125 BTC per block

Worry: does incentivizing block production incentivize any
deviations from Nakamoto consensus?

– hope: validators maximize rewards by following the protocol
– paid for getting blocks on the longest chain, not for being honest per se
– e.g., could validators have their blocks orphaned at different rates?

46

Block Rewards

Recall: difficulty adjustment è fixed average rate of growth of
longest chain (e.g., 2016 new blocks on longest chain per 14 days).

– says nothing about the number of orphaned blocks during this time

47

Selfish Mining in Nakamoto Consensus

Recall: difficulty adjustment è fixed average rate of growth of
longest chain (e.g., 2016 new blocks on longest chain per 14 days).

– says nothing about the number of orphaned blocks during this time
• fixed rate of block rewards (e.g., 6300 BTC per 14 days)

– è to maximize rewards, maximize share of blocks on longest chain

48

Selfish Mining in Nakamoto Consensus

Recall: difficulty adjustment è fixed average rate of growth of
longest chain (e.g., 2016 new blocks on longest chain per 14 days).

– says nothing about the number of orphaned blocks during this time
• fixed rate of block rewards (e.g., 6300 BTC per 14 days)

– è to maximize rewards, maximize share of blocks on longest chain
• all validators honest è share rewards proportional to hashrate

49

Selfish Mining in Nakamoto Consensus

Recall: difficulty adjustment è fixed average rate of growth of
longest chain (e.g., 2016 new blocks on longest chain per 14 days).

– says nothing about the number of orphaned blocks during this time
• fixed rate of block rewards (e.g., 6300 BTC per 14 days)

– è to maximize rewards, maximize share of blocks on longest chain
• all validators honest è share rewards proportional to hashrate

Question: can a validator with an 𝛼 fraction of the hash rate get > 𝛼
fraction of overall rewards by deviation from the protocol?

50

Selfish Mining in Nakamoto Consensus

Recall: difficulty adjustment è fixed average rate of growth of
longest chain (e.g., 2016 new blocks on longest chain per 14 days).

– says nothing about the number of orphaned blocks during this time
• fixed rate of block rewards (e.g., 6300 BTC per 14 days)

– è to maximize rewards, maximize share of blocks on longest chain
• all validators honest è share rewards proportional to hashrate

Question: can a validator with an 𝛼 fraction of the hash rate get > 𝛼
fraction of overall rewards by deviation from the protocol?
• in general, yes! [Eyal/Sirer 14]

51

Selfish Mining in Nakamoto Consensus

Setup: adversary controls 𝛼 < ½ of the overall hashrate.
• other 1 − 𝛼 fraction obediently follows the protocol
• synchronous model with ∆=0 (all msgs delivered instantly)
• assume ties broken in favor of adversary (can relax w/more work)

Profitable deviation from Nakamoto consensus:
• goal (i): get as many “A-blocks” on longest chain as possible

(ideally, all of them)
• goal (ii): orphan as many “H-blocks” as possible, to maximize

share of A-blocks on the longest chain
52

A Profitable Deviation

Profitable deviation from Nakamoto consensus:

53

A Profitable Deviation (con’d)

Profitable deviation from Nakamoto consensus:

54

A Profitable Deviation (con’d)

B0
genesis

Profitable deviation from Nakamoto consensus:

55

A Profitable Deviation (con’d)

B1B0
genesis H

Profitable deviation from Nakamoto consensus:

56

A Profitable Deviation (con’d)

B1B0
genesis H

B2

H

Profitable deviation from Nakamoto consensus:

57

A Profitable Deviation (con’d)

B’2

B1B0
genesis H

B2

A

H

orphaned (break ties
in favor of adversary)

B’3

Profitable deviation from Nakamoto consensus:

58

A Profitable Deviation (con’d)

B’2

B1B0
genesis H

B2

A

H

orphaned (break ties
in favor of adversary)

A

delay announcement

Profitable deviation from Nakamoto consensus:

59

A Profitable Deviation (con’d)

B’2

B1B0
genesis H

B2

A

H

orphaned (break ties
in favor of adversary)

A

delay announcement

B’4
A

B’3

Profitable deviation from Nakamoto consensus:

60

A Profitable Deviation (con’d)

B’2

B1B0
genesis H

B2

A

H

orphaned (break ties
in favor of adversary)

A

delay announcement

B’4
A

B’3

B3

H

Profitable deviation from Nakamoto consensus:

61

A Profitable Deviation (con’d)

B’2

B1B0
genesis H

B2

A

H

orphaned (break ties
in favor of adversary)

A

delay announcement

B’4
A

B’3

B3

H

Profitable deviation from Nakamoto consensus:

62

A Profitable Deviation (con’d)

B’2

B1B0

B2

orphaned (break ties
in favor of adversary)

delay announcement

B’4B’3

B3

Profitable deviation from Nakamoto consensus:
• let h = max height of any block

produced thus far

63

A Profitable Deviation (con’d)

B’2

B1B0

B2

orphaned (break ties
in favor of adversary)

delay announcement

B’4B’3

B3

Profitable deviation from Nakamoto consensus:
• let h = max height of any block

produced thus far
• case 1: if there is an A-block at height h,

try to extend it [successful è delay announcement]

64

A Profitable Deviation (con’d)

B’2

B1B0

B2

orphaned (break ties
in favor of adversary)

delay announcement

B’4B’3

B3

Profitable deviation from Nakamoto consensus:
• let h = max height of any block

produced thus far
• case 1: if there is an A-block at height h,

try to extend it [successful è delay announcement]
• case 2: if only an H-block at height h, try to orphan it

[successful è announce immediately]

65

A Profitable Deviation (con’d)

B’2

B1B0

B2

orphaned (break ties
in favor of adversary)

delay announcement

B’4B’3

B3

Profitable deviation from Nakamoto consensus:
• let h = max height of any block

produced thus far
• case 1: if there is an A-block at height h,

try to extend it [successful è delay announcement]
• case 2: if only an H-block at height h, try to orphan it

[successful è announce immediately]
• throughout: announce an A-block only once (+ immediately after)

there in an H-block at the same height

66

A Profitable Deviation (con’d)

B’2

B1B0

B2

orphaned (break ties
in favor of adversary)

delay announcement

B’4B’3

B3

Profitable deviation from Nakamoto consensus:
• let h = max height of any block

produced thus far
• case 1: if there is an A-block at height h,

try to extend it [successful è delay announcement]
• case 2: if only an H-block at height h, try to orphan it

[successful è announce immediately]
• throughout: announce an A-block only once (+ immediately after)

there in an H-block at the same height
– è every A-block deployed to knock an H-block off of the longest chain

67

A Profitable Deviation (con’d)

B’2

B1B0

B2

orphaned (break ties
in favor of adversary)

delay announcement

B’4B’3

B3

Consider sequence of N rounds (e.g., N in the 1000s)

68

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced

69

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced
2. every A-block gets on the longest chain

70

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced
2. every A-block gets on the longest chain
3. every A-block orphans a distinct H-block

71

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced
2. every A-block gets on the longest chain
3. every A-block orphans a distinct H-block
• è # of H-blocks on longest chain = ≈(1 − 𝛼)N - 𝛼N = (1 − 2𝛼)N

72

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced
2. every A-block gets on the longest chain
3. every A-block orphans a distinct H-block
• è # of H-blocks on longest chain = ≈(1 − 𝛼)N - 𝛼N = (1 − 2𝛼)N
• # of A-blocks on longest chain ≈ 𝛼N

73

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced
2. every A-block gets on the longest chain
3. every A-block orphans a distinct H-block
• è # of H-blocks on longest chain = ≈(1 − 𝛼)N - 𝛼N = (1 − 2𝛼)N
• # of A-blocks on longest chain ≈ 𝛼N
• è A’s share of blocks n longest chain ≈ 𝛼N/[𝛼N+ (1 − 2𝛼)N]

74

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced
2. every A-block gets on the longest chain
3. every A-block orphans a distinct H-block
• è # of H-blocks on longest chain = ≈(1 − 𝛼)N - 𝛼N = (1 − 2𝛼)N
• # of A-blocks on longest chain ≈ 𝛼N
• è A’s share of blocks n longest chain ≈ 𝛼N/[𝛼N+ (1 − 2𝛼)N]

= 𝛼/(1 − 𝛼) > 𝛼

75

Analysis

Consider sequence of N rounds (e.g., N in the 1000s)
1. expect ≈ 𝛼N A-blocks, ≈(1 − 𝛼)N H-blocks to be produced
2. every A-block gets on the longest chain
3. every A-block orphans a distinct H-block
• è # of H-blocks on longest chain = ≈(1 − 𝛼)N - 𝛼N = (1 − 2𝛼)N
• # of A-blocks on longest chain ≈ 𝛼N
• è A’s share of blocks n longest chain ≈ 𝛼N/[𝛼N+ (1 − 2𝛼)N]

= 𝛼/(1 − 𝛼) > 𝛼

Upshot: can boost rewards by deviating from intended behavior!
76

Analysis

