
Lecture #22: Proof-of-Stake

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Proof-of-stake: the high level idea.
– sample validator with probability proportional to amount of locked-up stake

2. Proof-of-stake: pros and cons.
– why isn’t proof-of-work good enough?

3. Mechanisms of staking.
– warm-up and cool-down periods, delegation, etc.

4. Why proof-of-stake is hard.
– lack of external randomness; quick + dirty solution: weighted round robin

2

Goals for Lecture #22

Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to

implement escrow contract) and a native currency (to stake with)

Desired property:

3

Proof-of-Stake: The High-Level Idea

Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to

implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,
Pr[validator i selected] = fraction of staked coins owned by i (*)

4

Proof-of-Stake: The High-Level Idea

Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to

implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,
Pr[validator i selected] = fraction of staked coins owned by i (*)

– e.g., as the leader of a view
– implies sybil-proofness (note (*) independent of # of public keys used)

5

Proof-of-Stake: The High-Level Idea

Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to

implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,
Pr[validator i selected] = fraction of staked coins owned by i (*)

– e.g., as the leader of a view
– implies sybil-proofness (note (*) independent of # of public keys used)

Fact: proof-of-stake has become the dominant approach to sybil-
resistance over past 5+ years.

6

Proof-of-Stake: The High-Level Idea

Pro #1: minimal energy consumption.

7

Proof-of-Stake: Pros

Pro #1: minimal energy consumption.
• proof-of-work: validators must prove their hashrate to protocol

– hashrate unobservable by protocol (off-chain)
– e.g., estimated that Bitcoin miners use .5% of world’s energy
– obvious critique on environmental grounds (hotly debated)
– may be strong impediment to launching new PoW protocols

8

Proof-of-Stake: Pros

Pro #1: minimal energy consumption.
• proof-of-work: validators must prove their hashrate to protocol

– hashrate unobservable by protocol (off-chain)
– e.g., estimated that Bitcoin miners use .5% of world’s energy
– obvious critique on environmental grounds (hotly debated)
– may be strong impediment to launching new PoW protocols

• proof-of-stake: validators’ stake directly observable by protocol
– energy consumption comparable to a typical Internet protocol

9

Proof-of-Stake: Pros

Pro #2: stronger latency/finality guarantees.
– likely the most powerful force pushing migration toward proof-of-stake

10

Proof-of-Stake: Pros (con’d)

Pro #2: stronger latency/finality guarantees.
– likely the most powerful force pushing migration toward proof-of-stake

• proof-of-work: more or less forced into Nakamoto consensus
– no finality in partial synchrony (unavoidable for PoW)
– even in synchrony, latency is high due to security parameter k
– even in synchrony, finality is only probabilistic (unavoidable for PoW)
– PoW alternatives with lower latency exist, but not in production

11

Proof-of-Stake: Pros (con’d)

Pro #2: stronger latency/finality guarantees.
– likely the most powerful force pushing migration toward proof-of-stake

• proof-of-work: more or less forced into Nakamoto consensus
– no finality in partial synchrony (unavoidable for PoW)
– even in synchrony, latency is high due to security parameter k
– even in synchrony, finality is only probabilistic (unavoidable for PoW)
– PoW alternatives with lower latency exist, but not in production

• proof-of-stake: pairs well with e.g. Tendermint (as we’ll see)
– finality as soon as assemble relevant quorum certificate, even in

partially synchronous setting (assuming ≤ 33% faulty stake)
12

Proof-of-Stake: Pros (con’d)

Pro #3: recovery from 51%-type attacks/“slashing.”
– if 51% hashrate/34% stake is Byzantine, is protocol doomed?

13

Proof-of-Stake: Pros (con’d)

Pro #3: recovery from 51%-type attacks/“slashing.”
– if 51% hashrate/34% stake is Byzantine, is protocol doomed?

• proof-of-work: no obvious way to punish attacker
– could “hard fork” to change the cryptographic hash function (nullifies

attacker’s ASICs), but also punishes honest validators (“scorched earth”)

14

Proof-of-Stake: Pros (con’d)

Pro #3: recovery from 51%-type attacks/“slashing.”
– if 51% hashrate/34% stake is Byzantine, is protocol doomed?

• proof-of-work: no obvious way to punish attacker
– could “hard fork” to change the cryptographic hash function (nullifies

attacker’s ASICs), but also punishes honest validators (“scorched earth”)
• proof-of-stake: can punish attacker by “slashing” their stake

– e.g., slash any validators that are caught equivocating/double-voting
– slashing could be programmatic or implemented via hard fork
– for slashing, particularly convenient for stake to be in native currency

15

Proof-of-Stake: Pros (con’d)

Con #1: additional complexity.
• all major proof-of-stake protocols significantly more complex

than Nakamoto consensus
– risk of bugs in design and/or implementation
– even the simplest distributed protocols difficulty to get right

16

Proof-of-Stake: Cons

Con #1: additional complexity.
• all major proof-of-stake protocols significantly more complex

than Nakamoto consensus
– risk of bugs in design and/or implementation
– even the simplest distributed protocols difficulty to get right
– counterpoint: extra complexity necessary for extra functionality

17

Proof-of-Stake: Cons

Con #2: additional attack vectors.
• inevitable consequence of additional complexity

18

Proof-of-Stake: Cons (con’d)

Con #2: additional attack vectors.
• inevitable consequence of additional complexity
• example (“long-range attack”): if validator’s secret key is stolen,

easy to fabricate signed blocks/votes allegedly from the past
– e.g., in attempt to rewrite the past and break finality
– with proof-of-work, need to actually do the work to produce valid blocks

• “costly simulation”

19

Proof-of-Stake: Cons (con’d)

Con #2: additional attack vectors.
• inevitable consequence of additional complexity
• example (“long-range attack”): if validator’s secret key is stolen,

easy to fabricate signed blocks/votes allegedly from the past
– e.g., in attempt to rewrite the past and break finality
– with proof-of-work, need to actually do the work to produce valid blocks

• “costly simulation”

Upshot: all current proof-of-stake designs less battle-tested than
Nakamoto consensus.

20

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.

21

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!

22

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!
– many more recent PoW protocols do launch with a non-zero initial

distribution (e.g., to team and investors)

23

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!
– many more recent PoW protocols do launch with a non-zero initial

distribution (e.g., to team and investors)
• proof-of-stake: need initial currency distribution to get started

– effectively pre-selecting the initial set of potential validators
• has a more permissioned flavor

24

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!
– many more recent PoW protocols do launch with a non-zero initial

distribution (e.g., to team and investors)
• proof-of-stake: need initial currency distribution to get started

– effectively pre-selecting the initial set of potential validators
• has a more permissioned flavor

– various imperfect techniques for better decentralization of initial
currency distribution (airdrops, secondary markets, etc.)

25

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.

26

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint

27

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint

• proof-of-work: can ask N sources, only need 1-in-N honest
– resolve ambiguity by adopting the chain with the most supporting work

28

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint

• proof-of-work: can ask N sources, only need 1-in-N honest
– resolve ambiguity by adopting the chain with the most supporting work

• proof-of-stake: need a majority of sources to be honest
– costless simulation (as in long-range attacks) è can’t automatically

disambiguate competing valid chains

29

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint

• proof-of-work: can ask N sources, only need 1-in-N honest
– resolve ambiguity by adopting the chain with the most supporting work

• proof-of-stake: need a majority of sources to be honest
– costless simulation (as in long-range attacks) è can’t automatically

disambiguate competing valid chains
– in practice: use trusted source, or look for unanimity among 2-3 sources

30

Proof-of-Stake: Cons (con’d)

• blockchain protocol maintains “staking contract”
– native to protocol, analogous to a system program

31

Mechanics of Staking

• blockchain protocol maintains “staking contract”
– native to protocol, analogous to a system program

• validators (identified by public key) lock up funds in this contract
– generally, funds in protocol’s native currency
– in some PoS chain, register your IP address (in addition to pk)
– alternative: communicate via gossip network (see future lecture)

32

Mechanics of Staking

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration. (e.g., days/weeks/months)

– also: join/leave at any time, or only at prescribed points in time?

33

Mechanics of Staking

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount. (e.g., 0, or millions of USD)

34

Mechanics of Staking

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?

35

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?

– cool down important for e.g. slashing
– warm up important for e.g. some VRF designs

36

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?

37

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?

– e.g., inflationary block rewards a la Nakamoto consensus
– increasingly common: pay fixed interest rate on stake, conditional on

timely participation 38

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? (i.e., loan funds to validator for share of staking rewards)

39

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? (i.e., loan funds to validator for share of staking rewards)

– if not (e.g., in Ethereum), expect 3rd-party staking pools to arise
40

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation?

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of
active validators and their stake amounts.

41

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation?

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of
active validators and their stake amounts. (note: may have sybils)

42

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation?

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of
active validators and their stake amounts. (note: may have sybils)

– qi’s include delegated stake

43

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation?

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of
active validators and their stake amounts. (note: may have sybils)

– qi’s include delegated stake
– in warm up or cool down period è not in this list

44

Mechanics of Staking

warm
up

cool
down

actively validatingdeposit withdraw

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

45

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to
the qi’s.

46

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to
the qi’s.

Fact: surprisingly tricky!

47

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to
the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.

48

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
• proof-of-work:

49

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
• proof-of-work: randomness imported from external process

(namely, mining), impossible for validators to manipulate
– assuming cryptographic hash function is unpredictable

50

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
• proof-of-work: randomness imported from external process

(namely, mining), impossible for validators to manipulate
– assuming cryptographic hash function is unpredictable

• proof-of-stake: blockchain protocol (seemingly) must come up
with (pseudo)randomness itself

51

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with
(pseudo)randomness itself.

– assuming no external source that can be trusted to provide randomness

52

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with
(pseudo)randomness itself.

– assuming no external source that can be trusted to provide randomness
• canonical example: use hash of some part of blockchain state

53

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with
(pseudo)randomness itself.

– assuming no external source that can be trusted to provide randomness
• canonical example: use hash of some part of blockchain state
• issue: opportunities for validators to manipulate the random

selection process (e.g., when assembling a new block)
54

Why Proof-of-Stake Is Hard

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution:

55

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries

56

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders

57

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

58

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.

59

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.
– è risk of bribery, coercion, DoS attacks
– also has its benefits (e.g., for tx dissemination) 60

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

• good news: relatively simple, no fancy cryptography
• bad news: leaders of future views known well in advance

More sophisticated: verifiable random functions (VRFs).
– leader unknown prior to their block proposal (cf., Nakamoto consensus)

61

Weighted Round Robin

