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1. Proof-of-stake: the high level idea.
– sample validator with probability proportional to amount of locked-up stake

2. Proof-of-stake: pros and cons.
– why isn’t proof-of-work good enough?

3. Mechanisms of staking.
– warm-up and cool-down periods, delegation, etc.

4. Why proof-of-stake is hard.
– lack of external randomness; quick + dirty solution: weighted round robin
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Goals for Lecture #22



Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to 

implement escrow contract) and a native currency (to stake with)

Desired property:
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Proof-of-Stake: The High-Level Idea



Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to 

implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,
Pr[validator i selected] = fraction of staked coins owned by i (*)
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Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to 

implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,
Pr[validator i selected] = fraction of staked coins owned by i (*)

– e.g., as the leader of a view
– implies sybil-proofness (note (*) independent of # of public keys used)
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Proof-of-Stake: The High-Level Idea



Idea: validators “lock up” “stake.”
– generally used in protocols with general-purpose smart contracts (to 

implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,
Pr[validator i selected] = fraction of staked coins owned by i (*)

– e.g., as the leader of a view
– implies sybil-proofness (note (*) independent of # of public keys used)

Fact: proof-of-stake has become the dominant approach to sybil-
resistance over past 5+ years.
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Proof-of-Stake: The High-Level Idea



Pro #1: minimal energy consumption.
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Proof-of-Stake: Pros



Pro #1: minimal energy consumption.
• proof-of-work: validators must prove their hashrate to protocol

– hashrate unobservable by protocol (off-chain)
– e.g., estimated that Bitcoin miners use .5% of world’s energy
– obvious critique on environmental grounds (hotly debated)
– may be strong impediment to launching new PoW protocols
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Pro #1: minimal energy consumption.
• proof-of-work: validators must prove their hashrate to protocol

– hashrate unobservable by protocol (off-chain)
– e.g., estimated that Bitcoin miners use .5% of world’s energy
– obvious critique on environmental grounds (hotly debated)
– may be strong impediment to launching new PoW protocols

• proof-of-stake: validators’ stake directly observable by protocol
– energy consumption comparable to a typical Internet protocol
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Proof-of-Stake: Pros



Pro #2: stronger latency/finality guarantees.
– likely the most powerful force pushing migration toward proof-of-stake
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Proof-of-Stake: Pros (con’d)



Pro #2: stronger latency/finality guarantees.
– likely the most powerful force pushing migration toward proof-of-stake

• proof-of-work: more or less forced into Nakamoto consensus
– no finality in partial synchrony (unavoidable for PoW)
– even in synchrony, latency is high due to security parameter k
– even in synchrony, finality is only probabilistic (unavoidable for PoW)
– PoW alternatives with lower latency exist, but not in production
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Proof-of-Stake: Pros (con’d)



Pro #2: stronger latency/finality guarantees.
– likely the most powerful force pushing migration toward proof-of-stake

• proof-of-work: more or less forced into Nakamoto consensus
– no finality in partial synchrony (unavoidable for PoW)
– even in synchrony, latency is high due to security parameter k
– even in synchrony, finality is only probabilistic (unavoidable for PoW)
– PoW alternatives with lower latency exist, but not in production

• proof-of-stake: pairs well with e.g. Tendermint (as we’ll see)
– finality as soon as assemble relevant quorum certificate, even in 

partially synchronous setting (assuming ≤ 33% faulty stake)
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Proof-of-Stake: Pros (con’d)



Pro #3: recovery from 51%-type attacks/“slashing.”
– if 51% hashrate/34% stake is Byzantine, is protocol doomed?
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Pro #3: recovery from 51%-type attacks/“slashing.”
– if 51% hashrate/34% stake is Byzantine, is protocol doomed?

• proof-of-work: no obvious way to punish attacker
– could “hard fork” to change the cryptographic hash function (nullifies 

attacker’s ASICs), but also punishes honest validators (“scorched earth”)
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Pro #3: recovery from 51%-type attacks/“slashing.”
– if 51% hashrate/34% stake is Byzantine, is protocol doomed?

• proof-of-work: no obvious way to punish attacker
– could “hard fork” to change the cryptographic hash function (nullifies 

attacker’s ASICs), but also punishes honest validators (“scorched earth”)
• proof-of-stake: can punish attacker by “slashing” their stake

– e.g., slash any validators that are caught equivocating/double-voting
– slashing could be programmatic or implemented via hard fork
– for slashing, particularly convenient for stake to be in native currency
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Proof-of-Stake: Pros (con’d)



Con #1: additional complexity.
• all major proof-of-stake protocols significantly more complex 

than Nakamoto consensus
– risk of bugs in design and/or implementation
– even the simplest distributed protocols difficulty to get right
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Proof-of-Stake: Cons



Con #1: additional complexity.
• all major proof-of-stake protocols significantly more complex 

than Nakamoto consensus
– risk of bugs in design and/or implementation
– even the simplest distributed protocols difficulty to get right
– counterpoint: extra complexity necessary for extra functionality
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Proof-of-Stake: Cons



Con #2: additional attack vectors.
• inevitable consequence of additional complexity
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Proof-of-Stake: Cons (con’d)



Con #2: additional attack vectors.
• inevitable consequence of additional complexity
• example (“long-range attack”): if validator’s secret key is stolen, 

easy to fabricate signed blocks/votes allegedly from the past
– e.g., in attempt to rewrite the past and break finality
– with proof-of-work, need to actually do the work to produce valid blocks

• “costly simulation”
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Con #2: additional attack vectors.
• inevitable consequence of additional complexity
• example (“long-range attack”): if validator’s secret key is stolen, 

easy to fabricate signed blocks/votes allegedly from the past
– e.g., in attempt to rewrite the past and break finality
– with proof-of-work, need to actually do the work to produce valid blocks

• “costly simulation”

Upshot: all current proof-of-stake designs less battle-tested than 
Nakamoto consensus.
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Proof-of-Stake: Cons (con’d)



Con #3: need for initial stake distribution.
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Proof-of-Stake: Cons (con’d)



Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!
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Proof-of-Stake: Cons (con’d)



Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!
– many more recent PoW protocols do launch with a non-zero initial 

distribution (e.g., to team and investors)
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Proof-of-Stake: Cons (con’d)



Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!
– many more recent PoW protocols do launch with a non-zero initial 

distribution (e.g., to team and investors)
• proof-of-stake: need initial currency distribution to get started

– effectively pre-selecting the initial set of potential validators
• has a more permissioned flavor
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Proof-of-Stake: Cons (con’d)



Con #3: need for initial stake distribution.
• Bitcoin: all BTC originate from block rewards

– launched with the all-zero distribution!
– many more recent PoW protocols do launch with a non-zero initial 

distribution (e.g., to team and investors)
• proof-of-stake: need initial currency distribution to get started

– effectively pre-selecting the initial set of potential validators
• has a more permissioned flavor

– various imperfect techniques for better decentralization of initial 
currency distribution (airdrops, secondary markets, etc.)
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Proof-of-Stake: Cons (con’d)



Con #4: stronger trust assumptions in some scenarios.

26

Proof-of-Stake: Cons (con’d)



Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the 

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint
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Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the 

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint

• proof-of-work: can ask N sources, only need 1-in-N honest
– resolve ambiguity by adopting the chain with the most supporting work
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Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the 

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint

• proof-of-work: can ask N sources, only need 1-in-N honest
– resolve ambiguity by adopting the chain with the most supporting work

• proof-of-stake: need a majority of sources to be honest
– costless simulation (as in long-range attacks) è can’t automatically 

disambiguate competing valid chains
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Proof-of-Stake: Cons (con’d)



Con #4: stronger trust assumptions in some scenarios.
• example: spin up new validator/light client, need to sync with the 

chain of blocks/block headers produced thus far
– from the genesis block, or from some more recent trusted checkpoint

• proof-of-work: can ask N sources, only need 1-in-N honest
– resolve ambiguity by adopting the chain with the most supporting work

• proof-of-stake: need a majority of sources to be honest
– costless simulation (as in long-range attacks) è can’t automatically 

disambiguate competing valid chains
– in practice: use trusted source, or look for unanimity among 2-3 sources
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Proof-of-Stake: Cons (con’d)



• blockchain protocol maintains “staking contract”
– native to protocol, analogous to a system program
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Mechanics of Staking



• blockchain protocol maintains “staking contract”
– native to protocol, analogous to a system program

• validators (identified by public key) lock up funds in this contract
– generally, funds in protocol’s native currency
– in some PoS chain, register your IP address (in addition to pk)
– alternative: communicate via gossip network (see future lecture)
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Mechanics of Staking



• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration. (e.g., days/weeks/months)

– also: join/leave at any time, or only at prescribed points in time?
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Mechanics of Staking



• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount. (e.g., 0, or millions of USD)

34

Mechanics of Staking



• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
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actively validatingdeposit withdraw



• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?

– cool down important for e.g. slashing
– warm up important for e.g. some VRF designs
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• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
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• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?

– e.g., inflationary block rewards a la Nakamoto consensus
– increasingly common: pay fixed interest rate on stake, conditional on 

timely participation 38
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• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? (i.e., loan funds to validator for share of staking rewards)
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• blockchain protocol maintains “staking contract”
• validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? (i.e., loan funds to validator for share of staking rewards)

– if not (e.g., in Ethereum), expect 3rd-party staking pools to arise
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Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? 

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of 
active validators and their stake amounts.  
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Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? 

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of 
active validators and their stake amounts.  (note: may have sybils)
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Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? 

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of 
active validators and their stake amounts.  (note: may have sybils)

– qi’s include delegated stake
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Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount.
3. Warm-up/cool-down periods?
4. Staking rewards?
5. Delegation? 

Upshot: blockchain protocol maintains list (pk1,q1),…, (pkn,qn) of 
active validators and their stake amounts.  (note: may have sybils)

– qi’s include delegated stake
– in warm up or cool down period è not in this list
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.
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Why Proof-of-Stake Is Hard



Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to 
the qi’s.
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to 
the qi’s.

Fact: surprisingly tricky!
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to 
the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
• proof-of-work:
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
• proof-of-work: randomness imported from external process 

(namely, mining), impossible for validators to manipulate
– assuming cryptographic hash function is unpredictable
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
• proof-of-work: randomness imported from external process 

(namely, mining), impossible for validators to manipulate
– assuming cryptographic hash function is unpredictable

• proof-of-stake: blockchain protocol (seemingly) must come up 
with (pseudo)randomness itself
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with 
(pseudo)randomness itself.

– assuming no external source that can be trusted to provide randomness
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with 
(pseudo)randomness itself.

– assuming no external source that can be trusted to provide randomness
• canonical example: use hash of some part of blockchain state
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to the qi’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with 
(pseudo)randomness itself.

– assuming no external source that can be trusted to provide randomness
• canonical example: use hash of some part of blockchain state
• issue: opportunities for validators to manipulate the random 

selection process (e.g., when assembling a new block)
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Why Proof-of-Stake Is Hard



Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution:
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.
– è risk of bribery, coercion, DoS attacks
– also has its benefits (e.g., for tx dissemination) 60
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Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

• good news: relatively simple, no fancy cryptography
• bad news: leaders of future views known well in advance

More sophisticated: verifiable random functions (VRFs).
– leader unknown prior to their block proposal (cf., Nakamoto consensus)
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