Lecture #22: Proof-of-Stake

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Lecture #22

1. Proof-of-stake: the high level idea.
— sample validator with probability proportional to amount of locked-up stake

2. Proof-of-stake: pros and cons.
— why isn’t proof-of-work good enough?

3. Mechanisms of staking.
— warm-up and cool-down periods, delegation, etc.

4. Why proof-of-stake is hard.

— lack of external randomness; quick + dirty solution: weighted round robin
2

Proof-of-Stake: The High-Level Idea

7«

ldea: validators “lock up” “stake.”

— generally used in protocols with general-purpose smart contracts (to
implement escrow contract) and a native currency (to stake with)

Desired property:

Proof-of-Stake: The High-Level Idea

7«

ldea: validators “lock up” “stake.”

— generally used in protocols with general-purpose smart contracts (to
implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,
Pr[validator i selected] = fraction of staked coins owned by i (*)

Proof-of-Stake: The High-Level Idea

7«

ldea: validators “lock up” “stake.”

— generally used in protocols with general-purpose smart contracts (to
implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,

Pr[validator i selected] = fraction of staked coins owned by i (*)
— e.g., as the leader of a view
— implies sybil-proofness (note (*) independent of # of public keys used)

Proof-of-Stake: The High-Level Idea

7«

ldea: validators “lock up” “stake.”

— generally used in protocols with general-purpose smart contracts (to
implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,

Pr[validator i selected] = fraction of staked coins owned by i (*)

— e.g., as the leader of a view
— implies sybil-proofness (note (*) independent of # of public keys used)

Fact: proof-of-stake has become the dominant approach to sybil-
resistance over past 5+ years.

Proof-of-Stake: Pros

Pro #1: minimal energy consumption.

Proof-of-Stake: Pros

Pro #1: minimal energy consumption.

- proof-of-work: validators must prove their hashrate to protocol
— hashrate unobservable by protocol (off-chain)
— e.g., estimated that Bitcoin miners use .5% of world’s energy
— obvious critique on environmental grounds (hotly debated)
— may be strong impediment to launching new PoW protocols

Proof-of-Stake: Pros

Pro #1: minimal energy consumption.

- proof-of-work: validators must prove their hashrate to protocol
— hashrate unobservable by protocol (off-chain)
— e.g., estimated that Bitcoin miners use .5% of world’s energy
— obvious critique on environmental grounds (hotly debated)
— may be strong impediment to launching new PoW protocols

- proof-of-stake: validators’ stake directly observable by protocol
— energy consumption comparable to a typical Internet protocol

Proof-of-Stake: Pros (con’d)

Pro #2: stronger latency/finality guarantees.
— likely the most powerful force pushing migration toward proof-of-stake

10

Proof-of-Stake: Pros (con’d)

Pro #2: stronger latency/finality guarantees.
— likely the most powerful force pushing migration toward proof-of-stake
- proof-of-work: more or less forced into Nakamoto consensus
— no finality in partial synchrony (unavoidable for PoW)
— even in synchrony, latency is high due to security parameter k
— even in synchrony, finality is only probabilistic (unavoidable for PoW)
— PoW alternatives with lower latency exist, but not in production

11

Proof-of-Stake: Pros (con’d)

Pro #2: stronger latency/finality guarantees.
— likely the most powerful force pushing migration toward proof-of-stake
- proof-of-work: more or less forced into Nakamoto consensus
— no finality in partial synchrony (unavoidable for PoW)
— even in synchrony, latency is high due to security parameter k
— even in synchrony, finality is only probabilistic (unavoidable for PoW)
— PoW alternatives with lower latency exist, but not in production
- proof-of-stake: pairs well with e.g. Tendermint (as we’ll see)

— finality as soon as assemble relevant quorum certificate, even in
partially synchronous setting (assuming < 33% faulty stake)

12

Proof-of-Stake: Pros (con’d)

Pro #3: recovery from 51%-type attacks/“slashing.”
— if 51% hashrate/34% stake is Byzantine, is protocol doomed?

13

Proof-of-Stake: Pros (con’d)

Pro #3: recovery from 51%-type attacks/“slashing.”
— if 51% hashrate/34% stake is Byzantine, is protocol doomed?
- proof-of-work: no obvious way to punish attacker

— could “hard fork” to change the cryptographic hash function (nullifies
attacker’s ASICs), but also punishes honest validators (“scorched earth”)

14

Proof-of-Stake: Pros (con’d)

Pro #3: recovery from 51%-type attacks/“slashing.”
— if 51% hashrate/34% stake is Byzantine, is protocol doomed?
- proof-of-work: no obvious way to punish attacker

— could “hard fork” to change the cryptographic hash function (nullifies
attacker’s ASICs), but also punishes honest validators (“scorched earth”)

» proof-of-stake: can punish attacker by “slashing” their stake
— e.g., slash any validators that are caught equivocating/double-voting
— slashing could be programmatic or implemented via hard fork
— for slashing, particularly convenient for stake to be in native currency

15

Proof-of-Stake: Cons

Con #1: additional complexity.

- all major proof-of-stake protocols significantly more complex
than Nakamoto consensus
— risk of bugs in design and/or implementation
— even the simplest distributed protocols difficulty to get right

16

Proof-of-Stake: Cons

Con #1: additional complexity.
- all major proof-of-stake protocols significantly more complex
than Nakamoto consensus
— risk of bugs in design and/or implementation
— even the simplest distributed protocols difficulty to get right
— counterpoint: extra complexity necessary for extra functionality

17

Proof-of-Stake: Cons (con’d)

Con #2: additional attack vectors.
* inevitable consequence of additional complexity

18

Proof-of-Stake: Cons (con’d)

Con #2: additional attack vectors.
* inevitable consequence of additional complexity

- example (“long-range attack”): if validator’s secret key is stolen,
easy to fabricate signed blocks/votes allegedly from the past
— e.g., in attempt to rewrite the past and break finality
— with proof-of-work, need to actually do the work to produce valid blocks
» “costly simulation”

19

Proof-of-Stake: Cons (con’d)

Con #2: additional attack vectors.

* inevitable consequence of additional complexity

- example (“long-range attack”): if validator’s secret key is stolen,
easy to fabricate signed blocks/votes allegedly from the past
— e.g., in attempt to rewrite the past and break finality

— with proof-of-work, need to actually do the work to produce valid blocks
» “costly simulation”

Upshot: all current proof-of-stake designs less battle-tested than
Nakamoto consensus.

20

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.

21

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.

- Bitcoin: all BTC originate from block rewards
— launched with the all-zero distribution!

22

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.

- Bitcoin: all BTC originate from block rewards
— launched with the all-zero distribution!

— many more recent PoW protocols do launch with a non-zero initial
distribution (e.g., to team and investors)

23

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.

- Bitcoin: all BTC originate from block rewards
— launched with the all-zero distribution!

— many more recent PoW protocols do launch with a non-zero initial
distribution (e.g., to team and investors)

 proof-of-stake: need initial currency distribution to get started
— effectively pre-selecting the initial set of potential validators
- has a more permissioned flavor

24

Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.

- Bitcoin: all BTC originate from block rewards
— launched with the all-zero distribution!

— many more recent PoW protocols do launch with a non-zero initial
distribution (e.g., to team and investors)

 proof-of-stake: need initial currency distribution to get started
— effectively pre-selecting the initial set of potential validators
- has a more permissioned flavor

— various imperfect techniques for better decentralization of initial
currency distribution (airdrops, secondary markets, etc.)

25

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.

26

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.

- example: spin up new validator/light client, need to sync with the
chain of blocks/block headers produced thus far

— from the genesis block, or from some more recent trusted checkpoint

27

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.

- example: spin up new validator/light client, need to sync with the
chain of blocks/block headers produced thus far

— from the genesis block, or from some more recent trusted checkpoint

- proof-of-work: can ask N sources, only need 1-in-N honest
— resolve ambiguity by adopting the chain with the most supporting work

28

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.

- example: spin up new validator/light client, need to sync with the
chain of blocks/block headers produced thus far

— from the genesis block, or from some more recent trusted checkpoint
- proof-of-work: can ask N sources, only need 1-in-N honest
— resolve ambiguity by adopting the chain with the most supporting work

- proof-of-stake: need a majority of sources to be honest

— costless simulation (as in long-range attacks) =» can’t automatically
disambiguate competing valid chains

29

Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.

- example: spin up new validator/light client, need to sync with the
chain of blocks/block headers produced thus far
— from the genesis block, or from some more recent trusted checkpoint

- proof-of-work: can ask N sources, only need 1-in-N honest
— resolve ambiguity by adopting the chain with the most supporting work

- proof-of-stake: need a majority of sources to be honest

— costless simulation (as in long-range attacks) =» can’t automatically
disambiguate competing valid chains

— in practice: use trusted source, or look for unanimity among 2-3 sources
30

Mechanics of Staking

* blockchain protocol maintains “staking contract”
— native to protocol, analogous to a system program

31

Mechanics of Staking

* blockchain protocol maintains “staking contract”
— native to protocol, analogous to a system program
- validators (identified by public key) lock up funds in this contract
— generally, funds in protocol’s native currency
— in some PoS chain, register your IP address (in addition to pk)
— alternative: communicate via gossip network (see future lecture)

32

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:

1.

Mininum/maximum staking duration. (e.g., days/weeks/months)
— also: join/leave at any time, or only at prescribed points in time?

33

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount. (e.g., 0, or millions of USD)

34

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount. . cool

| up | | down |

3. Warm-up/cool-down periods? dopheit ——actively validating— withiraw

35

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.

2. Minimum/maximum staking amount. . cool
: Lup | | down |
3. Warm-up/cool-down periods? dopheit ——actively validating— withiraw

— cool down important for e.g. slashing
— warm up important for e.g. some VRF designs

36

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.

2. Minimum/maximum staking amount. . cool

: Lup | | down |
3. Warm-up/cool-down periods? dopheit ——actively validating— withiraw
4. Staking rewards?

37

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.

2. Minimum/maximum staking amount. . cool
: Lup | | down |
3. Warm-up/cool-down periods? dopheit ——actively validating— withiraw

4. Staking rewards?
— e.g., inflationary block rewards a la Nakamoto consensus

— increasingly common: pay fixed interest rate on stake, conditional on
timely participation 3

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:

1.

S A

Mininum/maximum staking duration.

Minimum/maximum staking amount. . cool
: | _up | | down |
Warm-up/cool-down periods? dopheit ——actively validating— withiraw

Staking rewards?
Delegation? (i.e., loan funds to validator for share of staking rewards)

39

Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:

1.

S A

Mininum/maximum staking duration.

Minimum/maximum staking amount. . cool
: | _up | | down |
Warm-up/cool-down periods? dopheit ——actively validating— withiraw

Staking rewards?
Delegation? (i.e., loan funds to validator for share of staking rewards)

— if not (e.g., in Ethereum), expect 3'9-party staking pools to arise

40

Mechanics of Staking

Design decisions:

o kD=

Mininum/maximum staking duration.

Minimum/maximum staking amount. warm cool
: L_up_ | | down |
Warm-up/cool-down periods? deposit +——actively validating——> withtiraw

Staking rewards?
Delegation?

Upshot: blockchain protocol maintains list (pki,q),..., (pk,,q,) of
active validators and their stake amounts.

41

Mechanics of Staking

Design decisions:

o kD=

Mininum/maximum staking duration.

Minimum/maximum staking amount. warm cool
: L_up_ | | down |
Warm-up/cool-down periods? deposit +——actively validating——> withtiraw

Staking rewards?
Delegation?

Upshot: blockchain protocol maintains list (pki,q),..., (pk,,q,) of
active validators and their stake amounts. (note: may have sybils)

42

Mechanics of Staking

Design decisions:

o kD=

Mininum/maximum staking duration.

Minimum/maximum staking amount. warm cool
: L_up_ | | down |
Warm-up/cool-down periods? deposit +——actively validating——> withtiraw

Staking rewards?
Delegation?

Upshot: blockchain protocol maintains list (pki,q),..., (pk,,q,) of
active validators and their stake amounts. (note: may have sybils)

— @;’s include delegated stake

43

Mechanics of Staking

Design decisions:

o kD=

Mininum/maximum staking duration.

Minimum/maximum staking amount. warm cool
: L_up_ | | down |
Warm-up/cool-down periods? deposit +——actively validating——> withtiraw

Staking rewards?
Delegation?

Upshot: blockchain protocol maintains list (pki,q),..., (pk,,q,) of
active validators and their stake amounts. (note: may have sybils)

— @;’s include delegated stake

— in warm up or cool down period =» not in this list "

Why Proof-of-Stake Is Hard

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

45

Why Proof-of-Stake Is Hard

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Goal: sample pk from {pk;,...,pk,} with probability proportional to
the g;’s.

46

Why Proof-of-Stake Is Hard

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Goal: sample pk from {pk;,...,pk,} with probability proportional to
the g;’s.

Fact: surprisingly tricky!

47

Why Proof-of-Stake Is Hard

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Goal: sample pk from {pk;,...,pk,} with probability proportional to
the g;’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.

48

Why Proof-of-Stake Is Hard

Given: list (pky,94),-.., (Pk,,q,,) of active validators + stake amounts.
Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
» proof-of-work:

49

Why Proof-of-Stake Is Hard

Given: list (pky,94),-.., (Pk,,q,,) of active validators + stake amounts.

Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.

- proof-of-work: randomness imported from external process
(namely, mining), impossible for validators to manipulate

— assuming cryptographic hash function is unpredictable

50

Why Proof-of-Stake Is Hard

Given: list (pky,04),..., (pk,,q,) of active validators + stake amounts.

Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.

- proof-of-work: randomness imported from external process
(namely, mining), impossible for validators to manipulate
— assuming cryptographic hash function is unpredictable

- proof-of-stake: blockchain protocol (seemingly) must come up
with (pseudo)randomness itself

51

Why Proof-of-Stake Is Hard

Given: list (pky,94),-.., (Pk,,q,,) of active validators + stake amounts.
Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with
(pseudo)randomness itself.

— assuming no external source that can be trusted to provide randomness

52

Why Proof-of-Stake Is Hard

Given: list (pky,94),-.., (Pk,,q,,) of active validators + stake amounts.

Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with
(pseudo)randomness itself.

— assuming no external source that can be trusted to provide randomness
- canonical example: use hash of some part of blockchain state

53

Why Proof-of-Stake Is Hard

Given: list (pky,94),-.., (Pk,,q,,) of active validators + stake amounts.

Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with
(pseudo)randomness itself.

— assuming no external source that can be trusted to provide randomness
- canonical example: use hash of some part of blockchain state

- Issue: opportunities for validators to manipulate the random
selection process (e.g., when assembling a new block)

54

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Solution:

55

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
— list of active validators + their stakes changes only at epoch boundaries

56

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders

57

Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
— list of active validators + their stakes changes only at epoch boundaries

— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

58

Weighted Round Robin

Given: list (pky,d4),..., (pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.

59

Weighted Round Robin

Given: list (pky,d4),..., (pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.
— =» risk of bribery, coercion, DoS attacks
— also has its benefits (e.g., for tx dissemination) 60

Weighted Round Robin

Given: list (pky,d4),..., (pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

- good news: relatively simple, no fancy cryptography
- bad news: leaders of future views known well in advance

More sophisticated: verifiable random functions (VRFSs).
— leader unknown prior to their block proposal (cf., Nakamoto consensusg1

