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Goals for Lecture #22

1. Proof-of-stake: the high level idea.
— sample validator with probability proportional to amount of locked-up stake

2. Proof-of-stake: pros and cons.
— why isn’t proof-of-work good enough?

3. Mechanisms of staking.
— warm-up and cool-down periods, delegation, etc.

4. Why proof-of-stake is hard.

— lack of external randomness; quick + dirty solution: weighted round robin
2
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Proof-of-Stake: The High-Level Idea

7«

ldea: validators “lock up” “stake.”

— generally used in protocols with general-purpose smart contracts (to
implement escrow contract) and a native currency (to stake with)

Desired property: for every validator i,

Pr[validator i selected] = fraction of staked coins owned by i (*)

— e.g., as the leader of a view
— implies sybil-proofness (note (*) independent of # of public keys used)

Fact: proof-of-stake has become the dominant approach to sybil-
resistance over past 5+ years.
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Proof-of-Stake: Pros

Pro #1: minimal energy consumption.

- proof-of-work: validators must prove their hashrate to protocol
— hashrate unobservable by protocol (off-chain)
— e.g., estimated that Bitcoin miners use .5% of world’s energy
— obvious critique on environmental grounds (hotly debated)
— may be strong impediment to launching new PoW protocols

- proof-of-stake: validators’ stake directly observable by protocol
— energy consumption comparable to a typical Internet protocol
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Proof-of-Stake: Pros (con’d)

Pro #2: stronger latency/finality guarantees.
— likely the most powerful force pushing migration toward proof-of-stake
- proof-of-work: more or less forced into Nakamoto consensus
— no finality in partial synchrony (unavoidable for PoW)
— even in synchrony, latency is high due to security parameter k
— even in synchrony, finality is only probabilistic (unavoidable for PoW)
— PoW alternatives with lower latency exist, but not in production
- proof-of-stake: pairs well with e.g. Tendermint (as we’ll see)

— finality as soon as assemble relevant quorum certificate, even in
partially synchronous setting (assuming < 33% faulty stake)
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Proof-of-Stake: Pros (con’d)

Pro #3: recovery from 51%-type attacks/“slashing.”
— if 51% hashrate/34% stake is Byzantine, is protocol doomed?
- proof-of-work: no obvious way to punish attacker

— could “hard fork” to change the cryptographic hash function (nullifies
attacker’s ASICs), but also punishes honest validators (“scorched earth”)

» proof-of-stake: can punish attacker by “slashing” their stake
— e.g., slash any validators that are caught equivocating/double-voting
— slashing could be programmatic or implemented via hard fork
— for slashing, particularly convenient for stake to be in native currency
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Proof-of-Stake: Cons

Con #1: additional complexity.

- all major proof-of-stake protocols significantly more complex
than Nakamoto consensus
— risk of bugs in design and/or implementation
— even the simplest distributed protocols difficulty to get right
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Proof-of-Stake: Cons

Con #1: additional complexity.
- all major proof-of-stake protocols significantly more complex
than Nakamoto consensus
— risk of bugs in design and/or implementation
— even the simplest distributed protocols difficulty to get right
— counterpoint: extra complexity necessary for extra functionality
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Con #2: additional attack vectors.
* inevitable consequence of additional complexity

18



Proof-of-Stake: Cons (con’d)
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* inevitable consequence of additional complexity

- example (“long-range attack”): if validator’s secret key is stolen,
easy to fabricate signed blocks/votes allegedly from the past
— e.g., in attempt to rewrite the past and break finality
— with proof-of-work, need to actually do the work to produce valid blocks
» “costly simulation”
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Proof-of-Stake: Cons (con’d)

Con #2: additional attack vectors.

* inevitable consequence of additional complexity

- example (“long-range attack”): if validator’s secret key is stolen,
easy to fabricate signed blocks/votes allegedly from the past
— e.g., in attempt to rewrite the past and break finality

— with proof-of-work, need to actually do the work to produce valid blocks
» “costly simulation”

Upshot: all current proof-of-stake designs less battle-tested than
Nakamoto consensus.
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Con #3: need for initial stake distribution.
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Proof-of-Stake: Cons (con’d)

Con #3: need for initial stake distribution.

- Bitcoin: all BTC originate from block rewards
— launched with the all-zero distribution!

— many more recent PoW protocols do launch with a non-zero initial
distribution (e.g., to team and investors)

 proof-of-stake: need initial currency distribution to get started
— effectively pre-selecting the initial set of potential validators
- has a more permissioned flavor

— various imperfect techniques for better decentralization of initial
currency distribution (airdrops, secondary markets, etc.)
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Con #4: stronger trust assumptions in some scenarios.
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Proof-of-Stake: Cons (con’d)

Con #4: stronger trust assumptions in some scenarios.

- example: spin up new validator/light client, need to sync with the
chain of blocks/block headers produced thus far
— from the genesis block, or from some more recent trusted checkpoint

- proof-of-work: can ask N sources, only need 1-in-N honest
— resolve ambiguity by adopting the chain with the most supporting work

- proof-of-stake: need a majority of sources to be honest

— costless simulation (as in long-range attacks) =» can’t automatically
disambiguate competing valid chains

— in practice: use trusted source, or look for unanimity among 2-3 sources
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Mechanics of Staking

* blockchain protocol maintains “staking contract”
— native to protocol, analogous to a system program
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Mechanics of Staking

* blockchain protocol maintains “staking contract”
— native to protocol, analogous to a system program
- validators (identified by public key) lock up funds in this contract
— generally, funds in protocol’s native currency
— in some PoS chain, register your IP address (in addition to pk)
— alternative: communicate via gossip network (see future lecture)
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Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:

1.

Mininum/maximum staking duration. (e.g., days/weeks/months)
— also: join/leave at any time, or only at prescribed points in time?
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Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount. (e.g., 0, or millions of USD)
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Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.
2. Minimum/maximum staking amount. . cool

| up | | down |

3. Warm-up/cool-down periods? dopheit  ——actively validating—  withiraw
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Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.

2. Minimum/maximum staking amount. . cool
: Lup | | down |
3. Warm-up/cool-down periods? dopheit  ——actively validating—  withiraw

— cool down important for e.g. slashing
— warm up important for e.g. some VRF designs
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Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.

2. Minimum/maximum staking amount. . cool

: Lup | | down |
3. Warm-up/cool-down periods? dopheit  ——actively validating—  withiraw
4. Staking rewards?
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Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:
1. Mininum/maximum staking duration.

2. Minimum/maximum staking amount. . cool
: Lup | | down |
3. Warm-up/cool-down periods? dopheit  ——actively validating—  withiraw

4. Staking rewards?
— e.g., inflationary block rewards a la Nakamoto consensus

— increasingly common: pay fixed interest rate on stake, conditional on
timely participation 3



Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:

1.

S A

Mininum/maximum staking duration.

Minimum/maximum staking amount. . cool
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Mechanics of Staking

blockchain protocol maintains “staking contract”
validators (identified by public key) lock up funds in this contract

Design decisions:

1.

S A

Mininum/maximum staking duration.

Minimum/maximum staking amount. . cool
: | _up | | down |
Warm-up/cool-down periods? dopheit  ——actively validating—  withiraw

Staking rewards?
Delegation? (i.e., loan funds to validator for share of staking rewards)

— if not (e.g., in Ethereum), expect 3'9-party staking pools to arise
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Mechanics of Staking

Design decisions:

o kD=

Mininum/maximum staking duration.

Minimum/maximum staking amount. warm cool
: L_up_ | | down |
Warm-up/cool-down periods? deposit  +——actively validating——>  withtiraw

Staking rewards?
Delegation?

Upshot: blockchain protocol maintains list (pki,q),..., (pk,,q,) of
active validators and their stake amounts.
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Mechanics of Staking

Design decisions:

o kD=

Mininum/maximum staking duration.

Minimum/maximum staking amount. warm cool
: L_up_ | | down |
Warm-up/cool-down periods? deposit  +——actively validating——>  withtiraw

Staking rewards?
Delegation?

Upshot: blockchain protocol maintains list (pki,q),..., (pk,,q,) of
active validators and their stake amounts. (note: may have sybils)

— @;’s include delegated stake

— in warm up or cool down period =» not in this list "



Why Proof-of-Stake Is Hard

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.
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Why Proof-of-Stake Is Hard

Given: list (pky,94),-.., (Pk,,q,,) of active validators + stake amounts.
Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.
» proof-of-work:
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Given: list (pky,04),..., (pk,,q,) of active validators + stake amounts.

Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Reason: need to produce internally defined randomness.

- proof-of-work: randomness imported from external process
(namely, mining), impossible for validators to manipulate
— assuming cryptographic hash function is unpredictable

- proof-of-stake: blockchain protocol (seemingly) must come up
with (pseudo)randomness itself
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Why Proof-of-Stake Is Hard

Given: list (pky,94),-.., (Pk,,q,,) of active validators + stake amounts.

Goal: sample pk from {pk,,...,pk,} with probability proportional to the g;’s.

Fact: surprisingly tricky!

Proof-of-stake: blockchain protocol (seemingly) must come up with
(pseudo)randomness itself.

— assuming no external source that can be trusted to provide randomness
- canonical example: use hash of some part of blockchain state

- Issue: opportunities for validators to manipulate the random
selection process (e.g., when assembling a new block)
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Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Solution:
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Weighted Round Robin

Given: list (pk4,04),..., (Pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).
— list of active validators + their stakes changes only at epoch boundaries

— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...
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Weighted Round Robin

Given: list (pky,d4),..., (pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.
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Weighted Round Robin

Given: list (pky,d4),..., (pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.
— =» risk of bribery, coercion, DoS attacks
— also has its benefits (e.g., for tx dissemination) 60



Weighted Round Robin

Given: list (pky,d4),..., (pk,,q,) of active validators + stake amounts.

Solution: use epoch of length N views each (N large).

— list of active validators + their stakes changes only at epoch boundaries
— each epoch: use proportionally representative sequence of leaders
— ex:{(A,2),(B,1),(C,2)} = use leader sequence AABCCAABCCAABCC...

- good news: relatively simple, no fancy cryptography
- bad news: leaders of future views known well in advance

More sophisticated: verifiable random functions (VRFSs).
— leader unknown prior to their block proposal (cf., Nakamoto consensusg1



