
Lecture #23: Proof-of-Stake
Blockchain Protocols

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Weighted round-robin.
– quick and dirty approach to stake-proportional leader selection

2. Degrees of permissionlessness.
– sense in which PoS protocols are “more permissioned” than PoW

3. A proof-of-stake Tendermint.
– consistent and live in partial synchrony under appropriate assumptions

4. Slashing.
– programmatically fight back against a 51%-type attack

2

Goals for Lecture #23

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution:

3

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders

4

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

5

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.

6

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).
– list of active validators + their stakes changes only at epoch boundaries
– each epoch: use proportionally representative sequence of leaders
– ex: {(A,2),(B,1),(C,2)} è use leader sequence AABCCAABCCAABCC…

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance. 7

Weighted Round Robin

Given: list (pk1,q1),…, (pkn,qn) of active validators + stake amounts.

Goal: sample pk from {pk1,…,pkn} with probability proportional to qi’s.

Solution: use epoch of length N views each (N large).

Good news: relatively simple, no fancy cryptography.

Bad news: leaders of future views known well in advance.
– è risk of bribery, coercion, DoS attacks
– also has its benefits (e.g., for tx dissemination)

8

Weighted Round Robin

9

Degrees of Permissionlessness
increasing perm

issionlessness
(and difficulty)

10

Degrees of Permissionlessness
increasing perm

issionlessness
(and difficulty)

Idea: parameterize “how permissionless” a protocol is
according to its knowledge of and assumptions about its
validators.

11

Degrees of Permissionlessness
increasing perm

issionlessness
(and difficulty)

Idea: parameterize “how permissionless” a protocol is
according to its knowledge of and assumptions about its
validators.
• cf., parameterizing by:

– the number of faulty validators
– the type of fault (crash vs. Byzantine, etc.)
– the reliability of the network (sync vs. partial sync vs. async)

• fully permissionless (FP): protocol knows nothing about its
validators (e.g., Nakamoto consensus)

12

Degrees of Permissionlessness
increasing perm

issionlessness
(and difficulty)

• fully permissionless (FP): protocol knows nothing about its
validators (e.g., Nakamoto consensus)

• dynamically available (DA): protocol knows (evolving) list
of pks that represent the possibly active validators
– allows some of these pks to be not actively validating (i.e., offline)

13

Degrees of Permissionlessness
increasing perm

issionlessness
(and difficulty)

• fully permissionless (FP): protocol knows nothing about its
validators (e.g., Nakamoto consensus)

• dynamically available (DA): protocol knows (evolving) list
of pks that represent the possibly active validators
– allows some of these pks to be not actively validating (i.e., offline)

• quasi-permissionless (QP): protocol can also assume that
all (non-faulty) list members are actively participating
– i.e., no longer allow an “honest but offline validator”

14

Degrees of Permissionlessness
increasing perm

issionlessness
(and difficulty)

• fully permissionless (FP): protocol knows nothing about its
validators (e.g., Nakamoto consensus)

• dynamically available (DA): protocol knows (evolving) list
of pks that represent the possibly active validators
– allows some of these pks to be not actively validating (i.e., offline)

• quasi-permissionless (QP): protocol can also assume that
all (non-faulty) list members are actively participating
– i.e., no longer allow an “honest but offline validator”

• permissioned (Perm): validator set fixed forever when
protocol is deployed (e.g., Tendermint)

15

Degrees of Permissionlessness
increasing perm

issionlessness
(and difficulty)

Fact: possible to pair proof-of-stake sybil-resistance with longest-
chain consensus (see e.g. Cardano).

Good news: consistent and live provided:

16

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-
chain consensus (see e.g. Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)

17

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-
chain consensus (see e.g. Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)
• < 50% Byzantine stake (necessary with longest-chain consensus)

18

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-
chain consensus (see e.g. Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)
• < 50% Byzantine stake (necessary with longest-chain consensus)
• dynamically available setting (slightly stronger than FP setting)

19

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-
chain consensus (see e.g. Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)
• < 50% Byzantine stake (necessary with longest-chain consensus)
• dynamically available setting (slightly stronger than FP setting)

– also: no difficulty adjustment algorithm required (stake directly observable)

20

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-chain consensus (see e.g.
Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)
• < 50% Byzantine stake (necessary with longest-chain consensus)
• dynamically available setting (slightly stronger than FP setting)

Bad news:

21

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-chain consensus (see e.g.
Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)
• < 50% Byzantine stake (necessary with longest-chain consensus)
• dynamically available setting (slightly stronger than FP setting)

Bad news: loses consistency in partial synchrony (network partitions)

22

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-chain consensus (see e.g.
Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)
• < 50% Byzantine stake (necessary with longest-chain consensus)
• dynamically available setting (slightly stronger than FP setting)

Bad news: loses consistency in partial synchrony (network partitions)
• relatively large latency (due to security parameter k)

23

Pairing PoS with a Consensus Protocol

Fact: possible to pair proof-of-stake sybil-resistance with longest-chain consensus (see e.g.
Cardano).

Good news: consistent and live provided:
• synchronous network (necessary with longest-chain consensus)
• < 50% Byzantine stake (necessary with longest-chain consensus)
• dynamically available setting (slightly stronger than FP setting)

Bad news: loses consistency in partial synchrony (network partitions)
• relatively large latency (due to security parameter k)
• much more complex than Nakamoto consensus (see YT videos)

– e.g., leaders can now equivocate, make multiple proposals per view
24

Pairing PoS with a Consensus Protocol

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony.

25

A Proof-of-Stake Version of Tendermint

• shared global clock (timesteps=0,1,2,…)
• known upper bound ∆ on message delays in normal conditions
• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)
– protocol must work no matter what GST is

Recall goals:
• consistency, always (even pre-GST/“under attack”)
• liveness soon after GST (once “normal conditions” resume)

– FLP è need to give up one of consistency, liveness before GST
26

Recap: The Partially Synchronous Model

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony. (i.e., same as Tendermint, but permissionless)

27

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony. (i.e., same as Tendermint, but permissionless)

From last week: impossible in the dynamically available setting.
• even for proof-of-stake protocols

28

A Proof-of-Stake Version of Tendermint

1. no PoW protocol is consistent in partial synchrony
2. even in synchrony, no POW protocol guarantees (deterministic) consistency + liveness

Intuition for (1): catch-22 a la “CAP principle” argument. If validator
hears no messages for a long time, can’t distinguish between:
• (i) in synchrony, other validators turned off their machines
• (ii) in partial synchrony + pre-GST, all messages delayed

Should the validator ever finalize any additional txs?
• yes è might be in scenario (ii), cause a consistency violation
• no è might be in scenario (i), liveness violation (in synchrony)

29

Limitations of Proof-of-Work

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony. (i.e., same as Tendermint, but permissionless)

From last week: impossible in the dynamically available setting.
• even for proof-of-stake protocols
• issue: ambiguity between Byzantine and honest offline validators

30

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony. (i.e., same as Tendermint, but permissionless)

From last week: impossible in the dynamically available setting.
• even for proof-of-stake protocols
• issue: ambiguity between Byzantine and honest offline validators
• recall original challenge: how big should a quorum be?

31

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony. (i.e., same as Tendermint, but permissionless)

From last week: impossible in the dynamically available setting.
• even for proof-of-stake protocols
• issue: ambiguity between Byzantine and honest offline validators
• recall original challenge: how big should a quorum be?

Hope: possible in the quasi-permissionless setting.
• recall: offline validators are considered faulty in the QP setting

32

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony, in the quasi-permissionless setting.

33

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony, in the quasi-permissionless setting.

Simplest approach: modify Tendermint so that:

34

A Proof-of-Stake Version of Tendermint

35

Tendermint: Picture of One View

∆ ∆ ∆

finalize new txs here if sufficient “acks” received
(i.e., if observe a write quorum)

ℓall validators all validators

catch-up
messages

(Ai’s)

leader’s
proposal(s)
(i.e., (A,B))

all validators

“up-to-date”
messages

all validators

“ack”
messages

∆

if read quorum observed for proposal

if A equals or is strictly more recent than Ai

• at time 4∆ ⋅ 𝑣:
– each validator i sends its current chain Ai to v’s leader ℓ

• at time 4∆ ⋅ 𝑣 + Δ:
– let A = of the Ai’s received, the most recently created one; let B := all not-yet-included (in A) valid txs ℓ knows about
– ℓ sends proposal (A,B) to all other validators

• at time 4∆ ⋅ 𝑣 + 2Δ:
– if validator i receives a proposal (A,B) from ℓ with A = Ai or with A more recent than Ai by this time:

• send “(A,B) is up-to-date” message to all validators

• at time 4∆ ⋅ 𝑣 + 3Δ:
– if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time (a read quorum):

• package these messages into a quorum certificate (QC), Q
• send “ack (A,B,Q)” message to all validators and reset Ai := (A,B,Q)

• at time 4∆ ⋅ 𝑣 + 4Δ:
– if validator i has received > 2n/3 “ack (A,B,Q)” messages (a write quorum):

• reset Ci := (A,B,Q) (and also Ai := (A,B,Q), if necessary) 36

Tendermint: Pseudocode

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony, in the quasi-permissionless setting.

Simplest approach: modify Tendermint so that:

37

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony, in the quasi-permissionless setting.

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection

– validators only allowed to join/leave at epoch boundaries

38

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony, in the quasi-permissionless setting.

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection

– validators only allowed to join/leave at epoch boundaries
• redefine quorum certificate = signatures by distinct public keys

that collectively represent more than 2/3rds of the overall stake

39

A Proof-of-Stake Version of Tendermint

Goal: a proof-of-stake protocol that is consistent and (eventually)
live in partial synchrony, in the quasi-permissionless setting.

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection

– validators only allowed to join/leave at epoch boundaries
• redefine quorum certificate = signatures by distinct public keys

that collectively represent more than 2/3rds of the overall stake
• add logic to update validator set at epoch boundaries

– warning: can be hard to get right (without a synchrony assumption)
40

A Proof-of-Stake Version of Tendermint

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection
• redefine quorum certificate = signatures by distinct public keys that

collectively represent more than 2/3rds of the overall stake
• add logic to update validator set at epoch boundaries

Result: assuming

41

A Proof-of-Stake Version of Tendermint

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection
• redefine quorum certificate = signatures by distinct public keys that

collectively represent more than 2/3rds of the overall stake
• add logic to update validator set at epoch boundaries

Result: assuming (i) ≤ 33% of stake controlled by Byzantine
validators (at all times)

42

A Proof-of-Stake Version of Tendermint

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection
• redefine quorum certificate = signatures by distinct public keys that

collectively represent more than 2/3rds of the overall stake
• add logic to update validator set at epoch boundaries

Result: assuming (i) ≤ 33% of stake controlled by Byzantine
validators (at all times) and (ii) quasi-permissionless setting

43

A Proof-of-Stake Version of Tendermint

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection
• redefine quorum certificate = signatures by distinct public keys that

collectively represent more than 2/3rds of the overall stake
• add logic to update validator set at epoch boundaries

Result: assuming (i) ≤ 33% of stake controlled by Byzantine
validators (at all times) and (ii) quasi-permissionless setting è
proof-of-stake Tendermint is consistent + live in partial synchrony.

44

A Proof-of-Stake Version of Tendermint

Simplest approach: modify Tendermint so that:
• uses epoch-based weighted round-robin leader selection
• redefine quorum certificate = signatures by distinct public keys that

collectively represent more than 2/3rds of the overall stake
• add logic to update validator set at epoch boundaries

Result: assuming (i) ≤ 33% of stake controlled by Byzantine
validators (at all times) and (ii) quasi-permissionless setting è
proof-of-stake Tendermint is consistent + live in partial synchrony.

In general: can usually (not always) turn a permissioned protocol
into a PoS protocol with the same guarantees in the QP setting. 45

A Proof-of-Stake Version of Tendermint

Idea: confiscate stake of validators that deviate from protocol.
• taking advantage of cool-down period + native currency

46

Slashing

Idea: confiscate stake of validators that deviate from protocol.
• taking advantage of cool-down period + native currency

Version #1: manual/hard fork (a.k.a. “social slashing”).
– convince honest validators to run new version of protocol with balances

of deviating validators zeroed out (note: no analog in PoW)
– ideally used only as last resort/nuclear option

47

Slashing

Idea: confiscate stake of validators that deviate from protocol.
• taking advantage of cool-down period + native currency

Version #1: manual/hard fork (a.k.a. “social slashing”).
– convince honest validators to run new version of protocol with balances

of deviating validators zeroed out (note: no analog in PoW)
– ideally used only as last resort/nuclear option

Version #2: programmatic (i.e., in-protocol) slashing.

48

Slashing

Idea: confiscate stake of validators that deviate from protocol.

Version #1: manual/hard fork (a.k.a. “social slashing”).

Version #2: programmatic (i.e., in-protocol) slashing.
• prerequisite #1: detectable deviations

49

Slashing

Idea: confiscate stake of validators that deviate from protocol.

Version #1: manual/hard fork (a.k.a. “social slashing”).

Version #2: programmatic (i.e., in-protocol) slashing.
• prerequisite #1: detectable deviations

– example: voting for conflicting blocks in Tendermint (consistency
violation è > 33% of the stake must do this)

50

Slashing

Idea: confiscate stake of validators that deviate from protocol.

Version #1: manual/hard fork (a.k.a. “social slashing”).

Version #2: programmatic (i.e., in-protocol) slashing.
• prerequisite #1: detectable deviations

– example: voting for conflicting blocks in Tendermint (consistency
violation è > 33% of the stake must do this)

– trickier example: failing to submit block proposal or vote on time

51

Slashing

Idea: confiscate stake of validators that deviate from protocol.

Version #1: manual/hard fork (a.k.a. “social slashing”).

Version #2: programmatic (i.e., in-protocol) slashing.
• prerequisite #1: detectable deviations

– example: voting for conflicting blocks in Tendermint (consistency
violation è > 33% of the stake must do this)

– trickier example: failing to submit block proposal or vote on time
• see “inactivity leaks” in Ethereum

52

Slashing

Idea: confiscate stake of validators that deviate from protocol.

Version #1: manual/hard fork (a.k.a. “social slashing”).

Version #2: programmatic (i.e., in-protocol) slashing.
• prerequisite #1: detectable deviations

– example: voting for conflicting blocks in Tendermint (consistency
violation è > 33% of the stake must do this)

– trickier example: failing to submit block proposal or vote on time
• see “inactivity leaks” in Ethereum
• issue: could have been caused by unreliable network or censoring

by other validators, rather than Byzantine behavior 53

Slashing

Idea: confiscate stake of validators that deviate from protocol.

Version #1: manual/hard fork (a.k.a. “social slashing”).

Version #2: programmatic (i.e., in-protocol) slashing.
• prerequisite #1: detectable deviations

– example: voting for conflicting blocks in Tendermint
– trickier example: failing to submit block proposal or vote on time

• prerequisite #2: certificate of guilt must be posted on-chain
– e.g., signatures by a validator on two conflicting blocks

54

Slashing

Idea: confiscate stake of validators that deviate from protocol.

Version #1: manual/hard fork (a.k.a. “social slashing”).

Version #2: programmatic (i.e., in-protocol) slashing.
• prerequisite #1: detectable deviations

– example: voting for conflicting blocks in Tendermint
– trickier example: failing to submit block proposal or vote on time

• prerequisite #2: certificate of guilt must be posted on-chain
– e.g., signatures by a validator on two conflicting blocks

• design decision: how much to slash for various offenses? 55

Slashing

Ongoing debate: in-protocol slashing, or social slashing only?

56

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)

57

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)
• pro #2: potential for in-protocol recovery from major attacks

58

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)
• pro #2: potential for in-protocol recovery from major attacks
• con #1: additional protocol complexity (e.g., to verify deviation)

59

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)
• pro #2: potential for in-protocol recovery from major attacks
• con #1: additional protocol complexity (e.g., to verify deviation)
• con #2: additional attack vectors (e.g., censoring validator votes)

60

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)
• pro #2: potential for in-protocol recovery from major attacks
• con #1: additional protocol complexity (e.g., to verify deviation)
• con #2: additional attack vectors (e.g., censoring validator votes)
• con #3: inadvertent slashing of honest validators

61

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)
• pro #2: potential for in-protocol recovery from major attacks
• con #1: additional protocol complexity (e.g., to verify deviation)
• con #2: additional attack vectors (e.g., censoring validator votes)
• con #3: inadvertent slashing of honest validators

• point of debate: rewards should already be sufficient incentive

62

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)
• pro #2: potential for in-protocol recovery from major attacks
• con #1: additional protocol complexity (e.g., to verify deviation)
• con #2: additional attack vectors (e.g., censoring validator votes)
• con #3: inadvertent slashing of honest validators

• point of debate: rewards should already be sufficient incentive
– can resort to social slashing in exceptional situations
– can always simulate in-protocol slashing, only more options

63

To Slash or Not to Slash?

Ongoing debate: in-protocol slashing, or social slashing only?
• pro #1: stronger incentives for correct behavior (carrot + stick)
• pro #2: potential for in-protocol recovery from major attacks
• con #1: additional protocol complexity (e.g., to verify deviation)
• con #2: additional attack vectors (e.g., censoring validator votes)
• con #3: inadvertent slashing of honest validators

• point of debate: rewards should already be sufficient incentive
– can resort to social slashing in exceptional situations
– can always simulate in-protocol slashing, only more options
– counterpoint: social slashing likely either (i) too hard, won’t actually

happen when you need it; or (ii) too easy, subject to abuse
64

To Slash or Not to Slash?

Issue #1: predictability of leaders in weighted round-robin.

65

Proof-of-Stake: Some Advanced Topics

Issue #1: predictability of leaders in weighted round-robin.
• more sophisticated solution: verifiable random functions (VRFs)

– no one knows you’re the leader until they see your block proposal

66

Proof-of-Stake: Some Advanced Topics

Issue #1: predictability of leaders in weighted round-robin.
• more sophisticated solution: verifiable random functions (VRFs)

– no one knows you’re the leader until they see your block proposal

Issue #2: too many validators è bad performance in Tendermint.

67

Proof-of-Stake: Some Advanced Topics

Issue #1: predictability of leaders in weighted round-robin.
• more sophisticated solution: verifiable random functions (VRFs)

– no one knows you’re the leader until they see your block proposal

Issue #2: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly

68

Proof-of-Stake: Some Advanced Topics

Issue #1: predictability of leaders in weighted round-robin.
• more sophisticated solution: verifiable random functions (VRFs)

– no one knows you’re the leader until they see your block proposal

Issue #2: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)

69

Proof-of-Stake: Some Advanced Topics

Issue #1: predictability of leaders in weighted round-robin.
• more sophisticated solution: verifiable random functions (VRFs)

– no one knows you’re the leader until they see your block proposal

Issue #2: too many validators è bad performance in Tendermint.
• solution #1: cap number of validators, explicitly or implicitly
• solution #2: combine Tendermint with some aspects of longest-

chain consensus (which scales well with # of validators)
• solution #3: use randomly sampled “committees” of validators

70

Proof-of-Stake: Some Advanced Topics

