Lecture #28:
A Glimpse of the Cutting Edge

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden



Goals for Lecture #28

1. Censorship-resistance.
— experimental ideas to mitigate dangers with centralized builders

2. Protocols from principles.
— recap of everything you now know about Bitcoin and Ethereum

3. “SNARK-ify everything.”
— scaling an L1 by outsourcing execution to builders via SNARKs

4. Some future directions.

— e.g., “zk co-processors” to guarantee correctness of off-chain computation
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— specialized builders submit blocks (with
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— proposer returns signer header to relay node, block is broadcast

— relay node broadcasts signed block over gossip network

Properties: (i) validators can’t steal MEV from builders

— txs in block unknown when proposer signs the block header

- MEV rewards (per-unit-stake) equalized across validators
— hopefully, no economic barriers to decentralized validator set
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Centralization and Censorship

Question: big problem if a blockchain protocol has only a few
validators? [answer: yes, largely defeats the point of a blockchain protocol]

Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?
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Block

22330775

22330774

22330773

22330772

22330771

22330770

22330769

22330768

22330767

22330766

22330765

22330764

22330763

22330762

22330761

22330760

Slot

11548010

11548009 [

11548008

11548007

11548006 [

11548005 [

11548004

11548003

11548002

11548001

11548000

11547999

11547998

11547997 [

11547996

11547995

Age

14 secs ago

26 secs ago

38 secs ago

50 secs ago

1 min ago

1 min ago

1 min ago

1 min ago

1 min ago

2 mins ago

2 mins ago

2 mins ago

2 mins ago

2 mins ago

3 mins ago

3 mins ago

Txn

184

228

204

173

324

115

186

214

244

146

211

315

43

274

216

165

Fee Recipient

Titan Builder

Titan Builder

beaverbuild

beaverbuild

Titan Builder

quasarbuilder

beaverbuild

beaverbuild

Titan Builder

beaverbuild

Titan Builder

Titan Builder (.

Lido: Execution Layer Rew...

Titan Builder

beaverbuild (!

Lido: Execution Layer Rew...

Gas Used

14,024,967 (38.96%)

17,704,576 (49.23%)
20,131,027 (55.92%)
16,695,651 (46.38%)

35,644,314 (99.01%)

7,545,978 (20.96%)
17,009,799 (47.25%)
21,519,909 (59.84%)
21,948,869 (60.97%)
10,282,523 (28.56%)
22,679,059 (63.00%)
30,120,386 (83.75%)
2,326,986 (6.48%)

25,964,257 (72.19%)

24,057,554 (66.83%)

11,446,914 (31.80%)

Gas Limit

35,999,965

35,964,845

36,000,000

36,000,000

36,000,000

36,000,000

35,999,965

35,964,845

36,000,000

36,000,000

35,999,931

35,964,811

35,929,725

35,964,845

36,000,000

36,000,000

Base Fee

1.166 Gwei

1.168 Gwei

1.151 Gwei

1.162 Gwei

1.035 Gwei

1.116 Gwei

1.124 Gwei

1.097 Gwei

1.067 Gwei

1.128 Gwei

1.092 Gwei

1.007 Gwei

1.13 Gwei

1.071 Gwei

1.028 Gwei

1.077 Gwei

Reward

0.01742 ETH

0.02039 ETH

0.01934 ETH

0.01824 ETH

0.0492 ETH

0.00557 ETH

0.04548 ETH

0.04709 ETH

0.01889 ETH

0.00775 ETH

0.01958 ETH

0.0271 ETH

0.00809 ETH

0.03609 ETH

0.04062 ETH

0.00408 ETH

Burnt Fees (ETH)

0.016360 (48.42%)

0.020692 (50.36%)

0.023184 (54.52%)

0.019404 (51.53%)

0.036904 (42.86%)

0.008424 (60.18%)

0.019121 (29.59%)

0.023610 (33.39%)

0.023438 (55.37%)

0.011602 (59.95%)

0.024784 (55.85%)

0.030355 (52.82%)

0.002631 (24.52%)

0.027818 (43.53%)

0.024735 (37.84%)

0.012330 (75.12%)
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Centralization and Censorship

Question: big problem if a blockchain protocol has only a few
validators? [answer: yes, largely defeats the point of a blockchain protocol]

Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?

 block-building might be an intrinsically specialized skill

- at least builders don’t control consensus, right?
— block proposer could always propose their own block if they prefer

One issue: censorship --- i.e., systematic exclusion of certain txs.

— e.g., for financial or legal/regulatory reasons §



Censorship-Resistance

Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?

One issue: censorship --- i.e., systematic exclusion of certain txs.

Open question: how to mitigate censorship risks.
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Censorship-Resistance

Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?

One issue: censorship --- i.e., systematic exclusion of certain txs.

Open question: how to mitigate censorship risks.

idea #1: inclusion lists (IL) --- let validators designate txs whose
iInclusion is part of block validity (cf., forced inclusion in rollups)
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Censorship-Resistance

Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?

One issue: censorship --- i.e., systematic exclusion of certain txs.

Open question

idea #1:inc
Inclusion is

idea #2: mu

- how to mitigate censorship risks.

usion lists (IL) --- let validators designate txs whose
part of block validity (cf., forced inclusion in rollups)

tiple concurrent proposers (MCP) --- take union of

multiple validator block proposals =» censoring requires large
bribes to multiple validators [Fox/Pai/Resnick 23]
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consensus layer: Nakamoto consensus
— longest-chain consensus (detail: “longest” = “most amount of work”)
— proof-of-work sybil-resistance
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pros: simple, scales well, consistent + live in synchrony w/majority honest hashrate
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Bitcoin in a Nutshell

consensus layer: Nakamoto consensus

longest-chain consensus (detail: “longest” = “most amount of work”™)

proof-of-work sybil-resistance
pros: simple, scales well, consistent + live in synchrony w/majority honest hashrate
cons: lose safety in partial synchrony, guarantees only probabilistic, large latency

execution layer: UTXOs (unspent tx outputs)

tx = inputs (previously created UTXOs) and outputs (new UTXO)
user signatures = ECDSA or (post-Taproot) Schnorr
tx fee = first-price auction (“bid” = diff between value of inputs, outputs)

txs disseminated via public mempool (implemented via gossip protocol)
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Bitcoin in a Nutshell

- consensus layer: Nakamoto consensus
— longest-chain consensus (detail: “longest” = “most amount of work”)
— proof-of-work sybil-resistance
- execution layer: UTXO-based (UTXO = “unspent tx output”)
— tx = inputs (previously created UTXOs) and outputs (new UTXO)
— user signatures = ECDSA or (post-Taproot) Schnorr
— tx fee = first-price auction (“bid” = diff between value of inputs, outputs)
— txs disseminated via public mempool (implemented via gossip protocol)

- light clients (commit to txs in block header via Merkle root)
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Bitcoin in a Nutshell

consensus layer: Nakamoto consensus

— longest-chain consensus (detail: “longest” = “most amount of work”)
— proof-of-work sybil-resistance

execution layer: UTXO-based (UTXO = “unspent tx output”)
— tx = inputs (previously created UTXOs) and outputs (new UTXO)

— user signatures = ECDSA or (post-Taproot) Schnorr

— tx fee = first-price auction (“bid” = diff between value of inputs, outputs)
— txs disseminated via public mempool (implemented via gossip protocol)

light clients (commit to txs in block header via Merkle root)
misc. trivia/lore (blocksize wars, SegWit, etc.)



Ethereum in a Nutshell (Consensus)

consensus layer:

30



Ethereum in a Nutshell (Consensus)

consensus layer:
— proof-of-stake sybil-resistance (1 validator = 32 ETH)
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backbone = longest-chain-type consensus (view length = 12 seconds)
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leader sequence chosen using a VRF (derived from BLS signatures)
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consistent + live in partial synchrony with 67% honest stake
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Ethereum in a Nutshell (Consensus)

* consensus layer:

— proof-of-stake sybil-resistance (1 validator = 32 ETH)

— backbone = longest-chain-type consensus (view length = 12 seconds)
leader sequence chosen using a VRF (derived from BLS signatures)
“LMD-GHOST” = idiosyncratic fork choice rule (not longest-chain)

— “finality gadget” = “Casper” = Tendermint (but pipelined)
effective view length = 32 slots = 6.4 minutes
— need time for e.g. signature aggregation/verification for > 1M validators!
consistent + live in partial synchrony with 67% honest stake

slashing for consistency, liveness violations
38



Ethereum in a Nutshell (Execution)

execution layer: account-based state + EVM virtual machine
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- execution layer: account-based state + EVM virtual machine
— state = set of accounts

— account = balance + (byte)code + data (+ nonce, to avoid replay attacks)
— accounts organized in Merkle-Patricia tree (“state root” = root of MPT)
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tx = ETH transfer or contract function call

43



Ethereum in a Nutshell (Execution)

- execution layer: account-based state + EVM virtual machine

state = set of accounts

account = balance + (byte)code + data (+ nonce, to avoid replay attacks)
accounts organized in Merkle-Patricia tree (“state root” = root of MPT)
tx = ETH transfer or contract function call

EVM used to execute (byte)code, modify blockchain state as needed

44



Ethereum in a Nutshell (Execution)

- execution layer: account-based state + EVM virtual machine

state = set of accounts

account = balance + (byte)code + data (+ nonce, to avoid replay attacks)
accounts organized in Merkle-Patricia tree (“state root” = root of MPT)

tx = ETH transfer or contract function call

EVM used to execute (byte)code, modify blockchain state as needed
computation measured (line-by-line of bytecode) in “gas”

45



Ethereum in a Nutshell (Execution)

- execution layer: account-based state + EVM virtual machine
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accounts organized in Merkle-Patricia tree (“state root” = root of MPT)

tx = ETH transfer or contract function call

EVM used to execute (byte)code, modify blockchain state as needed
computation measured (line-by-line of bytecode) in “gas”

tx fees = EIP-1559 (protocol-computed base fee (burned) + priority fees)
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Ethereum in a Nutshell (Execution)

- execution layer: account-based state + EVM virtual machine

state = set of accounts

account = balance + (byte)code + data (+ nonce, to avoid replay attacks)
accounts organized in Merkle-Patricia tree (“state root” = root of MPT)

tx = ETH transfer or contract function call

EVM used to execute (byte)code, modify blockchain state as needed
computation measured (line-by-line of bytecode) in “gas”

tx fees = EIP-1559 (protocol-computed base fee (burned) + priority fees)

tx dissemination via public mempool (gossipsub) or sent directly (as
private order flow) to searchers/builders
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Ethereum in a Nutshell (Rollups)

scaling: “rollup-centric roadmap”
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Ethereum in a Nutshell (Rollups)

- scaling: “rollup-centric roadmap”
— use L1 (i.e., Ethereum) for DA (i.e., data availability of rollup txs)
anyone can run full node for rollup, e.g. detect bogus state roots

post EIP-4844: rollup tx descriptions in “blobs” (expire after 18 days),
KZG commitments to blobs archived
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post EIP-4844: rollup tx descriptions in “blobs” (expire after 18 days),
KZG commitments to blobs archived

— key challenge: state root verification (SRV) problem

— optimistic rollups: innocent until proven guilty by challenger who wins a
dispute-resolution game (“fault proofs”) (=» sequencer’s stake is slashed)

L1 re-executes a single line of bytecode to determine the winner
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Ethereum in a Nutshell (Rollups)

scaling: “rollup-centric roadmap”
— use L1 (i.e., Ethereum) for DA (i.e., data availability of rollup txs)
anyone can run full node for rollup, e.g. detect bogus state roots

post EIP-4844: rollup tx descriptions in “blobs” (expire after 18 days),
KZG commitments to blobs archived

— key challenge: state root verification (SRV) problem

— optimistic rollups: innocent until proven guilty by challenger who wins a
dispute-resolution game (“fault proofs”) (=» sequencer’s stake is slashed)

L1 re-executes a single line of bytecode to determine the winner
— validity rollups: guilty until proven innocent with a SNARK for SRV
L1 verifies SNARK directly 52



Ethereum: Looking Ahead

Challenge: scale better (higher throughput, lower latency).
— hardest part = scaling execution
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— hardest part = scaling execution

Approach #1: increase capacity to support rollups.
— e.g., allow more blobs per block for additional rollup DA
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Ethereum: Looking Ahead

Challenge: scale better (higher throughput, lower latency).
— hardest part = scaling execution

Approach #1: increase capacity to support rollups.
— e.g., allow more blobs per block for additional rollup DA

Approach #2: directly scale the core Ethereum protocol.
— e.g., 100x throughput (1.8 billion gas/block), lower latency
— “preconfirmations” for sub-second latency (even with > 1M validators)
— see e.g. Justin Drake’s CBER seminar on May 8th
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Scaling the Core Ethereum Protocol

One approach: “SNARK-ify everything.”
— = turns Ethereum into a validity rollup of itself
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One approach: “SNARK-ify everything.”
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builders include (L1) tx data (in blobs) + SNARK proof in block
— perhaps collaborating with 39-party provers to do this quickly
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Scaling the Core Ethereum Protocol

One approach: “SNARK-ify everything.”
— = turns Ethereum into a validity rollup of itself
- validators outsource execution to builders (= rollup sequencers)

 Dbuilders include (L1) tx data (in blobs) + SNARK proof in block

— perhaps collaborating with 39-party provers to do this quickly

— Ethereum validators now effectively become stateless
don’t need blockchain state to verify block validity (just check SNARK)
like stateless clients, but still with consensus voting power
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Scaling the Core Ethereum Protocol (con’d)

One approach: “SNARK-ify everything.”
validators outsource execution to builders (= rollup sequencers)
builders include (L1) tx data (in blobs) + SNARK proof in block

Open issues:
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— SNARK verification now enshrined in core protocol, not a smart contract
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Scaling the Core Ethereum Protocol (con’d)

One approach: “SNARK-ify everything.”
validators outsource execution to builders (= rollup sequencers)
builders include (L1) tx data (in blobs) + SNARK proof in block

Open issues:
1. Which type(s) of SNARKSs should be accepted?
— SNARK verification now enshrined in core protocol, not a smart contract
2. Redesign the EVM to make SNARK proving/verification easier?
— e.g., recent discussion around moving from EVM to RISC V

3. Will SNARK generation ever be fast enough for this vision?



Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

buzzword: “zk co-processors”
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Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

buzzword: “zk co-processors”

Example: ML inference.

commitment z to a (possibly large) model posted on-chain

for query x and alleged output y, SNARK asserts existence of
model M with h(M) =z and M(x) =y

upshot: results of complex inference queries can be verifiably
posted on-chain (no trust required)
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Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

Example: ML inference.
— commitment z to a (possibly large) model posted on-chain

— for query x and alleged output y, SNARK asserts existence of model M
with h(M) =z and M(x) =y

— or even ML training:
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Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

Example: ML inference.
— commitment z to a (possibly large) model posted on-chain

— for query x and alleged output y, SNARK asserts existence of model M
with h(M) =z and M(x) =y

— or even ML training: w.r.t. on-chain commitment w to some data set and
commitment z to alleged training output, SNARK asserts existence of D
and M s.t. (i) h(D) = w; (ii) h(M) = z;
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Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

Example: ML inference.
— commitment z to a (possibly large) model posted on-chain

— for query x and alleged output y, SNARK asserts existence of model M
with h(M) =z and M(x) =y

— or even ML training: w.r.t. on-chain commitment w to some data set and
commitment z to alleged training output, SNARK asserts existence of D
and M s.t. (i) h(D) = w; (ii) h(M) = z; and (iii) training a model (with an
agreed-upon algorithm) with training data D results in the model M
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Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”
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Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”

- TLS: how two parties can communicate securely over Internet
— e.g. client logging into a Web site, performs operations on its account
— alas, servers do not generally sign their messages
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Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”

- TLS: how two parties can communicate securely over Internet
— e.g. client logging into a Web site, performs operations on its account
— alas, servers do not generally sign their messages

« zKTLS: proving results of such a secure communication to a third
party (without e.g. leaking your login password)
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Further Directions (Speculative)

Note: SNARKSs can be used to prove correctness of any (NP)
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”
TLS: how two parties can communicate securely over Internet

zKTLS: proving results of such a secure communication to a third
party (without e.g. leaking your login password)

— one application: getting Web2 data on-chain in verifiable way
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Epilogue

Benefits of learning a mature field:

agreed-upon models and definitions

agreement on the most important open problems
agreement on what constitutes a “solution” or “progress”
shared language and knowledge base

comprehensive textbooks, MOOCs, etc.
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Epilogue

Benefits Challenges of learning-a-mature-field about blockchains:

- agreed-upon models and definitions
+ agreement-on-the-mostimportantopenproblems
+ sharedlanguage-and-knowledge-base

Opportunity: get in on the ground floor, shape the technology!
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Upcoming Conferences in NYC

- May 12-13 @ Columbia: TLDR (The Latest in DeFi Research)

- May 19-23 in NYC: Accelerate (Solana)

« June 24-26 in Brooklyn: Permissionless |V

« August 4-6 @ Berkeley: Science of Blockchains Conference (SBC)
« December @ Columbia: Columbia Cryptoeconomics Workshop

* efc.
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THANKS!

80



