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1. Censorship-resistance.
– experimental ideas to mitigate dangers with centralized builders

2. Protocols from principles.
– recap of everything you now know about Bitcoin and Ethereum

3. “SNARK-ify everything.”
– scaling an L1 by outsourcing execution to builders via SNARKs

4. Some future directions.
– e.g., “zk co-processors” to guarantee correctness of off-chain computation
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• specialized builders submit blocks (with 
bids) to trusted relay nodes
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• specialized builders submit blocks (with 
bids) to trusted relay nodes

• relay nodes forward header of highest-
bidding valid block to current block proposer 

• proposer returns signer header to relay node, block is broadcast
• relay node broadcasts signed block over gossip network
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– specialized builders submit blocks (with 
bids) to trusted relay nodes

– relay nodes forward header of highest-
bidding valid block to current block proposer 

– proposer returns signer header to relay node, block is broadcast
– relay node broadcasts signed block over gossip network

Properties: (i) validators can’t steal MEV from builders
– txs in block unknown when proposer signs the block header

7

Proposer-Builder Separation + MEV-Boost

current block 
proposerbuilders

blocks

relay nodes

highest-
bidding 
block



– specialized builders submit blocks (with 
bids) to trusted relay nodes

– relay nodes forward header of highest-
bidding valid block to current block proposer 

– proposer returns signer header to relay node, block is broadcast
– relay node broadcasts signed block over gossip network

Properties: (i) validators can’t steal MEV from builders
– txs in block unknown when proposer signs the block header

• MEV rewards (per-unit-stake) equalized across validators
– hopefully, no economic barriers to decentralized validator set
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Question: big problem if a blockchain protocol has only a few 
validators?
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Question: big problem if a blockchain protocol has only a few 
validators? [answer: yes, largely defeats the point of a blockchain protocol]

Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?
• block-building might be an intrinsically specialized skill
• at least builders don’t control consensus, right?

– block proposer could always propose their own block if they prefer

One issue: censorship --- i.e., systematic exclusion of certain txs.
– e.g., for financial or legal/regulatory reasons
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Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?

One issue: censorship --- i.e., systematic exclusion of certain txs.

Open question: how to mitigate censorship risks.
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Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?

One issue: censorship --- i.e., systematic exclusion of certain txs.

Open question: how to mitigate censorship risks.
• idea #1: inclusion lists (IL) --- let validators designate txs whose 

inclusion is part of block validity (cf., forced inclusion in rollups)
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Question: big problem if a blockchain protocol has only a few block-
builders (but lots of validators)?

One issue: censorship --- i.e., systematic exclusion of certain txs.

Open question: how to mitigate censorship risks.
• idea #1: inclusion lists (IL) --- let validators designate txs whose 

inclusion is part of block validity (cf., forced inclusion in rollups)
• idea #2: multiple concurrent proposers (MCP) --- take union of 

multiple validator block proposals è censoring requires large 
bribes to multiple validators [Fox/Pai/Resnick 23]
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• consensus layer: Nakamoto consensus
– longest-chain consensus (detail: “longest” = “most amount of work”)
– proof-of-work sybil-resistance

• execution layer: UTXO-based (UTXO = “unspent tx output”)
– tx = inputs (previously created UTXOs) and outputs (new UTXO)
– user signatures = ECDSA or (post-Taproot) Schnorr
– tx fee = first-price auction (“bid” = diff between value of inputs, outputs)
– txs disseminated via public mempool (implemented via gossip protocol)

• light clients (commit to txs in block header via Merkle root)
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• consensus layer: Nakamoto consensus
– longest-chain consensus (detail: “longest” = “most amount of work”)
– proof-of-work sybil-resistance

• execution layer: UTXO-based (UTXO = “unspent tx output”)
– tx = inputs (previously created UTXOs) and outputs (new UTXO)
– user signatures = ECDSA or (post-Taproot) Schnorr
– tx fee = first-price auction (“bid” = diff between value of inputs, outputs)
– txs disseminated via public mempool (implemented via gossip protocol)

• light clients (commit to txs in block header via Merkle root)
• misc. trivia/lore (blocksize wars, SegWit, etc.) 29
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• consensus layer:
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• consensus layer:
– proof-of-stake sybil-resistance (1 validator = 32 ETH)
– backbone = longest-chain-type consensus (view length = 12 seconds)

• leader sequence chosen using a VRF (derived from BLS signatures)
• “LMD-GHOST” = idiosyncratic fork choice rule (not longest-chain)

– “finality gadget” = “Casper” ≈ Tendermint (but pipelined)
• effective view length = 32 slots = 6.4 minutes

– need time for e.g. signature aggregation/verification for > 1M validators!

• consistent + live in partial synchrony with 67% honest stake
• slashing for consistency, liveness violations
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• execution layer: account-based state + EVM virtual machine
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• execution layer: account-based state + EVM virtual machine
– state = set of accounts
– account = balance + (byte)code + data (+ nonce, to avoid replay attacks)
– accounts organized in Merkle-Patricia tree (“state root” = root of MPT)
– tx = ETH transfer or contract function call
– EVM used to execute (byte)code, modify blockchain state as needed
– computation measured (line-by-line of bytecode) in “gas”
– tx fees = EIP-1559 (protocol-computed base fee (burned) + priority fees)
– tx dissemination via public mempool (gossipsub) or sent directly (as 

private order flow) to searchers/builders
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• scaling: “rollup-centric roadmap”
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• scaling: “rollup-centric roadmap”
– use L1 (i.e., Ethereum) for DA (i.e., data availability of rollup txs)

• anyone can run full node for rollup, e.g. detect bogus state roots
• post EIP-4844: rollup tx descriptions in “blobs” (expire after 18 days), 

KZG commitments to blobs archived
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• scaling: “rollup-centric roadmap”
– use L1 (i.e., Ethereum) for DA (i.e., data availability of rollup txs)

• anyone can run full node for rollup, e.g. detect bogus state roots
• post EIP-4844: rollup tx descriptions in “blobs” (expire after 18 days), 

KZG commitments to blobs archived
– key challenge: state root verification (SRV) problem
– optimistic rollups: innocent until proven guilty by challenger who wins a 

dispute-resolution game (“fault proofs”) (è sequencer’s stake is slashed)
• L1 re-executes a single line of bytecode to determine the winner

– validity rollups: guilty until proven innocent with a SNARK for SRV
• L1 verifies SNARK directly 52
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Challenge: scale better (higher throughput, lower latency).
– hardest part = scaling execution
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– e.g., allow more blobs per block for additional rollup DA
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Challenge: scale better (higher throughput, lower latency).
– hardest part = scaling execution

Approach #1: increase capacity to support rollups.
– e.g., allow more blobs per block for additional rollup DA

Approach #2: directly scale the core Ethereum protocol.
– e.g., 100x throughput (1.8 billion gas/block), lower latency
– “preconfirmations” for sub-second latency (even with > 1M validators)
– see e.g. Justin Drake’s CBER seminar on May 8th
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One approach: “SNARK-ify everything.”
– ≈ turns Ethereum into a validity rollup of itself
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– perhaps collaborating with 3rd-party provers to do this quickly
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One approach: “SNARK-ify everything.”
– ≈ turns Ethereum into a validity rollup of itself

• validators outsource execution to builders (≈ rollup sequencers)
• builders include (L1) tx data (in blobs) + SNARK proof in block

– perhaps collaborating with 3rd-party provers to do this quickly
– Ethereum validators now effectively become stateless

• don’t need blockchain state to verify block validity (just check SNARK)
• like stateless clients, but still with consensus voting power
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One approach: “SNARK-ify everything.”
• validators outsource execution to builders (≈ rollup sequencers)
• builders include (L1) tx data (in blobs) + SNARK proof in block

Open issues:
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1. Which type(s) of SNARKs should be accepted?

– SNARK verification now enshrined in core protocol, not a smart contract
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2. Redesign the EVM to make SNARK proving/verification easier?

– e.g., recent discussion around moving from EVM to RISC V
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One approach: “SNARK-ify everything.”
• validators outsource execution to builders (≈ rollup sequencers)
• builders include (L1) tx data (in blobs) + SNARK proof in block

Open issues:
1. Which type(s) of SNARKs should be accepted?

– SNARK verification now enshrined in core protocol, not a smart contract
2. Redesign the EVM to make SNARK proving/verification easier?

– e.g., recent discussion around moving from EVM to RISC V
3. Will SNARK generation ever be fast enough for this vision?
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.
• buzzword: “zk co-processors”
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.
• buzzword: “zk co-processors”

Example: ML inference.
• commitment z to a (possibly large) model posted on-chain
• for query x and alleged output y, SNARK asserts existence of 

model M with h(M) = z and M(x) = y
• upshot: results of complex inference queries can be verifiably 

posted on-chain (no trust required)
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.

Example: ML inference.
– commitment z to a (possibly large) model posted on-chain
– for query x and alleged output y, SNARK asserts existence of model M 

with h(M) = z and M(x) = y
– or even ML training:
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.

Example: ML inference.
– commitment z to a (possibly large) model posted on-chain
– for query x and alleged output y, SNARK asserts existence of model M 

with h(M) = z and M(x) = y
– or even ML training: w.r.t. on-chain commitment w to some data set and 

commitment z to alleged training output, SNARK asserts existence of D 
and M s.t. (i) h(D) = w; (ii) h(M) = z; 
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.

Example: ML inference.
– commitment z to a (possibly large) model posted on-chain
– for query x and alleged output y, SNARK asserts existence of model M 

with h(M) = z and M(x) = y
– or even ML training: w.r.t. on-chain commitment w to some data set and 

commitment z to alleged training output, SNARK asserts existence of D 
and M s.t. (i) h(D) = w; (ii) h(M) = z; and (iii) training a model (with an 
agreed-upon algorithm) with training data D results in the model M
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”
• TLS: how two parties can communicate securely over Internet

– e.g. client logging into a Web site, performs operations on its account
– alas, servers do not generally sign their messages
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”
• TLS: how two parties can communicate securely over Internet

– e.g. client logging into a Web site, performs operations on its account
– alas, servers do not generally sign their messages

• zkTLS: proving results of such a secure communication to a third 
party (without e.g. leaking your login password) 74
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Note: SNARKs can be used to prove correctness of any (NP) 
computation, not just state root verification.

Example: ML inference (and maybe even ML training).

Example: “zkTLS.”
• TLS: how two parties can communicate securely over Internet
• zkTLS: proving results of such a secure communication to a third 

party (without e.g. leaking your login password)
– one application: getting Web2 data on-chain in verifiable way
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Benefits of learning a mature field:
• agreed-upon models and definitions
• agreement on the most important open problems
• agreement on what constitutes a “solution” or “progress”
• shared language and knowledge base
• comprehensive textbooks, MOOCs, etc.

76

Epilogue



Benefits Challenges of learning a mature field about blockchains:
• agreed-upon models and definitions
• agreement on the most important open problems
• agreement on what constitutes a “solution” or “progress”
• shared language and knowledge base
• comprehensive textbooks, MOOCs, etc.

77

Epilogue



Benefits Challenges of learning a mature field about blockchains:
• agreed-upon models and definitions
• agreement on the most important open problems
• agreement on what constitutes a “solution” or “progress”
• shared language and knowledge base
• comprehensive textbooks, MOOCs, etc.

Opportunity: get in on the ground floor, shape the technology!
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• May 12-13 @ Columbia: TLDR (The Latest in DeFi Research)
• May 19-23 in NYC: Accelerate (Solana)
• June 24-26 in Brooklyn: Permissionless IV
• August 4-6 @ Berkeley: Science of Blockchains Conference (SBC)
• December @ Columbia: Columbia Cryptoeconomics Workshop
• etc.
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Upcoming Conferences in NYC
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THANKS!


