
Lecture #3: Solving SMR with

Crash Faults and Synchrony

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

2

State Machine Replication (SMR)

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

Goal: a protocol that satisfies consistency and liveness.

3

State Machine Replication (SMR)

Goal: a protocol that satisfies consistency and liveness.

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

4

Consistency and Liveness

acceptable:

validator #1:

validator #2:

B1 B2 B3

B1 B2

Goal: a protocol that satisfies consistency and liveness.

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

5

Consistency and Liveness

unacceptable:

validator #1:

validator #2:

B1 B2 B3

B1 B2 B’3

Goal: a protocol that satisfies consistency and liveness.

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

Liveness: every valid transaction submitted by a client eventually

added to validators’ local histories/chains.
6

Consistency and Liveness

unacceptable:

validator #1:

validator #2:

B1 B2 B3

B1 B2 B’3

7

A Road Map to Practical SMR Protocols

easier harder

8

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

easier harder

9

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network

easier harder

10

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network
Byzantine faults +

asynchronous network

easier harder

Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.

2. More impossibility results (i.e., SMR unsolvable) toward the right.

3. Simpler protocols toward the left, more complex toward the right.
11

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network
Byzantine faults +

asynchronous network

easier harder

1. The challenge of crash faults.

– simple, but already messes up Protocol A from last time

2. Solving SMR with crash faults and a synchronous network.

– already forces us to introduce some important design principles

– good warm-up for more challenging and blockchain-relevant settings

3. Asynchrony: challenges and compromises.

– an impossibility result motivates a “sweet spot” synchronous-

asynchronous hybrid model

12

Goals for Lecture #3

Crash faults: every validator correctly executes the protocol

except it may crash (forever) at some point.

13

SMR: Crash Faults and Synchrony

Crash faults: every validator correctly executes the protocol

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg

delivered in ≤ ∆ time steps

14

SMR: Crash Faults and Synchrony

Crash faults: every validator correctly executes the protocol

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg

delivered in ≤ ∆ time steps

Recall: Protocol A [code run by every validator]

15

SMR: Crash Faults and Synchrony

Crash faults: every validator correctly executes the protocol

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg

delivered in ≤ ∆ time steps

Recall: Protocol A [code run by every validator]

• define “view” = ∆ consecutive timesteps

16

SMR: Crash Faults and Synchrony

Crash faults: every validator correctly executes the protocol

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg

delivered in ≤ ∆ time steps

Recall: Protocol A [code run by every validator]

• define “view” = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock
17

SMR: Crash Faults and Synchrony

Recall: Protocol A [code run by every validator]

• define view = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

18

SMR: Crash Faults and Synchrony

Recall: Protocol A [code run by every validator]

• define view = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– leader assembles block B = all not-yet-included valid txs it knows about

– leader sends B to all other validators

19

SMR: Crash Faults and Synchrony

Recall: Protocol A [code run by every validator]

• define view = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– leader assembles block B = all not-yet-included valid txs it knows about

– leader sends B to all other validators

• at time ∆ ⋅ 𝑣 + Δ: [i.e., at end of view v, before view v+1]

– if validator i received a block B from the leader by this time:

• validator i appends B to its local history

20

SMR: Crash Faults and Synchrony

Problem: leader might crash after sending B to some but not all

validators [➔ could lead to a consistency violation].

21

Why Protocol A Can’t Handle Crashes

B1

B1

Problem: leader might crash after sending B to some but not all

validators [➔ could lead to a consistency violation].

22

Why Protocol A Can’t Handle Crashes

B1 B2

B1 B2

Problem: leader might crash after sending B to some but not all

validators [➔ could lead to a consistency violation].

23

Why Protocol A Can’t Handle Crashes

B1 B2 B3

B1 B2

(leader crashed)

Problem: leader might crash after sending B to some but not all

validators [➔ could lead to a consistency violation].

24

Why Protocol A Can’t Handle Crashes

B1 B2 B3

B1 B2 B4

B4

Problem: leader might crash after sending B to some but not all

validators [➔ could lead to a consistency violation].

Fix:

25

Why Protocol A Can’t Handle Crashes

B1 B2 B3

B1 B2 B4

B4

Problem: leader might crash after sending B to some but not all

validators [➔ could lead to a consistency violation].

Fix:

1. validators update next leader as to their current history

– to make sure leader is up-to-date before proposing

26

Why Protocol A Can’t Handle Crashes

B1 B2 B3

B1 B2 B4

B4

Problem: leader might crash after sending B to some but not all

validators [➔ could lead to a consistency violation].

Fix:

1. validators update next leader as to their current history

– to make sure leader is up-to-date before proposing

2. send entire history/chain, not just latest block

– crashes ➔ validator may learn about many new blocks at same time

– will make more practical using commitments in Part II 27

Why Protocol A Can’t Handle Crashes

B1 B2 B3

B1 B2 B4

B4

Protocol B [code run by every validator]

28

SMR: Crash Faults and Synchrony

Protocol B [code run by every validator]

• define view = 2∆ consecutive timesteps

• validator i maintains local chain Ci (i.e., sequence of blocks)

• validators take turns as leader (round-robin, one per view)

29

SMR: Crash Faults and Synchrony

Protocol B [code run by every validator]

• define view = 2∆ consecutive timesteps

• validator i maintains local chain Ci (i.e., sequence of blocks)

• validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ

30

SMR: Crash Faults and Synchrony

Protocol B [code run by every validator]

– define view = 2∆ consecutive timesteps

– validator i maintains local chain Ci (i.e., sequence of blocks)

– validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ

• at time ∆ ⋅ 𝑣 + Δ:

– let C = longest chain received by ℓ in this view

– ℓ assembles B := all not-yet-included (in C) valid txs it knows about

– ℓ sends C* := (C,B) to all other validators
31

SMR: Crash Faults and Synchrony

Protocol B [code run by every validator]

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ

• at time ∆ ⋅ 𝑣 + Δ:

– let C = longest chain received by ℓ in this view

– ℓ assembles B := all not-yet-included (in C) valid txs it knows about

– ℓ sends C* := (C,B) to all other validators

32

SMR: Crash Faults and Synchrony

Protocol B [code run by every validator]

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ

• at time ∆ ⋅ 𝑣 + Δ:

– let C = longest chain received by ℓ in this view

– ℓ assembles B := all not-yet-included (in C) valid txs it knows about

– ℓ sends C* := (C,B) to all other validators

• at time ∆ ⋅ 𝑣 + 2Δ: [i.e., at end of view v, before view v+1]

– if validator i receives a new chain C* from ℓ by this time:

• validator i updates Ci := C*
33

SMR: Crash Faults and Synchrony

34

Picture of One View

all validators ℓ

Ci’s

∆

35

Picture of One View

all validators ℓ all validators

Ci’s C*

∆ ∆

36

Zooming Out

view v

37

Zooming Out

view v view v+1

38

Zooming Out

view v view v+1 view v+2

39

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

40

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

41

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

42

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

(validator 1 is next leader,

prepares its proposal)

43

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

(validator 1 crashes after sending its

proposal only to validator 4)

44

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

(validator 4 informs next leader

about its current chain)

45

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

(validator 2 is next leader,

prepares its proposal)

B3 B4

46

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

B3 B4

(validator 2 crashes after sending its

proposal only to validator 4)

B4

47

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

B3 B4

B4

(validator 4 informs next leader

about its current chain)

48

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

B3 B4

B4

(validator 3 is next leader,

prepares its proposal)
B3 B4 B5

49

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

B3 B4

B4

(if leader doesn’t crash,

all uncrashed validators

adopt its proposal)B3 B4 B5

B5

Comments:

50

Protocol B: Proof of Consistency

Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols

51

Protocol B: Proof of Consistency

Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols

• but consensus protocol design driven by correctness proofs

– will help you understand why famous consensus protocols like

Paxos/Raft or Tendermint work the way they do

52

Protocol B: Proof of Consistency

Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols

• but consensus protocol design driven by correctness proofs

– will help you understand why famous consensus protocols like

Paxos/Raft or Tendermint work the way they do

• a protocol without a proof is probably buggy

– embarrassing number of bugs in early drafts of these lectures!

53

Protocol B: Proof of Consistency

Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols

• but consensus protocol design driven by correctness proofs

– will help you understand why famous consensus protocols like

Paxos/Raft or Tendermint work the way they do

• a protocol without a proof is probably buggy

– embarrassing number of bugs in early drafts of these lectures!

• and bugs in a global consensus protocol likely to be exposed

– run for multiple years under widely varying workloads/conditions
54

Protocol B: Proof of Consistency

Tricky point: could be multiple versions of e.g. block #3 over

lifetime of protocol (with earlier version forgotten with crashes).

55

Protocol B: Proof of Consistency

Tricky point: could be multiple versions of e.g. block #3 over

lifetime of protocol (with earlier version forgotten with crashes).

Recall: validators’ local chains are consistent all prefixes of a

common chain (i.e., no forks).

56

Protocol B: Proof of Consistency

B1 B2

B3

B’3

fork!

Tricky point: could be multiple versions of e.g. block #3 over

lifetime of protocol (with earlier version forgotten with crashes).

Recall: validators’ local chains are consistent all prefixes of a

common chain (i.e., no forks).

Claim: at each time step, the chains of the not-yet-crashed

validators are consistent.

57

Protocol B: Proof of Consistency

B1 B2

B3

B’3

fork!

Claim: at each time step, the chains of the not-yet-crashed

validators are consistent.

58

Protocol B: Proof of Consistency

Claim: at each time step, the chains of the not-yet-crashed

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

59

Protocol B: Proof of Consistency

Claim: at each time step, the chains of the not-yet-crashed

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by

the leader are consistent (i.e., prefixes of a common chain)

– these were the local chains of all not-yet-crashed validators at time ∆ ⋅ 𝑣

– leader receives all such Ci’s by time ∆ ⋅ 𝑣 + ∆ (due to synchrony)

60

Protocol B: Proof of Consistency

Claim: at each time step, the chains of the not-yet-crashed

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by

the leader are consistent (i.e., prefixes of a common chain)

– these were the local chains of all not-yet-crashed validators at time ∆ ⋅ 𝑣

– leader receives all such Ci’s by time ∆ ⋅ 𝑣 + ∆ (due to synchrony)

• C will extend all these Ci’s (will be the longest of them)

61

Protocol B: Proof of Consistency

Claim: at each time step, the chains of the not-yet-crashed

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by

the leader are consistent (i.e., prefixes of a common chain)

– these were the local chains of all not-yet-crashed validators at time ∆ ⋅ 𝑣

– leader receives all such Ci’s by time ∆ ⋅ 𝑣 + ∆ (due to synchrony)

• C will extend all these Ci’s (will be the longest of them)

• C* extends all these Ci’s

62

Protocol B: Proof of Consistency

Claim: at each time step, the chains of the not-yet-crashed

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by

the leader are consistent (i.e., prefixes of a common chain)

• C will extend all these Ci’s (will be the longest of them)

• C* extends all these Ci’s

• no matter which validators update their Ci’s in this view, will stay

consistent

63

Protocol B: Proof of Consistency

Suppose tx z known to some non-faulty validator i at time step t.

64

Protocol B: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view for which i is the leader (must exist)

65

Protocol B: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view for which i is the leader (must exist)

• i’s proposal C* := (C,B) in view v will include the tx z

– if not already in C, will put it in the new block B

66

Protocol B: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view for which i is the leader (must exist)

• i’s proposal C* := (C,B) in view v will include the tx z

– if not already in C, will put it in the new block B

• since i is non-faulty, sends proposal C* to all validators

67

Protocol B: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view for which i is the leader (must exist)

• i’s proposal C* := (C,B) in view v will include the tx z

– if not already in C, will put it in the new block B

• since i is non-faulty, sends proposal C* to all validators

• C* adopted by all (uncrashed) validators

68

Protocol B: Proof of Liveness

69

Takeaways/Design Patterns

1. views = repeated attempts to finalize new transactions.

70

Takeaways/Design Patterns

1. views = repeated attempts to finalize new transactions.

2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin (variation: chosen randomly)

71

Takeaways/Design Patterns

1. views = repeated attempts to finalize new transactions.

2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin (variation: chosen randomly)

3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view

72

Takeaways/Design Patterns

1. views = repeated attempts to finalize new transactions.

2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin (variation: chosen randomly)

3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view

4. leader should be as up-to-date as all non-faulty validators.

– otherwise, leader’s out-of-date proposal might conflict with the local

chains of more up-to-date non-faulty validators

– reason for the “catch-up” messages in first half of view in Protocol B

73

Takeaways/Design Patterns

1. views = repeated attempts to finalize new transactions.

2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin (variation: chosen randomly)

3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view

4. leader should be as up-to-date as all non-faulty validators.

– otherwise, leader’s out-of-date proposal might conflict with the local

chains of more up-to-date non-faulty validators

– reason for the “catch-up” messages in first half of view in Protocol B

5. distributed computing is hard! [no proof ➔ probably buggy!]
74

Takeaways/Design Patterns

75

A Road Map to Practical SMR Protocols

crash faults +

synchronous network

crash faults +

asynchronous network
Byzantine faults +

asynchronous network

easier harder

Question: Is Protocol B still consistent w/unbounded msg delays?

76

The Challenges of Asynchrony

Question: Is Protocol B still consistent w/unbounded msg delays?

Answer: No!

77

The Challenges of Asynchrony

Question: Is Protocol B still consistent w/unbounded msg delays?

Answer: No! Reason: leader may not hear about all Ci’s of non-

faulty validators by the time it makes a proposal.

• if Ci = B1→B2→B3 but leader only hears about B1→B2, might

propose B1→B2→B’3, potentially leading to consistency violation

78

The Challenges of Asynchrony

Question: Is Protocol B still consistent w/unbounded msg delays?

Answer: No! Reason: leader may not hear about all Ci’s of non-

faulty validators by the time it makes a proposal.

• if Ci = B1→B2→B3 but leader only hears about B1→B2, might

propose B1→B2→B’3, potentially leading to consistency violation

Key challenge: how to ensure leader knows about the Ci’s of all

non-faulty validators by the time it makes a proposal (despite

unpredictable message delays)?

79

The Challenges of Asynchrony

Question: Is Protocol B still consistent w/unbounded msg delays?

Answer: No! Reason: leader may not hear about all Ci’s of non-

faulty validators by the time it makes a proposal.

• if Ci = B1→B2→B3 but leader only hears about B1→B2, might

propose B1→B2→B’3, potentially leading to consistency violation

Key challenge: how to ensure leader knows about the Ci’s of all

non-faulty validators by the time it makes a proposal (despite

unpredictable message delays)?

– will resolve next lecture (add friction to proposing and to finalizing new

transactions, also assume strict majority of non-faulty validators)
80

The Challenges of Asynchrony

Question: how to model an “unreliable network”?

81

Modeling Asynchrony

Question: how to model an “unreliable network”?

Bad answer: Make ∆ really big.

• avoids the issue, leads to completely impractical protocols

82

Modeling Asynchrony

Question: how to model an “unreliable network”?

Bad answer: Make ∆ really big.

• avoids the issue, leads to completely impractical protocols

Ambitious answer: no assumptions on message delays at all (in

effect, controlled by a worst-case adversary).

• subject to every message eventually getting delivered

• called the asynchronous model

83

Modeling Asynchrony

Question: how to model an “unreliable network”?

Bad answer: Make ∆ really big.

– avoids the issue, leads to completely impractical protocols

Ambitious answer: no assumptions on message delays at all.

– subject to every message eventually getting delivered

– called the asynchronous model

FLP Theorem (‘85): even with the threat of a single crash fault,

can’t solve SMR in the asynchronous model.

– see Friday bonus lecture for discussion and proof 84

Modeling Asynchrony

Perspective: impossibility results like the FLP Theorem give

guidance on how to compromise to make progress.

85

Getting Around the FLP Theorem

Perspective: impossibility results like the FLP Theorem give

guidance on how to compromise to make progress.

Possible compromises:

1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models

86

Getting Around the FLP Theorem

Perspective: impossibility results like the FLP Theorem give

guidance on how to compromise to make progress.

Possible compromises:

1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models

2. Solve a problem easier than SMR (e.g., with relaxed

consistency requirements).

– agreement on total ordering of txs is overkill in some applications

87

Getting Around the FLP Theorem

Perspective: impossibility results like the FLP Theorem give

guidance on how to compromise to make progress.

Possible compromises:

1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models

2. Solve a problem easier than SMR (e.g., with relaxed

consistency requirements).

– agreement on total ordering of txs is overkill in some applications

3. Use randomized protocols, solve SMR with high probability.

– rich academic literature on this topic
88

Getting Around the FLP Theorem

	Slide 1: Lecture #3: Solving SMR with Crash Faults and Synchrony
	Slide 2: State Machine Replication (SMR)
	Slide 3: State Machine Replication (SMR)
	Slide 4: Consistency and Liveness
	Slide 5: Consistency and Liveness
	Slide 6: Consistency and Liveness
	Slide 7: A Road Map to Practical SMR Protocols
	Slide 8: A Road Map to Practical SMR Protocols
	Slide 9: A Road Map to Practical SMR Protocols
	Slide 10: A Road Map to Practical SMR Protocols
	Slide 11: A Road Map to Practical SMR Protocols
	Slide 12: Goals for Lecture #3
	Slide 13: SMR: Crash Faults and Synchrony
	Slide 14: SMR: Crash Faults and Synchrony
	Slide 15: SMR: Crash Faults and Synchrony
	Slide 16: SMR: Crash Faults and Synchrony
	Slide 17: SMR: Crash Faults and Synchrony
	Slide 18: SMR: Crash Faults and Synchrony
	Slide 19: SMR: Crash Faults and Synchrony
	Slide 20: SMR: Crash Faults and Synchrony
	Slide 21: Why Protocol A Can’t Handle Crashes
	Slide 22: Why Protocol A Can’t Handle Crashes
	Slide 23: Why Protocol A Can’t Handle Crashes
	Slide 24: Why Protocol A Can’t Handle Crashes
	Slide 25: Why Protocol A Can’t Handle Crashes
	Slide 26: Why Protocol A Can’t Handle Crashes
	Slide 27: Why Protocol A Can’t Handle Crashes
	Slide 28: SMR: Crash Faults and Synchrony
	Slide 29: SMR: Crash Faults and Synchrony
	Slide 30: SMR: Crash Faults and Synchrony
	Slide 31: SMR: Crash Faults and Synchrony
	Slide 32: SMR: Crash Faults and Synchrony
	Slide 33: SMR: Crash Faults and Synchrony
	Slide 34: Picture of One View
	Slide 35: Picture of One View
	Slide 36: Zooming Out
	Slide 37: Zooming Out
	Slide 38: Zooming Out
	Slide 39: Protocol B: An Example Execution
	Slide 40: Protocol B: An Example Execution
	Slide 41: Protocol B: An Example Execution
	Slide 42: Protocol B: An Example Execution
	Slide 43: Protocol B: An Example Execution
	Slide 44: Protocol B: An Example Execution
	Slide 45: Protocol B: An Example Execution
	Slide 46: Protocol B: An Example Execution
	Slide 47: Protocol B: An Example Execution
	Slide 48: Protocol B: An Example Execution
	Slide 49: Protocol B: An Example Execution
	Slide 50: Protocol B: Proof of Consistency
	Slide 51: Protocol B: Proof of Consistency
	Slide 52: Protocol B: Proof of Consistency
	Slide 53: Protocol B: Proof of Consistency
	Slide 54: Protocol B: Proof of Consistency
	Slide 55: Protocol B: Proof of Consistency
	Slide 56: Protocol B: Proof of Consistency
	Slide 57: Protocol B: Proof of Consistency
	Slide 58: Protocol B: Proof of Consistency
	Slide 59: Protocol B: Proof of Consistency
	Slide 60: Protocol B: Proof of Consistency
	Slide 61: Protocol B: Proof of Consistency
	Slide 62: Protocol B: Proof of Consistency
	Slide 63: Protocol B: Proof of Consistency
	Slide 64: Protocol B: Proof of Liveness
	Slide 65: Protocol B: Proof of Liveness
	Slide 66: Protocol B: Proof of Liveness
	Slide 67: Protocol B: Proof of Liveness
	Slide 68: Protocol B: Proof of Liveness
	Slide 69: Takeaways/Design Patterns
	Slide 70: Takeaways/Design Patterns
	Slide 71: Takeaways/Design Patterns
	Slide 72: Takeaways/Design Patterns
	Slide 73: Takeaways/Design Patterns
	Slide 74: Takeaways/Design Patterns
	Slide 75: A Road Map to Practical SMR Protocols
	Slide 76: The Challenges of Asynchrony
	Slide 77: The Challenges of Asynchrony
	Slide 78: The Challenges of Asynchrony
	Slide 79: The Challenges of Asynchrony
	Slide 80: The Challenges of Asynchrony
	Slide 81: Modeling Asynchrony
	Slide 82: Modeling Asynchrony
	Slide 83: Modeling Asynchrony
	Slide 84: Modeling Asynchrony
	Slide 85: Getting Around the FLP Theorem
	Slide 86: Getting Around the FLP Theorem
	Slide 87: Getting Around the FLP Theorem
	Slide 88: Getting Around the FLP Theorem

