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SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs 

(a.k.a. “log” or “history”)
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SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs 

(a.k.a. “log” or “history”)

Goal: a protocol that satisfies consistency and liveness.

3

State Machine Replication (SMR)



Goal: a protocol that satisfies consistency and liveness.

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!
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Goal: a protocol that satisfies consistency and liveness.

Consistency: all validators agree on a transaction sequence.

• ok if some lag behind, but no disagreements allowed!

Liveness: every valid transaction submitted by a client eventually 

added to validators’ local histories/chains.
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B1 B2 B3

B1 B2 B’3
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Expectations:

1. More positive results (i.e., good SMR protocols) toward the left.

2. More impossibility results (i.e., SMR unsolvable) toward the right.

3. Simpler protocols toward the left, more complex toward the right.
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1. The challenge of crash faults.

– simple, but already messes up Protocol A from last time

2. Solving SMR with crash faults and a synchronous network. 

– already forces us to introduce some important design principles

– good warm-up for more challenging and blockchain-relevant settings

3. Asynchrony: challenges and compromises.

– an impossibility result motivates a “sweet spot” synchronous-

asynchronous hybrid model
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Crash faults: every validator correctly executes the protocol 

except it may crash (forever) at some point.
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Crash faults: every validator correctly executes the protocol 

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg 

delivered in ≤ ∆ time steps
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Crash faults: every validator correctly executes the protocol 

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg 

delivered in ≤ ∆ time steps

Recall: Protocol A   [code run by every validator]
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Crash faults: every validator correctly executes the protocol 

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg 

delivered in ≤ ∆ time steps

Recall: Protocol A   [code run by every validator]

• define “view” = ∆ consecutive timesteps
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Crash faults: every validator correctly executes the protocol 

except it may crash (forever) at some point.

Synchronous network: for known parameter ∆, every msg 

delivered in ≤ ∆ time steps

Recall: Protocol A   [code run by every validator]

• define “view” = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

– plays the role of a temporary dictator (to coordinate others)

– recall assumptions of known validator set, shared global clock
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Recall: Protocol A   [code run by every validator]

• define view = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

18

SMR: Crash Faults and Synchrony



Recall: Protocol A   [code run by every validator]

• define view = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– leader assembles block B = all not-yet-included valid txs it knows about

– leader sends B to all other validators
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Recall: Protocol A   [code run by every validator]

• define view = ∆ consecutive timesteps

• validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– leader assembles block B = all not-yet-included valid txs it knows about

– leader sends B to all other validators

• at time ∆ ⋅ 𝑣 + Δ: [i.e., at end of view v, before view v+1]

– if validator i received a block B from the leader by this time:

• validator i appends B to its local history
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Problem: leader might crash after sending B to some but not all 

validators [➔ could lead to a consistency violation].
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Problem: leader might crash after sending B to some but not all 

validators [➔ could lead to a consistency violation].
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Problem: leader might crash after sending B to some but not all 

validators [➔ could lead to a consistency violation].
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Problem: leader might crash after sending B to some but not all 

validators [➔ could lead to a consistency violation].

24

Why Protocol A Can’t Handle Crashes

B1 B2 B3

B1 B2 B4

B4



Problem: leader might crash after sending B to some but not all 

validators [➔ could lead to a consistency violation].

Fix:
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Problem: leader might crash after sending B to some but not all 

validators [➔ could lead to a consistency violation].

Fix:

1. validators update next leader as to their current history

– to make sure leader is up-to-date before proposing
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Problem: leader might crash after sending B to some but not all 

validators [➔ could lead to a consistency violation].

Fix:

1. validators update next leader as to their current history

– to make sure leader is up-to-date before proposing

2. send entire history/chain, not just latest block

– crashes ➔ validator may learn about many new blocks at same time

– will make more practical using commitments in Part II 27
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Protocol B    [code run by every validator]
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Protocol B    [code run by every validator]

• define view = 2∆ consecutive timesteps

• validator i maintains local chain Ci  (i.e., sequence of blocks) 

• validators take turns as leader (round-robin, one per view)
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Protocol B    [code run by every validator]

• define view = 2∆ consecutive timesteps

• validator i maintains local chain Ci  (i.e., sequence of blocks) 

• validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ
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Protocol B    [code run by every validator]

– define view = 2∆ consecutive timesteps

– validator i maintains local chain Ci  (i.e., sequence of blocks) 

– validators take turns as leader (round-robin, one per view)

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ

• at time ∆ ⋅ 𝑣 + Δ: 

– let C = longest chain received by ℓ in this view

– ℓ assembles B := all not-yet-included (in C) valid txs it knows about

– ℓ sends C* := (C,B) to all other validators
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Protocol B    [code run by every validator]

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ

• at time ∆ ⋅ 𝑣 + Δ: 

– let C = longest chain received by ℓ in this view

– ℓ assembles B := all not-yet-included (in C) valid txs it knows about

– ℓ sends C* := (C,B) to all other validators
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Protocol B    [code run by every validator]

• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends current chain Ci to v’s leader ℓ

• at time ∆ ⋅ 𝑣 + Δ: 

– let C = longest chain received by ℓ in this view

– ℓ assembles B := all not-yet-included (in C) valid txs it knows about

– ℓ sends C* := (C,B) to all other validators

• at time ∆ ⋅ 𝑣 + 2Δ: [i.e., at end of view v, before view v+1]

– if validator i receives a new chain C* from ℓ by this time:

• validator i updates Ci := C*
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Protocol B: An Example Execution
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prepares its proposal)
B3 B4 B5



49

Protocol B: An Example Execution

validator 1:

validator 2:

validator 3:

validator 4:

B1

B1

B1

B1

B2

B2

B2

B2

B3

B3

B3 B4
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(if leader doesn’t crash, 

all uncrashed validators 

adopt its proposal)B3 B4 B5
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Comments:
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Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols
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Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols

• but consensus protocol design driven by correctness proofs

– will help you understand why famous consensus protocols like 

Paxos/Raft or Tendermint work the way they do
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Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols

• but consensus protocol design driven by correctness proofs

– will help you understand why famous consensus protocols like 

Paxos/Raft or Tendermint work the way they do

• a protocol without a proof is probably buggy

– embarrassing number of bugs in early drafts of these lectures!
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Comments:

• not a theory class, not trying to train you to do your own proofs

– though I am trying to train you to recognize broken protocols

• but consensus protocol design driven by correctness proofs

– will help you understand why famous consensus protocols like 

Paxos/Raft or Tendermint work the way they do

• a protocol without a proof is probably buggy

– embarrassing number of bugs in early drafts of these lectures!

• and bugs in a global consensus protocol likely to be exposed

– run for multiple years under widely varying workloads/conditions
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Tricky point: could be multiple versions of e.g. block #3 over 

lifetime of protocol (with earlier version forgotten with crashes).
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Tricky point: could be multiple versions of e.g. block #3 over 

lifetime of protocol (with earlier version forgotten with crashes).

Recall: validators’ local chains are consistent  all prefixes of a 

common chain (i.e., no forks).
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Tricky point: could be multiple versions of e.g. block #3 over 

lifetime of protocol (with earlier version forgotten with crashes).

Recall: validators’ local chains are consistent  all prefixes of a 

common chain (i.e., no forks).

Claim: at each time step, the chains of the not-yet-crashed 

validators are consistent.
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Claim: at each time step, the chains of the not-yet-crashed 

validators are consistent.
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Claim: at each time step, the chains of the not-yet-crashed 

validators are consistent.

• proceed by induction on the number of timesteps (true initially)
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Claim: at each time step, the chains of the not-yet-crashed 

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by 

the leader are consistent (i.e., prefixes of a common chain)

– these were the local chains of all not-yet-crashed validators at time ∆ ⋅ 𝑣 

– leader receives all such Ci’s by time ∆ ⋅ 𝑣 + ∆ (due to synchrony)
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Claim: at each time step, the chains of the not-yet-crashed 

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by 

the leader are consistent (i.e., prefixes of a common chain)

– these were the local chains of all not-yet-crashed validators at time ∆ ⋅ 𝑣 

– leader receives all such Ci’s by time ∆ ⋅ 𝑣 + ∆ (due to synchrony)

• C will extend all these Ci’s  (will be the longest of them)
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Claim: at each time step, the chains of the not-yet-crashed 

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by 

the leader are consistent (i.e., prefixes of a common chain)

– these were the local chains of all not-yet-crashed validators at time ∆ ⋅ 𝑣 

– leader receives all such Ci’s by time ∆ ⋅ 𝑣 + ∆ (due to synchrony)

• C will extend all these Ci’s  (will be the longest of them)

• C* extends all these Ci’s
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Claim: at each time step, the chains of the not-yet-crashed 

validators are consistent.

• proceed by induction on the number of timesteps (true initially)

• in view v, by the inductive hypothesis, all the Ci’s received by 

the leader are consistent (i.e., prefixes of a common chain)

• C will extend all these Ci’s  (will be the longest of them)

• C* extends all these Ci’s

• no matter which validators update their Ci’s in this view, will stay 

consistent 
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Suppose tx z known to some non-faulty validator i at time step t. 
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Suppose tx z known to some non-faulty validator i at time step t. 

• let v be the next view for which i is the leader (must exist)
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Suppose tx z known to some non-faulty validator i at time step t. 

• let v be the next view for which i is the leader (must exist)

• i’s proposal C* := (C,B) in view v will include the tx z

– if not already in C, will put it in the new block B
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Suppose tx z known to some non-faulty validator i at time step t. 

• let v be the next view for which i is the leader (must exist)

• i’s proposal C* := (C,B) in view v will include the tx z

– if not already in C, will put it in the new block B

• since i is non-faulty, sends proposal C* to all validators
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Suppose tx z known to some non-faulty validator i at time step t. 

• let v be the next view for which i is the leader (must exist)

• i’s proposal C* := (C,B) in view v will include the tx z

– if not already in C, will put it in the new block B

• since i is non-faulty, sends proposal C* to all validators

• C* adopted by all (uncrashed) validators
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1. views = repeated attempts to finalize new transactions.

2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin  (variation: chosen randomly)

3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view
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1. views = repeated attempts to finalize new transactions.

2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin  (variation: chosen randomly)

3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view

4. leader should be as up-to-date as all non-faulty validators.

– otherwise, leader’s out-of-date proposal might conflict with the local 

chains of more up-to-date non-faulty validators

– reason for the “catch-up” messages in first half of view in Protocol B
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1. views = repeated attempts to finalize new transactions.

2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin  (variation: chosen randomly)

3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view

4. leader should be as up-to-date as all non-faulty validators.

– otherwise, leader’s out-of-date proposal might conflict with the local 

chains of more up-to-date non-faulty validators

– reason for the “catch-up” messages in first half of view in Protocol B

5. distributed computing is hard!  [no proof ➔ probably buggy!]
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Question: Is Protocol B still consistent w/unbounded msg delays?
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Answer: No! 
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Question: Is Protocol B still consistent w/unbounded msg delays?

Answer: No! Reason: leader may not hear about all Ci’s of non-

faulty validators by the time it makes a proposal.

• if Ci = B1→B2→B3 but leader only hears about B1→B2, might 

propose B1→B2→B’3, potentially leading to consistency violation
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Question: Is Protocol B still consistent w/unbounded msg delays?

Answer: No! Reason: leader may not hear about all Ci’s of non-

faulty validators by the time it makes a proposal.

• if Ci = B1→B2→B3 but leader only hears about B1→B2, might 

propose B1→B2→B’3, potentially leading to consistency violation

Key challenge: how to ensure leader knows about the Ci’s of all 

non-faulty validators by the time it makes a proposal (despite 

unpredictable message delays)?
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Question: Is Protocol B still consistent w/unbounded msg delays?

Answer: No! Reason: leader may not hear about all Ci’s of non-

faulty validators by the time it makes a proposal.

• if Ci = B1→B2→B3 but leader only hears about B1→B2, might 

propose B1→B2→B’3, potentially leading to consistency violation

Key challenge: how to ensure leader knows about the Ci’s of all 

non-faulty validators by the time it makes a proposal (despite 

unpredictable message delays)?

– will resolve next lecture (add friction to proposing and to finalizing new 

transactions, also assume strict majority of non-faulty validators)
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Question: how to model an “unreliable network”?
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Question: how to model an “unreliable network”?

Bad answer: Make ∆ really big.

• avoids the issue, leads to completely impractical protocols
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Question: how to model an “unreliable network”?

Bad answer: Make ∆ really big.

• avoids the issue, leads to completely impractical protocols

Ambitious answer: no assumptions on message delays at all (in 

effect, controlled by a worst-case adversary).

• subject to every message eventually getting delivered

• called the asynchronous model
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Question: how to model an “unreliable network”?

Bad answer: Make ∆ really big.

– avoids the issue, leads to completely impractical protocols

Ambitious answer: no assumptions on message delays at all.

– subject to every message eventually getting delivered

– called the asynchronous model

FLP Theorem (‘85): even with the threat of a single crash fault, 

can’t solve SMR in the asynchronous model.

– see Friday bonus lecture for discussion and proof 84
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Perspective: impossibility results like the FLP Theorem give 

guidance on how to compromise to make progress.
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Perspective: impossibility results like the FLP Theorem give 

guidance on how to compromise to make progress.

Possible compromises: 

1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models
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Perspective: impossibility results like the FLP Theorem give 

guidance on how to compromise to make progress.

Possible compromises: 

1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models

2. Solve a problem easier than SMR (e.g., with relaxed 

consistency requirements).

– agreement on total ordering of txs is overkill in some applications
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Perspective: impossibility results like the FLP Theorem give 

guidance on how to compromise to make progress.

Possible compromises: 

1. Pull back from asynchrony to “partial synchrony” (next lecture).

– “sweet spot” hybrid of the synchronous, asynchronous models

2. Solve a problem easier than SMR (e.g., with relaxed 

consistency requirements).

– agreement on total ordering of txs is overkill in some applications

3. Use randomized protocols, solve SMR with high probability.

– rich academic literature on this topic
88
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