
Lecture #4: Solving SMR with
Crash Faults in Partial Synchrony:

The Essence of Paxos & Raft

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. Understand the “partially synchronous” model.
– useful “sweet spot” between the synchronous, asynchronous models

2. Limits on what is possible.
– no hope unless a strict majority of validators are non-faulty

3. The Paxos/Raft protocol and its guarantees.
– widely used in production (e.g. see the Raft Wikipedia page)

2

Goals for Lecture #4

SMR: version of consensus appropriate for a blockchain protocol.
• “state machine” = for us, current state of virtual machine
• “replication” = all validators perform same state transitions
• “clients” submit transactions (“txs”) to validators
• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

Goal: a protocol that
satisfies consistency
and liveness.

3

State Machine Replication (SMR)

4

A Road Map to Practical SMR Protocols

crash faults +
synchronous network

crash faults +
asynchronous network

Byzantine faults +
asynchronous network

easier harder

Lecture #3: Protocol B solves SMR with crash faults in synchrony.

5

A Road Map to Practical SMR Protocols

crash faults +
synchronous network

crash faults +
asynchronous network

Byzantine faults +
asynchronous network

easier harder

Lecture #3: Protocol B solves SMR with crash faults in synchrony.

FLP Theorem: can’t solve SMR in the asynchronous model with the
threat of a single crash fault.

6

A Road Map to Practical SMR Protocols

crash faults +
synchronous network

crash faults +
asynchronous network

Byzantine faults +
asynchronous network

easier harder

Lecture #3: Protocol B solves SMR with crash faults in synchrony.

FLP Theorem: can’t solve SMR in the asynchronous model with the
threat of a single crash fault.

7

A Road Map to Practical SMR Protocols

crash faults +
synchronous network

crash faults +
asynchronous partially
synchronous network

Byzantine faults +
asynchronous partially
synchronous network

easier harder

Idea: want to accommodate unexpected outages/attacks (unlike
synchronous model). But they must end at some point, right?

8

The Partially Synchronous Model (Informal)

Idea: want to accommodate unexpected outages/attacks (unlike
synchronous model). But they must end at some point, right?

Revised goals:
• under “normal conditions,” guaranteed consistency + liveness

9

The Partially Synchronous Model (Informal)

Idea: want to accommodate unexpected outages/attacks (unlike
synchronous model). But they must end at some point, right?

Revised goals:
• under “normal conditions,” guaranteed consistency + liveness
• under attack/outage, give up liveness only

– so protocol may stall when there’s something wrong
– FLP theorem implies must give up either consistency or liveness
– ideally, no assumptions on attack/outage other than finite duration

10

The Partially Synchronous Model (Informal)

Idea: want to accommodate unexpected outages/attacks (unlike
synchronous model). But they must end at some point, right?

Revised goals:
• under “normal conditions,” guaranteed consistency + liveness
• under attack/outage, give up liveness only

– so protocol may stall when there’s something wrong
– FLP theorem implies must give up either consistency or liveness
– ideally, no assumptions on attack/outage other than finite duration

• after attack ends, quickly become live again
11

The Partially Synchronous Model (Informal)

Formal model:
• shared global clock (timesteps=0,1,2,…)

– can relax to bounded difference in clock speeds, but won’t do so here

12

The Partially Synchronous Model

Formal model:
• shared global clock (timesteps=0,1,2,…)

– can relax to bounded difference in clock speeds, but won’t do so here
• known upper bound ∆ on message delays in normal conditions

– same as synchronous model

13

The Partially Synchronous Model

Formal model:
• shared global clock (timesteps=0,1,2,…)

– can relax to bounded difference in clock speeds, but won’t do so here
• known upper bound ∆ on message delays in normal conditions

– same as synchronous model
• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)
– protocol must satisfy its requirements no matter what the attack length

14

The Partially Synchronous Model

Formal model:
• shared global clock (timesteps=0,1,2,…)

– can relax to bounded difference in clock speeds, but won’t do so here
• known upper bound ∆ on message delays in normal conditions

– same as synchronous model
• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)
– protocol must satisfy its requirements no matter what the attack length

• summarizing, the promises on message delivery are:
15

The Partially Synchronous Model

Formal model:
• shared global clock (timesteps=0,1,2,…)
• known upper bound ∆ on message delays in normal conditions
• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)
– protocol must satisfy its requirements no matter what the attack length

• summarizing, the promises on message delivery are:
– sent at time t ≤ GST è arrives by time GST+ ∆
– sent at time t ≥ GST è arrives by time t + ∆

16

The Partially Synchronous Model

Note: The FLP Theorem does not immediately apply to the
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for

17

Security Thresholds

Note: The FLP Theorem does not immediately apply to the
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for

Definition: security threshold = the fraction of faulty validators at
which guaranteeing consensus flips from possible to impossible.

18

Security Thresholds

Note: The FLP Theorem does not immediately apply to the
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for

Definition: security threshold = the fraction of faulty validators at
which guaranteeing consensus flips from possible to impossible.
• ex: crash faults + synchrony è security threshold ≈ 100%

– Protocol B consistent and live even if only one validator remains

19

Security Thresholds

Note: The FLP Theorem does not immediately apply to the
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for

Definition: security threshold = the fraction of faulty validators at
which guaranteeing consensus flips from possible to impossible.
• ex: crash faults + synchrony è security threshold ≈ 100%

– Protocol B consistent and live even if only one validator remains
• ex: crash faults + asynchrony è security threshold ≈ 0%

– FLP Theorem: already hosed with a single crash fault 20

Security Thresholds

Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

21

What Is Possible in Partial Synchrony?

Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long
message delays. [≈ “CAP Principle” from distributed systems]

22

What Is Possible in Partial Synchrony?

Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long
message delays. [≈ “CAP Principle” from distributed systems]

23

What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)

Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long
message delays. [≈ “CAP Principle” from distributed systems]

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any

new transactions?
24

What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)

Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long
message delays. [≈ “CAP Principle” from distributed systems]

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any

new transactions?
25

What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)

perhaps, all
have crashed

Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long
message delays. [≈ “CAP Principle” from distributed systems]

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any

new transactions?
26

What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)

perhaps, all
have crashed

perhaps, all
messages
delayed

Fact: crash faults + partial synchrony è security threshold < 50%.

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any new txs?
Catch-22:

27

What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)

Fact: crash faults + partial synchrony è security threshold < 50%.

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any new txs?
Catch-22:
• if validators in A wait è possible liveness violation

– if post-GST and all validators in B have crashed (will wait forever)

28

What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)

perhaps, all
have crashed

Fact: crash faults + partial synchrony è security threshold < 50%.

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any new txs?
Catch-22:
• if validators in A wait è possible liveness violation

– if post-GST and all validators in B have crashed (will wait forever)
• if validators in A proceed è possible consistency violation

– if pre-GST and all messages A ó B have been delayed 29

What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)

perhaps, all
have crashed

perhaps, all
messages
delayed

1. views = repeated attempts to finalize new transactions.
2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin (variation: chosen randomly)
3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view
4. leader should be as up-to-date as all non-faulty validators.

– otherwise, leader’s out-of-date proposal might conflict with the local
chains of more up-to-date non-faulty validators

– reason for the “catch-up” messages in first half of view in Protocol B
5. distributed computing is hard! [no proof è probably buggy!]

30

Design Patterns

31

Protocol B: Picture of One View

all validators ℓ all validators

Ci’s
[catch-up

messages]

C*

[leader’s
proposal]

∆ ∆

Problem: in partial synchrony, if pre-GST, no guarantee that
the Ci’s will reach 𝓵 before it makes its proposal.

32

Protocol B: Picture of One View

all validators ℓ all validators

Ci’s
[catch-up

messages]

C*

[leader’s
proposal]

∆ ∆

Problem: in partial synchrony, if pre-GST, no guarantee that
the Ci’s will reach 𝓵 before it makes its proposal.

Solution: will add restrictions on when:

33

Protocol B: Picture of One View

all validators ℓ all validators

Ci’s
[catch-up

messages]

C*

[leader’s
proposal]∆ ∆

Problem: in partial synchrony, if pre-GST, no guarantee that
the Ci’s will reach 𝓵 before it makes its proposal.

Solution: will add restrictions on when:
• a validator can finalize new txs (requires a “write quorum”)

34

Protocol B: Picture of One View

all validators ℓ all validators

Ci’s
[catch-up

messages]

C*

[leader’s
proposal]∆ ∆

Problem: in partial synchrony, if pre-GST, no guarantee that
the Ci’s will reach 𝓵 before it makes its proposal.

Solution: will add restrictions on when:
• a validator can finalize new txs (requires a “write quorum”)
• a leader can make a proposal (requires a “read quorum”) 35

Protocol B: Picture of One View

all validators ℓ all validators

Ci’s
[catch-up

messages]

C*

[leader’s
proposal]∆ ∆

36

Picture of One View

all validators ℓ all validators

catch-up
messages

leader’s
proposal
(if any)

∆ ∆

37

Picture of One View

all validators ℓ all validators

catch-up
messages

leader’s
proposal
(if any)

∆ ∆

all validators

∆

“ack”
messages

38

Picture of One View

all validators ℓ all validators

catch-up
messages

leader’s
proposal
(if any)

∆ ∆

all validators

∆

“ack”
messages

finalize new txs here if sufficient “acks” received

Protocol C (≈ Paxos/Raft) [code run by every validator]

39

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• define view = 3∆ consecutive timesteps

– extra phase for validators to assemble write quorums (see below)
• validators take turns as leader (round-robin, one per view)

40

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• define view = 3∆ consecutive timesteps

– extra phase for validators to assemble write quorums (see below)
• validators take turns as leader (round-robin, one per view)
• all messages annotated with view number

41

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• define view = 3∆ consecutive timesteps

– extra phase for validators to assemble write quorums (see below)
• validators take turns as leader (round-robin, one per view)
• all messages annotated with view number
• validator i maintains

– a local chain Ci (i.e., sequence of blocks) of finalized txs [append-only]
– a possibly longer chain Ai that it knows about

42

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ

43

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ:

44

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ:

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):

45

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ:

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)

46

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ:

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

47

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + Δ:

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

48

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + Δ:

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

• at time 3∆ ⋅ 𝑣 + 2Δ:
– if validator i has received a proposal A* from ℓ by this time:

49

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + Δ:

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

• at time 3∆ ⋅ 𝑣 + 2Δ:
– if validator i has received a proposal A* from ℓ by this time:

• i sends “ack A*” message to all other validators
• reset Ai := A*

50

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + 2Δ:

– if validator i has received a proposal A* from ℓ by this time:
• i sends “ack A*” message to all other validators
• reset Ai := A*

51

SMR: Crash Faults and Partial Synchrony

Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + 2Δ:

– if validator i has received a proposal A* from ℓ by this time:
• i sends “ack A*” message to all other validators
• reset Ai := A*

• at time 3∆ ⋅ 𝑣 + 3Δ:
– if validator i has received > n/2 “ack A*” messages (a write quorum):

• reset Ci := A* (and also Ai := A*, if necessary)

52

SMR: Crash Faults and Partial Synchrony

• at time 3∆ ⋅ 𝑣:
– each validator i sends its current chain Ai to v’s leader ℓ

• at time 3∆ ⋅ 𝑣 + Δ:
– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):

• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

• at time 3∆ ⋅ 𝑣 + 2Δ:
– if validator i has received a proposal A* from ℓ by this time:

• i sends “ack A*” message to all other validators
• reset Ai := A*

• at time 3∆ ⋅ 𝑣 + 3Δ:
– if validator i has received > n/2 “ack A*” messages (a write quorum):

• reset Ci := A* (and also Ai := A*, if necessary) 53

Protocol C

54

Picture of One View

all validators ℓ all validators

Ai’s A*

(if read
quorum)

∆ ∆

all validators

∆

“ack”
messages

finalize new txs here if receive write quorum

55

Protocol C: Proof of Consistency

Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to

the proposal A* made be v’s leader. [immediate, see code]

56

Protocol C: Proof of Consistency

Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to

the proposal A* made be v’s leader. [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s

in views v’ > v are to chains that extend A*. [need to prove]

57

Protocol C: Proof of Consistency

Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to

the proposal A* made be v’s leader. [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:

58

Protocol C: Proof of Consistency

Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to

the proposal A* made be v’s leader. [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:
• (2) è each Ci is append-only (finalized txs never rolled back)

59

Protocol C: Proof of Consistency

Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to

the proposal A* made be v’s leader. [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:
• (2) è each Ci is append-only (finalized txs never rolled back)
• (1) è simultaneous updates (i.e., in same view) are consistent

60

Protocol C: Proof of Consistency

Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to

the proposal A* made be v’s leader. [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:
• (2) è each Ci is append-only (finalized txs never rolled back)
• (1) è simultaneous updates (i.e., in same view) are consistent
• (2) è every update extends all updates from all previous views

61

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.

62

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum

63

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

64

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:

65

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum

66

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap

67

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader of view receives A* from at least one validator

68

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader of view receives A* from at least one validator
• leader’s proposal will extend A* (nothing could be more recent)

69

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+2:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader receives an Aj from a view ≥v from at least one validator
• leader’s proposal will extend A* (everything from view ≥v does)

70

Protocol C: Proof of Consistency

Need to show: if any non-faulty Ci is updated to A* in view v è all
updates in views v’ > v are to chains that extend A*.
• i updated to Ci in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

In general (by induction on v’ > v):
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader receives an Aj from a view ≥v from at least one validator
• leader’s proposal will extend A* (everything from view ≥v does)

71

Protocol C: Proof of Consistency

Suppose tx z known to some non-faulty validator i at time step t.

72

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)

73

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)

74

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• if not already in A, will put it in the new block B

75

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• if not already in A, will put it in the new block B
• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ

76

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• if not already in A, will put it in the new block B
• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ

– all send “ack A* messages at that time

77

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
– let v be the next view that begins after GST and for which i is the leader

• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-
yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ
– all send “ack A* messages at that time

78

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
– let v be the next view that begins after GST and for which i is the leader

• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-
yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ
– all send “ack A* messages at that time

• post-GST è all non-faulty validators get all these ack messages
by time 3∆ ⋅ 𝑣 + 3Δ (of which there are > n/2 !)

79

Protocol C: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.
– let v be the next view that begins after GST and for which i is the leader

• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-
yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ
– all send “ack A* messages at that time

• post-GST è all non-faulty validators get all these ack messages
by time 3∆ ⋅ 𝑣 + 3Δ (of which there are > n/2 !)
– è all such validators set Cj := A* at this time

80

Protocol C: Proof of Liveness

