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1. Understand the “partially synchronous” model.
– useful “sweet spot” between the synchronous, asynchronous models

2. Limits on what is possible.
– no hope unless a strict majority of validators are non-faulty

3. The Paxos/Raft protocol and its guarantees.
– widely used in production (e.g. see the Raft Wikipedia page)

2

Goals for Lecture #4



SMR: version of consensus appropriate for a blockchain protocol.
• “state machine” = for us, current state of virtual machine
• “replication” = all validators perform same state transitions
• “clients” submit transactions (“txs”) to validators
• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

Goal: a protocol that 
satisfies consistency
and liveness.
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State Machine Replication (SMR)



4

A Road Map to Practical SMR Protocols

crash faults +
synchronous network

crash faults +
asynchronous network

Byzantine faults +
asynchronous network

easier harder



Lecture #3: Protocol B solves SMR with crash faults in synchrony.
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Lecture #3: Protocol B solves SMR with crash faults in synchrony.

FLP Theorem: can’t solve SMR in the asynchronous model with the 
threat of a single crash fault.
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Lecture #3: Protocol B solves SMR with crash faults in synchrony.

FLP Theorem: can’t solve SMR in the asynchronous model with the 
threat of a single crash fault.
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A Road Map to Practical SMR Protocols

crash faults +
synchronous network

crash faults +
asynchronous partially 
synchronous network

Byzantine faults +
asynchronous partially 
synchronous network

easier harder



Idea: want to accommodate unexpected outages/attacks (unlike 
synchronous model). But they must end at some point, right?
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The Partially Synchronous Model (Informal)



Idea: want to accommodate unexpected outages/attacks (unlike 
synchronous model). But they must end at some point, right?

Revised goals: 
• under “normal conditions,” guaranteed consistency + liveness
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The Partially Synchronous Model (Informal)



Idea: want to accommodate unexpected outages/attacks (unlike 
synchronous model). But they must end at some point, right?

Revised goals: 
• under “normal conditions,” guaranteed consistency + liveness
• under attack/outage, give up liveness only

– so protocol may stall when there’s something wrong
– FLP theorem implies must give up either consistency or liveness
– ideally, no assumptions on attack/outage other than finite duration
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The Partially Synchronous Model (Informal)



Idea: want to accommodate unexpected outages/attacks (unlike 
synchronous model). But they must end at some point, right?

Revised goals: 
• under “normal conditions,” guaranteed consistency + liveness
• under attack/outage, give up liveness only

– so protocol may stall when there’s something wrong
– FLP theorem implies must give up either consistency or liveness
– ideally, no assumptions on attack/outage other than finite duration

• after attack ends, quickly become live again
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The Partially Synchronous Model (Informal)



Formal model: 
• shared global clock (timesteps=0,1,2,…)

– can relax to bounded difference in clock speeds, but won’t do so here
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• shared global clock (timesteps=0,1,2,…)

– can relax to bounded difference in clock speeds, but won’t do so here
• known upper bound ∆ on message delays in normal conditions

– same as synchronous model
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• known upper bound ∆ on message delays in normal conditions

– same as synchronous model
• unknown transition time GST (“global stabilization time”) from 

asynchrony to synchrony (i.e., end of attack/outage)
– protocol must satisfy its requirements no matter what the attack length
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Formal model: 
• shared global clock (timesteps=0,1,2,…)

– can relax to bounded difference in clock speeds, but won’t do so here
• known upper bound ∆ on message delays in normal conditions

– same as synchronous model
• unknown transition time GST (“global stabilization time”) from 

asynchrony to synchrony (i.e., end of attack/outage)
– protocol must satisfy its requirements no matter what the attack length

• summarizing, the promises on message delivery are:
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Formal model: 
• shared global clock (timesteps=0,1,2,…)
• known upper bound ∆ on message delays in normal conditions
• unknown transition time GST (“global stabilization time”) from 

asynchrony to synchrony (i.e., end of attack/outage)
– protocol must satisfy its requirements no matter what the attack length

• summarizing, the promises on message delivery are:
– sent at time t ≤ GST è arrives by time GST+ ∆
– sent at time t ≥ GST è arrives by time t + ∆
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The Partially Synchronous Model



Note: The FLP Theorem does not immediately apply to the 
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for
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Security Thresholds



Note: The FLP Theorem does not immediately apply to the 
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for

Definition: security threshold = the fraction of faulty validators at 
which guaranteeing consensus flips from possible to impossible.
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Note: The FLP Theorem does not immediately apply to the 
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for

Definition: security threshold = the fraction of faulty validators at 
which guaranteeing consensus flips from possible to impossible.
• ex: crash faults + synchrony è security threshold ≈ 100%

– Protocol B consistent and live even if only one validator remains
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Security Thresholds



Note: The FLP Theorem does not immediately apply to the 
partially synchronous setting.

– adversary must choose some GST, can’t use unbounded delays after
– but, there will still be limits on what we can hope for

Definition: security threshold = the fraction of faulty validators at 
which guaranteeing consensus flips from possible to impossible.
• ex: crash faults + synchrony è security threshold ≈ 100%

– Protocol B consistent and live even if only one validator remains
• ex: crash faults + asynchrony è security threshold ≈ 0%

– FLP Theorem: already hosed with a single crash fault 20

Security Thresholds



Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty
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What Is Possible in Partial Synchrony?



Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long 
message delays.  [≈ “CAP Principle” from distributed systems]
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Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long 
message delays.  [≈ “CAP Principle” from distributed systems]
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What Is Possible in Partial Synchrony?

A
(n/2 validators)

B
(n/2 validators)



Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long 
message delays.  [≈ “CAP Principle” from distributed systems]

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any

new transactions?
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Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long 
message delays.  [≈ “CAP Principle” from distributed systems]

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any

new transactions?
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Fact: crash faults + partial synchrony è security threshold < 50%.
– i.e., no hope unless a strict majority of validators are non-faulty

Key challenge: ambiguity between crashed validators and long 
message delays.  [≈ “CAP Principle” from distributed systems]

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any

new transactions?
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(n/2 validators)

B
(n/2 validators)

perhaps, all 
have crashed

perhaps, all 
messages 
delayed



Fact: crash faults + partial synchrony è security threshold < 50%.

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any new txs?
Catch-22:
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Fact: crash faults + partial synchrony è security threshold < 50%.

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any new txs?
Catch-22:
• if validators in A wait è possible liveness violation

– if post-GST and all validators in B have crashed (will wait forever)
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What Is Possible in Partial Synchrony?
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Fact: crash faults + partial synchrony è security threshold < 50%.

Suppose: validators in A don’t
hear from any validators in B
for a long time.
• should they finalize any new txs?
Catch-22:
• if validators in A wait è possible liveness violation

– if post-GST and all validators in B have crashed (will wait forever)
• if validators in A proceed è possible consistency violation

– if pre-GST and all messages A ó B have been delayed 29

What Is Possible in Partial Synchrony?
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B
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1. views = repeated attempts to finalize new transactions.
2. leaders = coordinate the transactions proposed in each view.

– chosen e.g. round-robin  (variation: chosen randomly)
3. view may end with non-faulty validators in different states.

– leader may need to “clean up the mess” left by previous view
4. leader should be as up-to-date as all non-faulty validators.

– otherwise, leader’s out-of-date proposal might conflict with the local 
chains of more up-to-date non-faulty validators

– reason for the “catch-up” messages in first half of view in Protocol B
5. distributed computing is hard!  [no proof è probably buggy!]
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Design Patterns
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Protocol B: Picture of One View

all validators ℓ all validators

Ci’s         
[catch-up 

messages]

C*

[leader’s 
proposal]

∆ ∆



Problem: in partial synchrony, if pre-GST, no guarantee that     
the Ci’s will reach 𝓵 before it makes its proposal.
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Problem: in partial synchrony, if pre-GST, no guarantee that     
the Ci’s will reach 𝓵 before it makes its proposal.

Solution: will add restrictions on when:
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Problem: in partial synchrony, if pre-GST, no guarantee that     
the Ci’s will reach 𝓵 before it makes its proposal.

Solution: will add restrictions on when:
• a validator can finalize new txs (requires a “write quorum”)
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Problem: in partial synchrony, if pre-GST, no guarantee that     
the Ci’s will reach 𝓵 before it makes its proposal.

Solution: will add restrictions on when:
• a validator can finalize new txs (requires a “write quorum”)
• a leader can make a proposal (requires a “read quorum”) 35

Protocol B: Picture of One View

all validators ℓ all validators

Ci’s         
[catch-up 

messages]

C*

[leader’s 
proposal]∆ ∆
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Picture of One View

all validators ℓ all validators

catch-up 
messages

leader’s 
proposal 
(if any)

∆ ∆
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Picture of One View

all validators ℓ all validators

catch-up 
messages

leader’s 
proposal 
(if any)

∆ ∆

all validators

∆

“ack” 
messages

finalize new txs here if sufficient “acks” received



Protocol C (≈ Paxos/Raft) [code run by every validator]
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SMR: Crash Faults and Partial Synchrony



Protocol C (≈ Paxos/Raft) [code run by every validator]
• define view = 3∆ consecutive timesteps

– extra phase for validators to assemble write quorums (see below)
• validators take turns as leader (round-robin, one per view)
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• define view = 3∆ consecutive timesteps

– extra phase for validators to assemble write quorums (see below)
• validators take turns as leader (round-robin, one per view)
• all messages annotated with view number
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• define view = 3∆ consecutive timesteps

– extra phase for validators to assemble write quorums (see below)
• validators take turns as leader (round-robin, one per view)
• all messages annotated with view number
• validator i maintains

– a local chain Ci (i.e., sequence of blocks) of finalized txs [append-only]
– a possibly longer chain Ai  that it knows about
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SMR: Crash Faults and Partial Synchrony



Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ: 
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ: 

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ: 

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ
• at time 3∆ ⋅ 𝑣 + Δ: 

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + Δ: 

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + Δ: 

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

• at time 3∆ ⋅ 𝑣 + 2Δ: 
– if validator i has received a proposal A* from ℓ by this time:
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + Δ: 

– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):
• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

• at time 3∆ ⋅ 𝑣 + 2Δ: 
– if validator i has received a proposal A* from ℓ by this time:

• i sends “ack A*” message to all other validators
• reset Ai := A*
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + 2Δ: 

– if validator i has received a proposal A* from ℓ by this time:
• i sends “ack A*” message to all other validators
• reset Ai := A*
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Protocol C (≈ Paxos/Raft) [code run by every validator]
• at time 3∆ ⋅ 𝑣 + 2Δ: 

– if validator i has received a proposal A* from ℓ by this time:
• i sends “ack A*” message to all other validators
• reset Ai := A*

• at time 3∆ ⋅ 𝑣 + 3Δ: 
– if validator i has received > n/2 “ack A*” messages (a write quorum):

• reset Ci := A* (and also Ai := A*, if necessary)
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• at time 3∆ ⋅ 𝑣: 
– each validator i sends its current chain Ai to v’s leader ℓ

• at time 3∆ ⋅ 𝑣 + Δ: 
– if ℓ has received > n/2 Ai’s by this time (i.e., received a read quorum):

• let A = most recently proposed of these (i.e., with max view number)
• let B := all not-yet-included (in A) valid txs ℓ knows about
• ℓ sends A* := (A,B) to all other validators

• at time 3∆ ⋅ 𝑣 + 2Δ: 
– if validator i has received a proposal A* from ℓ by this time:

• i sends “ack A*” message to all other validators
• reset Ai := A*

• at time 3∆ ⋅ 𝑣 + 3Δ: 
– if validator i has received > n/2 “ack A*” messages (a write quorum):

• reset Ci := A* (and also Ai := A*, if necessary) 53

Protocol C
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Picture of One View

all validators ℓ all validators

Ai’s A*

(if read 
quorum)

∆ ∆

all validators

∆

“ack” 
messages

finalize new txs here if receive write quorum
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Protocol C: Proof of Consistency



Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to 

the proposal A* made be v’s leader.  [immediate, see code]
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Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to 

the proposal A* made be v’s leader.  [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s 

in views v’ > v are to chains that extend A*. [need to prove]
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Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to 

the proposal A* made be v’s leader.  [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s 

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:
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Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to 

the proposal A* made be v’s leader.  [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s 

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:
• (2) è each Ci is append-only (finalized txs never rolled back)
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Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to 

the proposal A* made be v’s leader.  [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s 

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:
• (2) è each Ci is append-only (finalized txs never rolled back)
• (1) è simultaneous updates (i.e., in same view) are consistent
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Key claim: for each view v:
1. if any non-faulty Ci’s get updated in this view, all get updated to 

the proposal A* made be v’s leader.  [immediate, see code]
2. in this case (i.e., ≥1 update in v), all updates to non-faulty Ci’s 

in views v’ > v are to chains that extend A*. [need to prove]

Note: Implies consistency:
• (2) è each Ci is append-only (finalized txs never rolled back)
• (1) è simultaneous updates (i.e., in same view) are consistent
• (2) è every update extends all updates from all previous views
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader of view receives A* from at least one validator
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+1:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader of view receives A* from at least one validator
• leader’s proposal will extend A* (nothing could be more recent)
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

Consider view v+2:
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader receives an Aj from a view ≥v from at least one validator
• leader’s proposal will extend A* (everything from view ≥v does)
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Need to show: if any non-faulty Ci is updated to A* in view v è all 
updates in views v’ > v are to chains that extend A*. 
• i updated to Ci  in view v è let S = validators in its write quorum
• note: all j in S reset Aj := A* in this view [A* is a view-v proposal]

In general (by induction on v’ > v):
• if leader makes proposal A’ è let T = validators in read quorum
• quorum intersection: because |S|,|T|>n/2, S and T overlap
• leader receives an Aj from a view ≥v from at least one validator
• leader’s proposal will extend A* (everything from view ≥v does)
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Suppose tx z known to some non-faulty validator i at time step t. 
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Suppose tx z known to some non-faulty validator i at time step t. 
• let v be the next view that begins after GST and for which i is 

the leader (must exist, why?)

73

Protocol C: Proof of Liveness



Suppose tx z known to some non-faulty validator i at time step t. 
• let v be the next view that begins after GST and for which i is 

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)
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Suppose tx z known to some non-faulty validator i at time step t. 
• let v be the next view that begins after GST and for which i is 

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• if not already in A, will put it in the new block B
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Suppose tx z known to some non-faulty validator i at time step t. 
• let v be the next view that begins after GST and for which i is 

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• if not already in A, will put it in the new block B
• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ
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Suppose tx z known to some non-faulty validator i at time step t. 
• let v be the next view that begins after GST and for which i is 

the leader (must exist, why?)
• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-

yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• if not already in A, will put it in the new block B
• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ

– all send “ack A* messages at that time
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Suppose tx z known to some non-faulty validator i at time step t. 
– let v be the next view that begins after GST and for which i is the leader 

• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-
yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ
– all send “ack A* messages at that time
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Suppose tx z known to some non-faulty validator i at time step t. 
– let v be the next view that begins after GST and for which i is the leader 

• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-
yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ
– all send “ack A* messages at that time

• post-GST è all non-faulty validators get all these ack messages 
by time 3∆ ⋅ 𝑣 + 3Δ (of which there are > n/2 !)

79

Protocol C: Proof of Liveness



Suppose tx z known to some non-faulty validator i at time step t. 
– let v be the next view that begins after GST and for which i is the leader 

• post-GST è by time 3∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all not-
yet-crashed validators (of which there are > n/2 !)
– i’s will make a proposal A* := (A,B) in view v will include the tx z

• post-GST è all non-faulty validators get A* by 3∆ ⋅ 𝑣 + 2Δ
– all send “ack A* messages at that time

• post-GST è all non-faulty validators get all these ack messages 
by time 3∆ ⋅ 𝑣 + 3Δ (of which there are > n/2 !)
– è all such validators set Cj := A* at this time
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