Lecture #5: Byzantine Faults and
Digital Signature Schemes

COMS 4995-001.

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Goals for Lecture #5

1. The challenges of Byzantine faults.
— faulty validators that can behave in arbitrary (worst-case) ways

2. Digital signature schemes.
— key tool for limiting the space of Byzantine validator strategies

3. Limits on what is achievable.
— Byzantine faults make the SMR problem harder in partial synchrony

4. Key ideas behind Tendermint.
— Full protocol description and analysis on Monday.

State Machine Replication (SMR)

SMR: version of consensus appropriate for a blockchain protocol.
« “state machine” = for us, current state of virtual machine

» “replication” = all validators perform same state transitions
« “clients” submit transactions (“txs”) to validators

« each validator maintains an append-only list of finalized txs
(a.k.a. “log” or “history”)

Goal: a protocol that |
satisfies consistency
and liveness.

A Road Map to Practical SMR Protocols

crash faults + crash faults + Byzantine faults +
synchrony partially synchrony partially synchrony
[security threshold = 100%] [security threshold = 50%] [security threshold = ?]
easier harder

Lecture #3: Protocol B solves SMR with crash faults in synchrony.

Lecture #4: if strict majority of validators are non-faulty, Protocol C
(= Paxos/Raft) solves SMR with crash faults in partial synchrony.

4

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults.
 faulty validators can act arbitrarily

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults.

 faulty validators can act arbitrarily
— original motivation (1980s): hard-to-model software errors
— blockchain protocols: might literally get attacked by hostile actor
* e.g., hacks into validators previously controlled by good actors

L 11

— alternative names for non-faulty validators: “honest,” “correct”

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults.

 faulty validators can act arbitrarily
— original motivation (1980s): hard-to-model software errors
— blockchain protocols: might literally get attacked by hostile actor
* e.g., hacks into validators previously controlled by good actors

L 11

— alternative names for non-faulty validators: “honest,” “correct”

— question: what are Byzantine validators capable of?

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults.

 faulty validators can act arbitrarily
— original motivation (1980s): hard-to-model software errors
— blockchain protocols: might literally get attacked by hostile actor
* e.g., hacks into validators previously controlled by good actors

L 11

— alternative names for non-faulty validators: “honest,” “correct”

— question: what are Byzantine validators capable of?

Question: is Protocol C (= Paxos/Raft) still live and consistent
with Byzantine faults?

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (= Paxos/Raft) still live and consistent
with Byzantine faults?

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (= Paxos/Raft) still live and consistent
with Byzantine faults?

all validators

10

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (= Paxos/Raft) still live and consistent
with Byzantine faults?

all validators all validators

(if read

guorum)
A A

11

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (= Paxos/Raft) still live and consistent
with Byzantine faults?

all validators @ all validators all validators
AI,S A* “aCk”
(if read messages \
guorum)

A A A

12

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (= Paxos/Raft) still live and consistent
with Byzantine faults?

all validators @ all validators all validators
AI,S A* “aCk”
(if read messages \
guorum)

A A A

: “ —=

finalize new txs here if receive write quorum

Paxos/Raft with Byzantine Faults

Question: is Protocol C still live and consistent with Byzantine faults?

» key property for consistency: read quorum must intersect write quorums
from all previous views = if leader makes a proposal, must be up-to-date

all validators @ all validators all validators
AI,S A* “aCk”
(if read messages \
guorum)
A A A

: “ —=

finalize new txs here if receive write quorum

Byzantine Validator Shenanigans

15

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make an (out-of-date) proposal anyway.

— maybe didn’t receive chains from > n/2 validators, or maybe it did and
chose to ignore them

— out-of-date proposal (if adopted) =» consistency violation

16

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

17

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators [a.k.a. “equivocation™].

18

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators [a.k.a. “equivocation™].

* but can’t only one proposal garner the necessary >n/2 acks?

19

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators [a.k.a. “equivocation™].

* but can’t only one proposal garner the necessary >n/2 acks?

* no: Byzantine validators can ack multiple proposals
— non-faulty validators might simultaneous finalize inconsistent chains

20

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)

21

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)

Issue #3: Byzantine validators could lie about messages received
from other validators.

* e.g., frame a non-faulty validator for its own misbehavior
« will tackle this issue with cryptography (next)

22

Digital Signature Schemes in Blockchains

* one of the two most ubiquitous cryptographic primitives used In
blockchain protocols (along with cryptographic hash functions)

23

Digital Signature Schemes in Blockchains

* one of the two most ubiquitous cryptographic primitives used In
blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a
transaction (e.g., making a payment).

« fundamental to the vision of shared computer in the sky

24

Digital Signature Schemes in Blockchains

* one of the two most ubiquitous cryptographic primitives used In
blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a
transaction (e.g., making a payment).

« fundamental to the vision of shared computer in the sky

Application #2: under the hood, allows validators of a blockchain
protocol to sign their messages.

« used in most blockchain protocols for this purpose

— with Bitcoin a notable exception)

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

26

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r - (pk,sk) pair.
— In some cases, may generate r itself (e.g., ssh-keygen)

27

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r - (pk,sk) pair.
— In some cases, may generate r itself (e.g., ssh-keygen)

2. Signing algorithm: maps message + sk = signature.
— signhature depends on both sk and the message being signed

28

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:
1. Key generation algorithm: maps seed r - (pk,sk) pair.
— In some cases, may generate r itself (e.g., ssh-keygen)
2. Signing algorithm: maps message + sk = signature.
— signhature depends on both sk and the message being signed
3. Verification algorithm: maps msg + sig + pk = “yes”/"'no”.
— anyone who knows pk can verify correctness of an alleged signature

29

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:
1. Key generation algorithm: maps seed r - (pk,sk) pair.
— In some cases, may generate r itself (e.g., ssh-keygen)
2. Signing algorithm: maps message + sk = signature.
— signhature depends on both sk and the message being signed
3. Verification algorithm: maps msg + sig + pk = “yes”/"'no”.
— anyone who knows pk can verify correctness of an alleged signature

ldeal signature scheme: can’t produce valid signatures (that you
haven't already seen) unless you know the private key sk.

30

Defining Security for a DSS

ldeal signature scheme: can’t produce valid signatures (that you
haven'’t already seen) unless you know the private key sk.

— note: not literally true (e.g., could reverse engineer sk by brute force)

31

Defining Security for a DSS

ldeal signature scheme: can’t produce valid signatures (that you
haven'’t already seen) unless you know the private key sk.

— note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume...

32

Defining Security for a DSS

ldeal signature scheme: can’t produce valid signatures (that you
haven'’t already seen) unless you know the private key sk.

— note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume...
 attacker is computationally bounded (polynomial-time)

33

Defining Security for a DSS

ldeal signature scheme: can’t produce valid signatures (that you
haven'’t already seen) unless you know the private key sk.

— note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume...
 attacker is computationally bounded (polynomial-time)
« secret key length is sufficiently long (so brute force infeasible)

34

Defining Security for a DSS

ldeal signature scheme: can’t produce valid signatures (that you
haven'’t already seen) unless you know the private key sk.

— note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume...
 attacker is computationally bounded (polynomial-time)
« secret key length is sufficiently long (so brute force infeasible)

* no way to forge signatures much faster than brute-forcing sk
— ideally, related to “standard” hardness assumption (like discrete log)

35

Defining Security for a DSS

ldeal signature scheme: can’t produce valid signatures (that you
haven't already seen) unless you know the private key sk.

— note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume...
 attacker is computationally bounded (polynomial-time)
« secret key length is sufficiently long (so brute force infeasible)

* no way to forge signatures much faster than brute-forcing sk
— ideally, related to “standard” hardness assumption (like discrete log)

* non-zero (but negligible) chance an attacker gets lucky

36

Defining Security for a DSS

For a formal security guarantee: need to assume...
 attacker is computationally bounded (polynomial-time)
« secret key length is sufficiently long (so brute force infeasible)

* no way to forge signatures much faster than brute-forcing sk
— ideally, related to “standard” hardness assumption (like discrete log)

* non-zero (but negligible) chance an attacker gets lucky

(Semi-)formal DSS security statement: under suitable complexity
assumptions, no randomized poly-time (in key length) algorithm
with access to a bunch of signed messages can produce a valid
signature for an unseen message with non-negligible probability.

37

What Signatures Can and Can't Do

Issues:

Byzantine leader could ignore read quorum requirement and make a proposal anyway.
(=» consistency violation)

Byzantine leader could propose different chains to different validators, all supported by
acks from Byzantine validators. (=» consistency violation)

Byzantine validators could lie about messages received from other validators.

38

What Signatures Can and Can't Do

Issues:

« Byzantine leader could ignore read quorum requirement and make a proposal anyway.
(=» consistency violation)

« Byzantine leader could propose different chains to different validators, all supported by
acks from Byzantine validators. (=» consistency violation)

« Byzantine validators could lie about messages received from other validators.

Good news: sighatures =» don't need to worry about issue #3
(Byzantine validators can't lie about messages sent by others).

39

What Signatures Can and Can't Do

Issues:

« Byzantine leader could ignore read quorum requirement and make a proposal anyway.
(=» consistency violation)

« Byzantine leader could propose different chains to different validators, all supported by
acks from Byzantine validators. (=» consistency violation)

« Byzantine validators could lie about messages received from other validators.

Good news: sighatures =» don't need to worry about issue #3
(Byzantine validators can't lie about messages sent by others).

Bad news: even with signatures, SMR strictly harder with
Byzantine faults than with crash faults.

40

Recap: The Partially Synchronous Model

« shared global clock (timesteps=0,1,2,...)
« known upper bound A on message delays in normal conditions

41

Recap: The Partially Synchronous Model

« shared global clock (timesteps=0,1,2,...)
« known upper bound A on message delays in normal conditions

« unknown transition time GST (“global stabilization time”) from
asynchrony to synchrony (i.e., end of attack/outage)

— protocol must work no matter what GST is

42

Recap: The Partially Synchronous Model

« shared global clock (timesteps=0,1,2,...)
« known upper bound A on message delays in normal conditions

« unknown transition time GST (“global stabilization time”) from
asynchrony to synchrony (i.e., end of attack/outage)

— protocol must work no matter what GST is

Recall goals:
* consistency, always (even pre-GST/*under attack”)

43

Recap: The Partially Synchronous Model

« shared global clock (timesteps=0,1,2,...)
« known upper bound A on message delays in normal conditions

« unknown transition time GST (“global stabilization time”) from
asynchrony to synchrony (i.e., end of attack/outage)

— protocol must work no matter what GST is

Recall goals:
* consistency, always (even pre-GST/*under attack”)

* liveness soon after GST (once “normal conditions” resume)
— FLP =» need to give up one of consistency, liveness before GST

44

Recap: Partial Synchrony + Crash Faults

Fact: crash faults + partial synchrony =» security threshold < 50%.

perhaps, all
messages
delayed

Suppose: validators in A don't
hear from any validators in B
for a long time.

* should they finalize any new txs?
Catch-22:
 |f validators in A wait =» possible liveness violation

— If post-GST and all validators in B have crashed (will wait forever)

 |f validators in A proceed =» possible consistency violation
— If pre-GST and all messages A < B have been delayed

perhaps, all
have crashed

A
(n/2 validators)

B
(n/2 validators)

45

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition:

46

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

— other f might well be Byzantine, could otherwise stall protocol forever

47

Post-GST Crashes or Pre-GST Delays?

f Byzantine

validators

n-f honest
validators

will never send

any messages,

ever (including
post-GST)

Scenario #1

48

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

— other f might well be Byzantine, could otherwise stall protocol forever

49

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

— other f might well be Byzantine, could otherwise stall protocol forever

2. ambiguity between crashes and long msg delays = might well
be that f of the n-f contributing validators are Byzantine

30

Post-GST Crashes or Pre-GST Delays?

f Byzantine
validators

f honest
validators

\

all messages

n-2f honest
validators

n-f honest
validators

will never send

f Byzantine :
any messages,) delayed (still
ever (including validators pre-GST)

post-GST)
Scenario #1 Scenario #2

ol

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

2. ambiguity between crashes and long msg delays =» might well
be that f of the n-f contributing validators are Byzantine

52

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

2. ambiguity between crashes and long msg delays =» might well
be that f of the n-f contributing validators are Byzantine

3. to avoid getting tricked, need strict majority of these n-f

validators to be honest: (n-f)-f > f
— ™ 53

honest Byzantine

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

2. ambiguity between crashes and long msg delays =» might well
be that f of the n-f contributing validators are Byzantine

3. to avoid getting tricked, need strict majority of these n-f

validators to be honest: (n-f)-f > f, l.e., f < n/3
— ™ 54

honest Byzantine

Toward Tendermint

Starting point: Protocol C (= Paxos/Raft).

55

Toward Tendermint

Starting point: Protocol C (= Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

56

Toward Tendermint

Starting point: Protocol C (= Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)

S7

Toward Tendermint

Starting point: Protocol C (= Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)

Issue #3: Byzantine validators could lie about messages received
from other validators.

58

Key Ideas in Tendermint

ldea #1: every validator signs every message it sends.
— assume all validators know each others public keys (+ IDs + IP addrs)
— called a “public key infrastructure (PKI)” assumption

39

Key Ideas in Tendermint

ldea #1: every validator signs every message it sends.
— assume all validators know each others public keys (+ IDs + IP addrs)
— called a “public key infrastructure (PKI)” assumption

Recall: in Protocol C, crucial that every write qguorum (size > n/2)
Intersects every subsequent read quorum (size > n/2).

— reason: once a leader is in a position to make a proposal, it must be
up-to-date on all txs already finalized by some non-faulty validator

60

Key Ideas in Tendermint

ldea #1: every validator signs every message it sends.
— assume all validators know each others public keys (+ IDs + IP addrs)
— called a “public key infrastructure (PKI)” assumption

Recall: in Protocol C, crucial that every write qguorum (size > n/2)
Intersects every subsequent read quorum (size > n/2).

— reason: once a leader is in a position to make a proposal, it must be
up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately
submit an out-of-date chain (ignoring Its past write quorums).

61

Key Ideas in Tendermint (con’'d)

Recall: in Protocol C, crucial that every write quorum (size > n/2)
Intersects every subsequent read quorum (size > n/2).

— reason: once a leader is in a position to make a proposal, it must be
up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately
submit an out-of-date chain (ignoring Its past write quorums).

62

Key Ideas in Tendermint (con’'d)

Recall: in Protocol C, crucial that every write quorum (size > n/2)
Intersects every subsequent read quorum (size > n/2).

— reason: once a leader is in a position to make a proposal, it must be
up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately
submit an out-of-date chain (ignoring Its past write quorums).

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date
63

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2:

64

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

65

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]
(i) increase all quorum sizes to > 2n/3 validators

66

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

67

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* Updated gquorum intersection property:

68

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* updated quorum intersection property: if S, T are quorums =>»
S|, |T| > 2n/3

69

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* updated quorum intersection property: if S, T are quorums =>»
IS|, |T| > 2n/3 = S, T overlap in > n—n/3 —n/3 = n/3 validators

70

Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* updated quorum intersection property: if S, T are quorums =>»
IS|, [T| >2n/3 = S, T overlap in > n — n/3 — n/3 = n/3 validators
= S, T overlap in at least one non-faulty validator

71

Key Ideas in Tendermint (con’'d)

ldea #2: (1) assume < n/3 validators are Byzantine.

(i) increase all quorum sizes to > 2n/3 validators
— conseqguence: any two quorums have non-faulty validator in common

72

Key Ideas in Tendermint (con’'d)

ldea #2: (1) assume < n/3 validators are Byzantine.

(i) increase all quorum sizes to > 2n/3 validators
— conseqguence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the
same view (despite equivocating leader, Byzantine acks).

 will ensure that simultaneous updates must be consistent

73

Key Ideas in Tendermint (con’'d)

ldea #2: (1) assume < n/3 validators are Byzantine.

(i) increase all quorum sizes to > 2n/3 validators
— conseqguence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the
same view (despite equivocating leader, Byzantine acks).

 will ensure that simultaneous updates must be consistent

* reason: non-faulty validators will ack only one proposal per view

— two write quorums =» have a non-faulty validator in common =

validator only acked one proposal = both WQs support same proposal
74

Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each
validator assembles one itself before acking a proposal.

75

Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each
validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a
proposal by leader is up-to-date (as far as they can tell)

76

Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each
validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a
proposal by leader is up-to-date (as far as they can tell)

— QCs included in blockchain as metadata

Bl Ql BZ QZ BS Q3 """

e

Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each

validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as t

— QCs included in blockchain as metadata
— adds extra round to each view

ney can tell)

B,

Qi

B,

Q.

B,

Qs

78

Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each
validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a
proposal by leader is up-to-date (as far as they can tell)

— QCs included in blockchain as metadata

Bl Ql BZ QZ BS Q3 """

— adds extra round to each view

— note: QCs don’t even make sense without idea #1 (signatures)

79

Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each

validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as t

ney can tell)

— QCs included in blockchain as metadata 5

— adds extra round to each view

Qi

B,

Q.

B,

Qs

— note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

80

Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each

validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as t

ney can tell)

— QCs included in blockchain as metadata

B,

Qi

B,

Q.

B,

Qs

— adds extra round to each view

— note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

— good news: idea #2 = impossible to have QCs for two different

proposals in the same view (effectively, equivocation not possible)

81

	Slide 1: Lecture #5: Byzantine Faults and Digital Signature Schemes
	Slide 2: Goals for Lecture #5
	Slide 3: State Machine Replication (SMR)
	Slide 4: A Road Map to Practical SMR Protocols
	Slide 5: Paxos/Raft with Byzantine Faults
	Slide 6: Paxos/Raft with Byzantine Faults
	Slide 7: Paxos/Raft with Byzantine Faults
	Slide 8: Paxos/Raft with Byzantine Faults
	Slide 9: Paxos/Raft with Byzantine Faults
	Slide 10: Paxos/Raft with Byzantine Faults
	Slide 11: Paxos/Raft with Byzantine Faults
	Slide 12: Paxos/Raft with Byzantine Faults
	Slide 13: Paxos/Raft with Byzantine Faults
	Slide 14: Paxos/Raft with Byzantine Faults
	Slide 15: Byzantine Validator Shenanigans
	Slide 16: Byzantine Validator Shenanigans
	Slide 17: Byzantine Validator Shenanigans
	Slide 18: Byzantine Validator Shenanigans
	Slide 19: Byzantine Validator Shenanigans
	Slide 20: Byzantine Validator Shenanigans
	Slide 21: Byzantine Validator Shenanigans
	Slide 22: Byzantine Validator Shenanigans
	Slide 23: Digital Signature Schemes in Blockchains
	Slide 24: Digital Signature Schemes in Blockchains
	Slide 25: Digital Signature Schemes in Blockchains
	Slide 26: Defining Digital Signature Schemes
	Slide 27: Defining Digital Signature Schemes
	Slide 28: Defining Digital Signature Schemes
	Slide 29: Defining Digital Signature Schemes
	Slide 30: Defining Digital Signature Schemes
	Slide 31: Defining Security for a DSS
	Slide 32: Defining Security for a DSS
	Slide 33: Defining Security for a DSS
	Slide 34: Defining Security for a DSS
	Slide 35: Defining Security for a DSS
	Slide 36: Defining Security for a DSS
	Slide 37: Defining Security for a DSS
	Slide 38: What Signatures Can and Can’t Do
	Slide 39: What Signatures Can and Can’t Do
	Slide 40: What Signatures Can and Can’t Do
	Slide 41: Recap: The Partially Synchronous Model
	Slide 42: Recap: The Partially Synchronous Model
	Slide 43: Recap: The Partially Synchronous Model
	Slide 44: Recap: The Partially Synchronous Model
	Slide 45: Recap: Partial Synchrony + Crash Faults
	Slide 46: What Is Possible with Byzantine Faults?
	Slide 47: What Is Possible with Byzantine Faults?
	Slide 48: Post-GST Crashes or Pre-GST Delays?
	Slide 49: What Is Possible with Byzantine Faults?
	Slide 50: What Is Possible with Byzantine Faults?
	Slide 51: Post-GST Crashes or Pre-GST Delays?
	Slide 52: What Is Possible with Byzantine Faults?
	Slide 53: What Is Possible with Byzantine Faults?
	Slide 54: What Is Possible with Byzantine Faults?
	Slide 55: Toward Tendermint
	Slide 56: Toward Tendermint
	Slide 57: Toward Tendermint
	Slide 58: Toward Tendermint
	Slide 59: Key Ideas in Tendermint
	Slide 60: Key Ideas in Tendermint
	Slide 61: Key Ideas in Tendermint
	Slide 62: Key Ideas in Tendermint (con’d)
	Slide 63: Key Ideas in Tendermint (con’d)
	Slide 64: Key Ideas in Tendermint (con’d)
	Slide 65: Key Ideas in Tendermint (con’d)
	Slide 66: Key Ideas in Tendermint (con’d)
	Slide 67: Key Ideas in Tendermint (con’d)
	Slide 68: Key Ideas in Tendermint (con’d)
	Slide 69: Key Ideas in Tendermint (con’d)
	Slide 70: Key Ideas in Tendermint (con’d)
	Slide 71: Key Ideas in Tendermint (con’d)
	Slide 72: Key Ideas in Tendermint (con’d)
	Slide 73: Key Ideas in Tendermint (con’d)
	Slide 74: Key Ideas in Tendermint (con’d)
	Slide 75: Key Ideas in Tendermint (con’d)
	Slide 76: Key Ideas in Tendermint (con’d)
	Slide 77: Key Ideas in Tendermint (con’d)
	Slide 78: Key Ideas in Tendermint (con’d)
	Slide 79: Key Ideas in Tendermint (con’d)
	Slide 80: Key Ideas in Tendermint (con’d)
	Slide 81: Key Ideas in Tendermint (con’d)

