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Goals for Lecture #5

1. The challenges of Byzantine faults.
— faulty validators that can behave in arbitrary (worst-case) ways

2. Digital signature schemes.
— key tool for limiting the space of Byzantine validator strategies

3. Limits on what is achievable.
— Byzantine faults make the SMR problem harder in partial synchrony

4. Key ideas behind Tendermint.
— Full protocol description and analysis on Monday.



State Machine Replication (SMR)

SMR: version of consensus appropriate for a blockchain protocol.
« “state machine” = for us, current state of virtual machine

» “replication” = all validators perform same state transitions
« “clients” submit transactions (“txs”) to validators

« each validator maintains an append-only list of finalized txs
(a.k.a. “log” or “history”)

Goal: a protocol that |
satisfies consistency
and liveness.




A Road Map to Practical SMR Protocols

crash faults + crash faults + Byzantine faults +
synchrony partially synchrony partially synchrony
[security threshold = 100%] [security threshold = 50%] [security threshold = ?]
easier harder

Lecture #3: Protocol B solves SMR with crash faults in synchrony.

Lecture #4: if strict majority of validators are non-faulty, Protocol C
(= Paxos/Raft) solves SMR with crash faults in partial synchrony.
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Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (= Paxos/Raft) still live and consistent
with Byzantine faults?

all validators @ all validators all validators
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Paxos/Raft with Byzantine Faults

Question: is Protocol C still live and consistent with Byzantine faults?

» key property for consistency: read quorum must intersect write quorums
from all previous views = if leader makes a proposal, must be up-to-date

all validators @ all validators all validators
AI,S A* “aCk”
(if read messages \
guorum)
A A A

: “ —=

finalize new txs here if receive write quorum



Byzantine Validator Shenanigans
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Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make an (out-of-date) proposal anyway.

— maybe didn’t receive chains from > n/2 validators, or maybe it did and
chose to ignore them

— out-of-date proposal (if adopted) =» consistency violation
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and make a proposal anyway. (= consistency violation)

17



Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
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Issue #2: Byzantine leader could propose different chains to
different validators [a.k.a. “equivocation™].
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Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators [a.k.a. “equivocation™].

* but can’t only one proposal garner the necessary >n/2 acks?

* no: Byzantine validators can ack multiple proposals
— non-faulty validators might simultaneous finalize inconsistent chains
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Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)
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Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)

Issue #3: Byzantine validators could lie about messages received
from other validators.

* e.g., frame a non-faulty validator for its own misbehavior
« will tackle this issue with cryptography (next)
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Digital Signature Schemes in Blockchains

* one of the two most ubiquitous cryptographic primitives used In
blockchain protocols (along with cryptographic hash functions)
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Application #1: allows a user of a blockchain to authorize a
transaction (e.g., making a payment).

« fundamental to the vision of shared computer in the sky
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Digital Signature Schemes in Blockchains

* one of the two most ubiquitous cryptographic primitives used In
blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a
transaction (e.g., making a payment).

« fundamental to the vision of shared computer in the sky

Application #2: under the hood, allows validators of a blockchain
protocol to sign their messages.

« used in most blockchain protocols for this purpose

— with Bitcoin a notable exception )



Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:
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Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:
1. Key generation algorithm: maps seed r - (pk,sk) pair.
— In some cases, may generate r itself (e.g., ssh-keygen)
2. Signing algorithm: maps message + sk = signature.
— signhature depends on both sk and the message being signed
3. Verification algorithm: maps msg + sig + pk = “yes”/"'no”.
— anyone who knows pk can verify correctness of an alleged signature

ldeal signature scheme: can’t produce valid signatures (that you
haven't already seen) unless you know the private key sk.
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Defining Security for a DSS

ldeal signature scheme: can’t produce valid signatures (that you
haven'’t already seen) unless you know the private key sk.

— note: not literally true (e.g., could reverse engineer sk by brute force)
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Defining Security for a DSS

For a formal security guarantee: need to assume...
 attacker is computationally bounded (polynomial-time)
« secret key length is sufficiently long (so brute force infeasible)

* no way to forge signatures much faster than brute-forcing sk
— ideally, related to “standard” hardness assumption (like discrete log)

* non-zero (but negligible) chance an attacker gets lucky

(Semi-)formal DSS security statement: under suitable complexity
assumptions, no randomized poly-time (in key length) algorithm
with access to a bunch of signed messages can produce a valid
signature for an unseen message with non-negligible probability.
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What Signatures Can and Can't Do

Issues:

Byzantine leader could ignore read quorum requirement and make a proposal anyway.
(=» consistency violation)

Byzantine leader could propose different chains to different validators, all supported by
acks from Byzantine validators. (=» consistency violation)

Byzantine validators could lie about messages received from other validators.
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What Signatures Can and Can't Do

Issues:

« Byzantine leader could ignore read quorum requirement and make a proposal anyway.
(=» consistency violation)

« Byzantine leader could propose different chains to different validators, all supported by
acks from Byzantine validators. (=» consistency violation)

« Byzantine validators could lie about messages received from other validators.

Good news: sighatures =» don't need to worry about issue #3
(Byzantine validators can't lie about messages sent by others).
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What Signatures Can and Can't Do

Issues:

« Byzantine leader could ignore read quorum requirement and make a proposal anyway.
(=» consistency violation)

« Byzantine leader could propose different chains to different validators, all supported by
acks from Byzantine validators. (=» consistency violation)

« Byzantine validators could lie about messages received from other validators.

Good news: sighatures =» don't need to worry about issue #3
(Byzantine validators can't lie about messages sent by others).

Bad news: even with signatures, SMR strictly harder with
Byzantine faults than with crash faults.
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Recap: The Partially Synchronous Model

« shared global clock (timesteps=0,1,2,...)
« known upper bound A on message delays in normal conditions
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Recap: The Partially Synchronous Model

« shared global clock (timesteps=0,1,2,...)
« known upper bound A on message delays in normal conditions

« unknown transition time GST (“global stabilization time”) from
asynchrony to synchrony (i.e., end of attack/outage)

— protocol must work no matter what GST is

Recall goals:
* consistency, always (even pre-GST/*under attack”)

* liveness soon after GST (once “normal conditions” resume)
— FLP =» need to give up one of consistency, liveness before GST
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Recap: Partial Synchrony + Crash Faults

Fact: crash faults + partial synchrony =» security threshold < 50%.

perhaps, all
messages
delayed

Suppose: validators in A don't
hear from any validators in B
for a long time.

* should they finalize any new txs?
Catch-22:
 |f validators in A wait =» possible liveness violation

— If post-GST and all validators in B have crashed (will wait forever)

 |f validators in A proceed =» possible consistency violation
— If pre-GST and all messages A < B have been delayed

perhaps, all
have crashed

A
(n/2 validators)

B
(n/2 validators)
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What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition:
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What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

— other f might well be Byzantine, could otherwise stall protocol forever
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Post-GST Crashes or Pre-GST Delays?

f Byzantine

validators

n-f honest
validators

will never send

any messages,

ever (including
post-GST)

Scenario #1
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What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

— other f might well be Byzantine, could otherwise stall protocol forever

2. ambiguity between crashes and long msg delays = might well
be that f of the n-f contributing validators are Byzantine
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Post-GST Crashes or Pre-GST Delays?

f Byzantine
validators

f honest
validators

\

all messages

n-2f honest
validators

n-f honest
validators

will never send

f Byzantine :
any messages, ) delayed (still
ever (including validators pre-GST)

post-GST)
Scenario #1 Scenario #2
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What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

2. ambiguity between crashes and long msg delays =» might well
be that f of the n-f contributing validators are Byzantine
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What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch =» security threshold < 33%.
— l.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness =» protocol must eventually finalize new transactions
even If have heard from only n-f validators.

2. ambiguity between crashes and long msg delays =» might well
be that f of the n-f contributing validators are Byzantine

3. to avoid getting tricked, need strict majority of these n-f

validators to be honest: (n-f)-f > f, l.e., f < n/3
— ™ 54

honest Byzantine




Toward Tendermint

Starting point: Protocol C (= Paxos/Raft).
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Toward Tendermint

Starting point: Protocol C (= Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)
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Starting point: Protocol C (= Paxos/Raft).
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and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)
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Toward Tendermint

Starting point: Protocol C (= Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement
and make a proposal anyway. (= consistency violation)

Issue #2: Byzantine leader could propose different chains to
different validators, all supported by acks from Byzantine
validators. (=» consistency violation)

Issue #3: Byzantine validators could lie about messages received
from other validators.
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Key Ideas in Tendermint

ldea #1: every validator signs every message it sends.
— assume all validators know each others public keys (+ IDs + IP addrs)
— called a “public key infrastructure (PKI)” assumption
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ldea #1: every validator signs every message it sends.
— assume all validators know each others public keys (+ IDs + IP addrs)
— called a “public key infrastructure (PKI)” assumption

Recall: in Protocol C, crucial that every write qguorum (size > n/2)
Intersects every subsequent read quorum (size > n/2).

— reason: once a leader is in a position to make a proposal, it must be
up-to-date on all txs already finalized by some non-faulty validator
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Key Ideas in Tendermint (con’'d)

Recall: in Protocol C, crucial that every write quorum (size > n/2)
Intersects every subsequent read quorum (size > n/2).

— reason: once a leader is in a position to make a proposal, it must be
up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately
submit an out-of-date chain (ignoring Its past write quorums).
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Key Ideas in Tendermint (con’'d)

Recall: in Protocol C, crucial that every write quorum (size > n/2)
Intersects every subsequent read quorum (size > n/2).

— reason: once a leader is in a position to make a proposal, it must be
up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately
submit an out-of-date chain (ignoring Its past write quorums).

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2:
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.
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ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]
(i) increase all quorum sizes to > 2n/3 validators
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* Updated gquorum intersection property:
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* updated quorum intersection property: if S, T are quorums =>»
S|, |T| > 2n/3
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* updated quorum intersection property: if S, T are quorums =>»
IS|, |T| > 2n/3 = S, T overlap in > n—n/3 —n/3 = n/3 validators
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Key Ideas in Tendermint (con’'d)

Fix: ensure that every read quorum, write quorum overlap in at
least one non-faulty validator.

— can count on this non-faulty validator to keep leader up-to-date

ldea #2: (1) assume < n/3 validators are Byzantine. [necessary]

(i) increase all quorum sizes to > 2n/3 validators
— note: given (i), (ii) does not immediately threaten liveness

* updated quorum intersection property: if S, T are quorums =>»
IS|, [T| >2n/3 = S, T overlap in > n — n/3 — n/3 = n/3 validators
= S, T overlap in at least one non-faulty validator
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Key Ideas in Tendermint (con’'d)

ldea #2: (1) assume < n/3 validators are Byzantine.

(i) increase all quorum sizes to > 2n/3 validators
— conseqguence: any two quorums have non-faulty validator in common
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Key Ideas in Tendermint (con’'d)

ldea #2: (1) assume < n/3 validators are Byzantine.

(i) increase all quorum sizes to > 2n/3 validators
— conseqguence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the
same view (despite equivocating leader, Byzantine acks).

 will ensure that simultaneous updates must be consistent
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Key Ideas in Tendermint (con’'d)

ldea #2: (1) assume < n/3 validators are Byzantine.

(i) increase all quorum sizes to > 2n/3 validators
— conseqguence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the
same view (despite equivocating leader, Byzantine acks).

 will ensure that simultaneous updates must be consistent

* reason: non-faulty validators will ack only one proposal per view

— two write quorums =» have a non-faulty validator in common =

validator only acked one proposal = both WQs support same proposal
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Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each
validator assembles one itself before acking a proposal.
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Key Ideas in Tendermint (con’'d)
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* quorum certificate (QC): > 2n/3 validators attesting that a
proposal by leader is up-to-date (as far as they can tell)
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Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each
validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a
proposal by leader is up-to-date (as far as they can tell)

— QCs included in blockchain as metadata
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Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each

validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as t

— QCs included in blockchain as metadata
— adds extra round to each view

ney can tell)

B,

Qi

B,

Q.

B,

Qs

78



Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each
validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a
proposal by leader is up-to-date (as far as they can tell)

— QCs included in blockchain as metadata

Bl Ql BZ QZ BS Q3 """

— adds extra round to each view

— note: QCs don’t even make sense without idea #1 (signatures)
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Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each

validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as t

ney can tell)

— QCs included in blockchain as metadata 5

— adds extra round to each view

Qi

B,

Q.

B,

Qs

— note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

80



Key Ideas in Tendermint (con’'d)

ldea #3: can't trust leader to assemble a read quorum =» each

validator assembles one itself before acking a proposal.

* quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as t

ney can tell)

— QCs included in blockchain as metadata

B,

Qi

B,

Q.

B,

Qs

— adds extra round to each view

— note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

— good news: idea #2 = impossible to have QCs for two different

proposals in the same view (effectively, equivocation not possible)
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