
Lecture #5: Byzantine Faults and

Digital Signature Schemes

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. The challenges of Byzantine faults.

– faulty validators that can behave in arbitrary (worst-case) ways

2. Digital signature schemes.

– key tool for limiting the space of Byzantine validator strategies

3. Limits on what is achievable.

– Byzantine faults make the SMR problem harder in partial synchrony

4. Key ideas behind Tendermint.

– Full protocol description and analysis on Monday.
2

Goals for Lecture #5

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

Goal: a protocol that

satisfies consistency

and liveness.
3

State Machine Replication (SMR)

Lecture #3: Protocol B solves SMR with crash faults in synchrony.

Lecture #4: if strict majority of validators are non-faulty, Protocol C

(≈ Paxos/Raft) solves SMR with crash faults in partial synchrony.

4

A Road Map to Practical SMR Protocols

crash faults +

synchrony

[security threshold ≈ 100%]

crash faults +

partially synchrony

[security threshold = 50%]

Byzantine faults +

partially synchrony

[security threshold = ?]

easier harder

Next challenge: Byzantine faults.

• faulty validators can act arbitrarily

5

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults.

• faulty validators can act arbitrarily

– original motivation (1980s): hard-to-model software errors

– blockchain protocols: might literally get attacked by hostile actor

• e.g., hacks into validators previously controlled by good actors

– alternative names for non-faulty validators: “honest,” “correct”

6

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults.

• faulty validators can act arbitrarily

– original motivation (1980s): hard-to-model software errors

– blockchain protocols: might literally get attacked by hostile actor

• e.g., hacks into validators previously controlled by good actors

– alternative names for non-faulty validators: “honest,” “correct”

– question: what are Byzantine validators capable of?

7

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults.

• faulty validators can act arbitrarily

– original motivation (1980s): hard-to-model software errors

– blockchain protocols: might literally get attacked by hostile actor

• e.g., hacks into validators previously controlled by good actors

– alternative names for non-faulty validators: “honest,” “correct”

– question: what are Byzantine validators capable of?

Question: is Protocol C (≈ Paxos/Raft) still live and consistent

with Byzantine faults?

8

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (≈ Paxos/Raft) still live and consistent

with Byzantine faults?

9

Paxos/Raft with Byzantine Faults

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (≈ Paxos/Raft) still live and consistent

with Byzantine faults?

10

Paxos/Raft with Byzantine Faults

all validators ℓ

Ai’s

∆

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (≈ Paxos/Raft) still live and consistent

with Byzantine faults?

11

Paxos/Raft with Byzantine Faults

all validators ℓ all validators

Ai’s A*

(if read

quorum)
∆ ∆

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (≈ Paxos/Raft) still live and consistent

with Byzantine faults?

12

Paxos/Raft with Byzantine Faults

all validators ℓ all validators

Ai’s A*

(if read

quorum)
∆ ∆

all validators

∆

“ack”

messages

Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (≈ Paxos/Raft) still live and consistent

with Byzantine faults?

13

Paxos/Raft with Byzantine Faults

all validators ℓ all validators

Ai’s A*

(if read

quorum)
∆ ∆

all validators

∆

“ack”

messages

finalize new txs here if receive write quorum

Question: is Protocol C still live and consistent with Byzantine faults?

• key property for consistency: read quorum must intersect write quorums

from all previous views ➔ if leader makes a proposal, must be up-to-date

14

Paxos/Raft with Byzantine Faults

all validators ℓ all validators

Ai’s A*

(if read

quorum)
∆ ∆

all validators

∆

“ack”

messages

finalize new txs here if receive write quorum

15

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement

and make an (out-of-date) proposal anyway.

– maybe didn’t receive chains from > n/2 validators, or maybe it did and

chose to ignore them

– out-of-date proposal (if adopted) ➔ consistency violation

16

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

17

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to

different validators [a.k.a. “equivocation”].

18

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to

different validators [a.k.a. “equivocation”].

• but can’t only one proposal garner the necessary >n/2 acks?

19

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to

different validators [a.k.a. “equivocation”].

• but can’t only one proposal garner the necessary >n/2 acks?

• no: Byzantine validators can ack multiple proposals

– non-faulty validators might simultaneous finalize inconsistent chains

20

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to

different validators, all supported by acks from Byzantine

validators. (➔ consistency violation)

21

Byzantine Validator Shenanigans

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to

different validators, all supported by acks from Byzantine

validators. (➔ consistency violation)

Issue #3: Byzantine validators could lie about messages received

from other validators.

• e.g., frame a non-faulty validator for its own misbehavior

• will tackle this issue with cryptography (next)
22

Byzantine Validator Shenanigans

• one of the two most ubiquitous cryptographic primitives used in

blockchain protocols (along with cryptographic hash functions)

23

Digital Signature Schemes in Blockchains

• one of the two most ubiquitous cryptographic primitives used in

blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a

transaction (e.g., making a payment).

• fundamental to the vision of shared computer in the sky

24

Digital Signature Schemes in Blockchains

• one of the two most ubiquitous cryptographic primitives used in

blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a

transaction (e.g., making a payment).

• fundamental to the vision of shared computer in the sky

Application #2: under the hood, allows validators of a blockchain

protocol to sign their messages.

• used in most blockchain protocols for this purpose

– with Bitcoin a notable exception
25

Digital Signature Schemes in Blockchains

Digital signature scheme: defined by 3 (efficient) algorithms:

26

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)

27

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)

2. Signing algorithm: maps message + sk → signature.

– signature depends on both sk and the message being signed

28

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)

2. Signing algorithm: maps message + sk → signature.

– signature depends on both sk and the message being signed

3. Verification algorithm: maps msg + sig + pk → “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature

29

Defining Digital Signature Schemes

Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)

2. Signing algorithm: maps message + sk → signature.

– signature depends on both sk and the message being signed

3. Verification algorithm: maps msg + sig + pk → “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature

Ideal signature scheme: can’t produce valid signatures (that you

haven’t already seen) unless you know the private key sk.
30

Defining Digital Signature Schemes

Ideal signature scheme: can’t produce valid signatures (that you

haven’t already seen) unless you know the private key sk.

– note: not literally true (e.g., could reverse engineer sk by brute force)

31

Defining Security for a DSS

Ideal signature scheme: can’t produce valid signatures (that you

haven’t already seen) unless you know the private key sk.

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

32

Defining Security for a DSS

Ideal signature scheme: can’t produce valid signatures (that you

haven’t already seen) unless you know the private key sk.

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

33

Defining Security for a DSS

Ideal signature scheme: can’t produce valid signatures (that you

haven’t already seen) unless you know the private key sk.

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)

34

Defining Security for a DSS

Ideal signature scheme: can’t produce valid signatures (that you

haven’t already seen) unless you know the private key sk.

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)

• no way to forge signatures much faster than brute-forcing sk

– ideally, related to “standard” hardness assumption (like discrete log)

35

Defining Security for a DSS

Ideal signature scheme: can’t produce valid signatures (that you

haven’t already seen) unless you know the private key sk.

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)

• no way to forge signatures much faster than brute-forcing sk

– ideally, related to “standard” hardness assumption (like discrete log)

• non-zero (but negligible) chance an attacker gets lucky
36

Defining Security for a DSS

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)

• no way to forge signatures much faster than brute-forcing sk

– ideally, related to “standard” hardness assumption (like discrete log)

• non-zero (but negligible) chance an attacker gets lucky

(Semi-)formal DSS security statement: under suitable complexity

assumptions, no randomized poly-time (in key length) algorithm

with access to a bunch of signed messages can produce a valid

signature for an unseen message with non-negligible probability.
37

Defining Security for a DSS

Issues:

• Byzantine leader could ignore read quorum requirement and make a proposal anyway.

(➔ consistency violation)

• Byzantine leader could propose different chains to different validators, all supported by

acks from Byzantine validators. (➔ consistency violation)

• Byzantine validators could lie about messages received from other validators.

38

What Signatures Can and Can’t Do

Issues:

• Byzantine leader could ignore read quorum requirement and make a proposal anyway.

(➔ consistency violation)

• Byzantine leader could propose different chains to different validators, all supported by

acks from Byzantine validators. (➔ consistency violation)

• Byzantine validators could lie about messages received from other validators.

Good news: signatures ➔ don’t need to worry about issue #3

(Byzantine validators can’t lie about messages sent by others).

39

What Signatures Can and Can’t Do

Issues:

• Byzantine leader could ignore read quorum requirement and make a proposal anyway.

(➔ consistency violation)

• Byzantine leader could propose different chains to different validators, all supported by

acks from Byzantine validators. (➔ consistency violation)

• Byzantine validators could lie about messages received from other validators.

Good news: signatures ➔ don’t need to worry about issue #3

(Byzantine validators can’t lie about messages sent by others).

Bad news: even with signatures, SMR strictly harder with

Byzantine faults than with crash faults.
40

What Signatures Can and Can’t Do

• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

41

Recap: The Partially Synchronous Model

• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)

– protocol must work no matter what GST is

42

Recap: The Partially Synchronous Model

• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)

– protocol must work no matter what GST is

Recall goals:

• consistency, always (even pre-GST/“under attack”)

43

Recap: The Partially Synchronous Model

• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)

– protocol must work no matter what GST is

Recall goals:

• consistency, always (even pre-GST/“under attack”)

• liveness soon after GST (once “normal conditions” resume)

– FLP ➔ need to give up one of consistency, liveness before GST
44

Recap: The Partially Synchronous Model

Fact: crash faults + partial synchrony ➔ security threshold < 50%.

Suppose: validators in A don’t

hear from any validators in B

for a long time.

• should they finalize any new txs?

Catch-22:

• if validators in A wait ➔ possible liveness violation

– if post-GST and all validators in B have crashed (will wait forever)

• if validators in A proceed ➔ possible consistency violation

– if pre-GST and all messages A  B have been delayed
45

Recap: Partial Synchrony + Crash Faults

A
(n/2 validators)

B
(n/2 validators)

perhaps, all

have crashed

perhaps, all

messages

delayed

Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition:

46

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions

even if have heard from only n-f validators.

– other f might well be Byzantine, could otherwise stall protocol forever

47

What Is Possible with Byzantine Faults?

48

Post-GST Crashes or Pre-GST Delays?

n-f honest

validators
will never send

any messages,

ever (including

post-GST)

Scenario #1

f Byzantine

validators

Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions

even if have heard from only n-f validators.

– other f might well be Byzantine, could otherwise stall protocol forever

49

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions

even if have heard from only n-f validators.

– other f might well be Byzantine, could otherwise stall protocol forever

2. ambiguity between crashes and long msg delays ➔ might well

be that f of the n-f contributing validators are Byzantine

50

What Is Possible with Byzantine Faults?

51

Post-GST Crashes or Pre-GST Delays?

n-f honest

validators
will never send

any messages,

ever (including

post-GST)

f Byzantine

validators

Scenario #1

n-2f honest

validators

all messages

delayed (still

pre-GST)

f honest

validators

Scenario #2

f Byzantine

validators

Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions

even if have heard from only n-f validators.

2. ambiguity between crashes and long msg delays ➔ might well

be that f of the n-f contributing validators are Byzantine

52

What Is Possible with Byzantine Faults?

Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions

even if have heard from only n-f validators.

2. ambiguity between crashes and long msg delays ➔ might well

be that f of the n-f contributing validators are Byzantine

3. to avoid getting tricked, need strict majority of these n-f

validators to be honest: (n-f)-f > f
53

What Is Possible with Byzantine Faults?

honest Byzantine

Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions

even if have heard from only n-f validators.

2. ambiguity between crashes and long msg delays ➔ might well

be that f of the n-f contributing validators are Byzantine

3. to avoid getting tricked, need strict majority of these n-f

validators to be honest: (n-f)-f > f, i.e., f < n/3
54

What Is Possible with Byzantine Faults?

honest Byzantine

Starting point: Protocol C (≈ Paxos/Raft).

55

Toward Tendermint

Starting point: Protocol C (≈ Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

56

Toward Tendermint

Starting point: Protocol C (≈ Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to

different validators, all supported by acks from Byzantine

validators. (➔ consistency violation)

57

Toward Tendermint

Starting point: Protocol C (≈ Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to

different validators, all supported by acks from Byzantine

validators. (➔ consistency violation)

Issue #3: Byzantine validators could lie about messages received

from other validators.

58

Toward Tendermint

Idea #1: every validator signs every message it sends.

– assume all validators know each others public keys (+ IDs + IP addrs)

– called a “public key infrastructure (PKI)” assumption

59

Key Ideas in Tendermint

Idea #1: every validator signs every message it sends.

– assume all validators know each others public keys (+ IDs + IP addrs)

– called a “public key infrastructure (PKI)” assumption

Recall: in Protocol C, crucial that every write quorum (size > n/2)

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be

up-to-date on all txs already finalized by some non-faulty validator

60

Key Ideas in Tendermint

Idea #1: every validator signs every message it sends.

– assume all validators know each others public keys (+ IDs + IP addrs)

– called a “public key infrastructure (PKI)” assumption

Recall: in Protocol C, crucial that every write quorum (size > n/2)

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be

up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately

submit an out-of-date chain (ignoring its past write quorums).
61

Key Ideas in Tendermint

Recall: in Protocol C, crucial that every write quorum (size > n/2)

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be

up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately

submit an out-of-date chain (ignoring its past write quorums).

62

Key Ideas in Tendermint (con’d)

Recall: in Protocol C, crucial that every write quorum (size > n/2)

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be

up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately

submit an out-of-date chain (ignoring its past write quorums).

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date
63

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2:

64

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine. [necessary]

65

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine. [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

66

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine. [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

67

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine. [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property:

68

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine. [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property: if S, T are quorums ➔

|S|, |T| > 2n/3

69

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine. [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property: if S, T are quorums ➔

|S|, |T| > 2n/3 ➔ S, T overlap in > n – n/3 – n/3 = n/3 validators

70

Key Ideas in Tendermint (con’d)

Fix: ensure that every read quorum, write quorum overlap in at

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine. [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property: if S, T are quorums ➔

|S|, |T| > 2n/3 ➔ S, T overlap in > n – n/3 – n/3 = n/3 validators

➔ S, T overlap in at least one non-faulty validator

71

Key Ideas in Tendermint (con’d)

Idea #2: (i) assume < n/3 validators are Byzantine.

(ii) increase all quorum sizes to > 2n/3 validators

– consequence: any two quorums have non-faulty validator in common

72

Key Ideas in Tendermint (con’d)

Idea #2: (i) assume < n/3 validators are Byzantine.

(ii) increase all quorum sizes to > 2n/3 validators

– consequence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the

same view (despite equivocating leader, Byzantine acks).

• will ensure that simultaneous updates must be consistent

73

Key Ideas in Tendermint (con’d)

Idea #2: (i) assume < n/3 validators are Byzantine.

(ii) increase all quorum sizes to > 2n/3 validators

– consequence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the

same view (despite equivocating leader, Byzantine acks).

• will ensure that simultaneous updates must be consistent

• reason: non-faulty validators will ack only one proposal per view

– two write quorums ➔ have a non-faulty validator in common ➔

validator only acked one proposal ➔ both WQs support same proposal

74

Key Ideas in Tendermint (con’d)

Idea #3: can’t trust leader to assemble a read quorum ➔ each

validator assembles one itself before acking a proposal.

75

Key Ideas in Tendermint (con’d)

Idea #3: can’t trust leader to assemble a read quorum ➔ each

validator assembles one itself before acking a proposal.

• quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as they can tell)

76

Key Ideas in Tendermint (con’d)

Idea #3: can’t trust leader to assemble a read quorum ➔ each

validator assembles one itself before acking a proposal.

• quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

77

Key Ideas in Tendermint (con’d)

B1 Q1 B2 Q2 B3 Q3
…..

Idea #3: can’t trust leader to assemble a read quorum ➔ each

validator assembles one itself before acking a proposal.

• quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view

78

Key Ideas in Tendermint (con’d)

B1 Q1 B2 Q2 B3 Q3
…..

Idea #3: can’t trust leader to assemble a read quorum ➔ each

validator assembles one itself before acking a proposal.

• quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view

– note: QCs don’t even make sense without idea #1 (signatures)

79

Key Ideas in Tendermint (con’d)

B1 Q1 B2 Q2 B3 Q3
…..

Idea #3: can’t trust leader to assemble a read quorum ➔ each

validator assembles one itself before acking a proposal.

• quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view

– note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

80

Key Ideas in Tendermint (con’d)

B1 Q1 B2 Q2 B3 Q3
…..

Idea #3: can’t trust leader to assemble a read quorum ➔ each

validator assembles one itself before acking a proposal.

• quorum certificate (QC): > 2n/3 validators attesting that a

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view

– note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

– good news: idea #2 ➔ impossible to have QCs for two different

proposals in the same view (effectively, equivocation not possible) 81

Key Ideas in Tendermint (con’d)

B1 Q1 B2 Q2 B3 Q3
…..

	Slide 1: Lecture #5: Byzantine Faults and Digital Signature Schemes
	Slide 2: Goals for Lecture #5
	Slide 3: State Machine Replication (SMR)
	Slide 4: A Road Map to Practical SMR Protocols
	Slide 5: Paxos/Raft with Byzantine Faults
	Slide 6: Paxos/Raft with Byzantine Faults
	Slide 7: Paxos/Raft with Byzantine Faults
	Slide 8: Paxos/Raft with Byzantine Faults
	Slide 9: Paxos/Raft with Byzantine Faults
	Slide 10: Paxos/Raft with Byzantine Faults
	Slide 11: Paxos/Raft with Byzantine Faults
	Slide 12: Paxos/Raft with Byzantine Faults
	Slide 13: Paxos/Raft with Byzantine Faults
	Slide 14: Paxos/Raft with Byzantine Faults
	Slide 15: Byzantine Validator Shenanigans
	Slide 16: Byzantine Validator Shenanigans
	Slide 17: Byzantine Validator Shenanigans
	Slide 18: Byzantine Validator Shenanigans
	Slide 19: Byzantine Validator Shenanigans
	Slide 20: Byzantine Validator Shenanigans
	Slide 21: Byzantine Validator Shenanigans
	Slide 22: Byzantine Validator Shenanigans
	Slide 23: Digital Signature Schemes in Blockchains
	Slide 24: Digital Signature Schemes in Blockchains
	Slide 25: Digital Signature Schemes in Blockchains
	Slide 26: Defining Digital Signature Schemes
	Slide 27: Defining Digital Signature Schemes
	Slide 28: Defining Digital Signature Schemes
	Slide 29: Defining Digital Signature Schemes
	Slide 30: Defining Digital Signature Schemes
	Slide 31: Defining Security for a DSS
	Slide 32: Defining Security for a DSS
	Slide 33: Defining Security for a DSS
	Slide 34: Defining Security for a DSS
	Slide 35: Defining Security for a DSS
	Slide 36: Defining Security for a DSS
	Slide 37: Defining Security for a DSS
	Slide 38: What Signatures Can and Can’t Do
	Slide 39: What Signatures Can and Can’t Do
	Slide 40: What Signatures Can and Can’t Do
	Slide 41: Recap: The Partially Synchronous Model
	Slide 42: Recap: The Partially Synchronous Model
	Slide 43: Recap: The Partially Synchronous Model
	Slide 44: Recap: The Partially Synchronous Model
	Slide 45: Recap: Partial Synchrony + Crash Faults
	Slide 46: What Is Possible with Byzantine Faults?
	Slide 47: What Is Possible with Byzantine Faults?
	Slide 48: Post-GST Crashes or Pre-GST Delays?
	Slide 49: What Is Possible with Byzantine Faults?
	Slide 50: What Is Possible with Byzantine Faults?
	Slide 51: Post-GST Crashes or Pre-GST Delays?
	Slide 52: What Is Possible with Byzantine Faults?
	Slide 53: What Is Possible with Byzantine Faults?
	Slide 54: What Is Possible with Byzantine Faults?
	Slide 55: Toward Tendermint
	Slide 56: Toward Tendermint
	Slide 57: Toward Tendermint
	Slide 58: Toward Tendermint
	Slide 59: Key Ideas in Tendermint
	Slide 60: Key Ideas in Tendermint
	Slide 61: Key Ideas in Tendermint
	Slide 62: Key Ideas in Tendermint (con’d)
	Slide 63: Key Ideas in Tendermint (con’d)
	Slide 64: Key Ideas in Tendermint (con’d)
	Slide 65: Key Ideas in Tendermint (con’d)
	Slide 66: Key Ideas in Tendermint (con’d)
	Slide 67: Key Ideas in Tendermint (con’d)
	Slide 68: Key Ideas in Tendermint (con’d)
	Slide 69: Key Ideas in Tendermint (con’d)
	Slide 70: Key Ideas in Tendermint (con’d)
	Slide 71: Key Ideas in Tendermint (con’d)
	Slide 72: Key Ideas in Tendermint (con’d)
	Slide 73: Key Ideas in Tendermint (con’d)
	Slide 74: Key Ideas in Tendermint (con’d)
	Slide 75: Key Ideas in Tendermint (con’d)
	Slide 76: Key Ideas in Tendermint (con’d)
	Slide 77: Key Ideas in Tendermint (con’d)
	Slide 78: Key Ideas in Tendermint (con’d)
	Slide 79: Key Ideas in Tendermint (con’d)
	Slide 80: Key Ideas in Tendermint (con’d)
	Slide 81: Key Ideas in Tendermint (con’d)

