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1. The challenges of Byzantine faults.

– faulty validators that can behave in arbitrary (worst-case) ways

2. Digital signature schemes. 

– key tool for limiting the space of Byzantine validator strategies

3. Limits on what is achievable.

– Byzantine faults make the SMR problem harder in partial synchrony

4. Key ideas behind Tendermint.

– Full protocol description and analysis on Monday.
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Goals for Lecture #5



SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs 

(a.k.a. “log” or “history”)

Goal: a protocol that        

satisfies consistency               

and liveness.
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State Machine Replication (SMR)



Lecture #3: Protocol B solves SMR with crash faults in synchrony.

Lecture #4: if strict majority of validators are non-faulty, Protocol C   

(≈ Paxos/Raft) solves SMR with crash faults in partial synchrony.
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A Road Map to Practical SMR Protocols

crash faults +

synchrony

[security threshold ≈ 100%]

crash faults +

partially synchrony 

[security threshold = 50%]

Byzantine faults +

partially synchrony 

[security threshold = ?]

easier harder



Next challenge: Byzantine faults.

• faulty validators can act arbitrarily
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Paxos/Raft with Byzantine Faults



Next challenge: Byzantine faults.

• faulty validators can act arbitrarily

– original motivation (1980s): hard-to-model software errors

– blockchain protocols: might literally get attacked by hostile actor

• e.g., hacks into validators previously controlled by good actors

– alternative names for non-faulty validators: “honest,” “correct”
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Next challenge: Byzantine faults.

• faulty validators can act arbitrarily

– original motivation (1980s): hard-to-model software errors

– blockchain protocols: might literally get attacked by hostile actor

• e.g., hacks into validators previously controlled by good actors

– alternative names for non-faulty validators: “honest,” “correct”

– question: what are Byzantine validators capable of?
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Next challenge: Byzantine faults.

• faulty validators can act arbitrarily

– original motivation (1980s): hard-to-model software errors

– blockchain protocols: might literally get attacked by hostile actor

• e.g., hacks into validators previously controlled by good actors

– alternative names for non-faulty validators: “honest,” “correct”

– question: what are Byzantine validators capable of?

Question: is Protocol C (≈ Paxos/Raft) still live and consistent 

with Byzantine faults?
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Question: is Protocol C (≈ Paxos/Raft) still live and consistent 

with Byzantine faults?
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Question: is Protocol C (≈ Paxos/Raft) still live and consistent 

with Byzantine faults?
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Paxos/Raft with Byzantine Faults

all validators ℓ

Ai’s

∆



Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (≈ Paxos/Raft) still live and consistent 

with Byzantine faults?
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Paxos/Raft with Byzantine Faults

all validators ℓ all validators

Ai’s A*

(if read 

quorum)
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with Byzantine faults?
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Next challenge: Byzantine faults (i.e., faulty validators can act arbitrarily).

Question: is Protocol C (≈ Paxos/Raft) still live and consistent 

with Byzantine faults?
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Paxos/Raft with Byzantine Faults

all validators ℓ all validators

Ai’s A*

(if read 

quorum)
∆ ∆

all validators

∆

“ack” 

messages

finalize new txs here if receive write quorum



Question: is Protocol C still live and consistent with Byzantine faults?

• key property for consistency: read quorum must intersect write quorums 

from all previous views ➔ if leader makes a proposal, must be up-to-date
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Paxos/Raft with Byzantine Faults
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Ai’s A*

(if read 

quorum)
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all validators

∆
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finalize new txs here if receive write quorum
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Byzantine Validator Shenanigans



Issue #1: Byzantine leader could ignore read quorum requirement 

and make an (out-of-date) proposal anyway.

– maybe didn’t receive chains from > n/2 validators, or maybe it did and 

chose to ignore them

– out-of-date proposal (if adopted) ➔ consistency violation
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Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)
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Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to 

different validators [a.k.a. “equivocation”].
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Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to 

different validators [a.k.a. “equivocation”].

• but can’t only one proposal garner the necessary >n/2 acks?
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Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to 

different validators [a.k.a. “equivocation”].

• but can’t only one proposal garner the necessary >n/2 acks?

• no: Byzantine validators can ack multiple proposals

– non-faulty validators might simultaneous finalize inconsistent chains
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Byzantine Validator Shenanigans



Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to 

different validators, all supported by acks from Byzantine 

validators.  (➔ consistency violation)
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Byzantine Validator Shenanigans



Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to 

different validators, all supported by acks from Byzantine 

validators.  (➔ consistency violation)

Issue #3: Byzantine validators could lie about messages received 

from other validators.

• e.g., frame a non-faulty validator for its own misbehavior

• will tackle this issue with cryptography (next)
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Byzantine Validator Shenanigans



• one of the two most ubiquitous cryptographic primitives used in 

blockchain protocols (along with cryptographic hash functions)
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Digital Signature Schemes in Blockchains



• one of the two most ubiquitous cryptographic primitives used in 

blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a 

transaction (e.g., making a payment).

• fundamental to the vision of shared computer in the sky
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• one of the two most ubiquitous cryptographic primitives used in 

blockchain protocols (along with cryptographic hash functions)

Application #1: allows a user of a blockchain to authorize a 

transaction (e.g., making a payment).

• fundamental to the vision of shared computer in the sky

Application #2: under the hood, allows validators of a blockchain 

protocol to sign their messages.

• used in most blockchain protocols for this purpose

– with Bitcoin a notable exception
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Digital Signature Schemes in Blockchains



Digital signature scheme: defined by 3 (efficient) algorithms:
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Defining Digital Signature Schemes



Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)
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Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)

2. Signing algorithm: maps message + sk → signature.

– signature depends on both sk and the message being signed
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Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)

2. Signing algorithm: maps message + sk → signature.

– signature depends on both sk and the message being signed

3. Verification algorithm: maps msg + sig + pk → “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature
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Digital signature scheme: defined by 3 (efficient) algorithms:

1. Key generation algorithm: maps seed r → (pk,sk) pair.

– in some cases, may generate r itself (e.g., ssh-keygen)

2. Signing algorithm: maps message + sk → signature.

– signature depends on both sk and the message being signed

3. Verification algorithm: maps msg + sig + pk → “yes”/”no”.

– anyone who knows pk can verify correctness of an alleged signature

Ideal signature scheme: can’t produce valid signatures (that you 

haven’t already seen) unless you know the private key sk. 
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Defining Digital Signature Schemes



Ideal signature scheme: can’t produce valid signatures (that you 

haven’t already seen) unless you know the private key sk. 

– note: not literally true (e.g., could reverse engineer sk by brute force)
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Defining Security for a DSS



Ideal signature scheme: can’t produce valid signatures (that you 

haven’t already seen) unless you know the private key sk. 

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…
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Ideal signature scheme: can’t produce valid signatures (that you 

haven’t already seen) unless you know the private key sk. 

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)
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– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)
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Ideal signature scheme: can’t produce valid signatures (that you 

haven’t already seen) unless you know the private key sk. 

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)

• no way to forge signatures much faster than brute-forcing sk

– ideally, related to “standard” hardness assumption (like discrete log)
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Ideal signature scheme: can’t produce valid signatures (that you 

haven’t already seen) unless you know the private key sk. 

– note: not literally true (e.g., could reverse engineer sk by brute force)

For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)

• no way to forge signatures much faster than brute-forcing sk

– ideally, related to “standard” hardness assumption (like discrete log)

• non-zero (but negligible) chance an attacker gets lucky
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For a formal security guarantee: need to assume…

• attacker is computationally bounded (polynomial-time)

• secret key length is sufficiently long (so brute force infeasible)

• no way to forge signatures much faster than brute-forcing sk

– ideally, related to “standard” hardness assumption (like discrete log)

• non-zero (but negligible) chance an attacker gets lucky

(Semi-)formal DSS security statement: under suitable complexity 

assumptions, no randomized poly-time (in key length) algorithm 

with access to a bunch of signed messages can produce a valid 

signature for an unseen message with non-negligible probability.
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Defining Security for a DSS



Issues:

• Byzantine leader could ignore read quorum requirement and make a proposal anyway. 

(➔ consistency violation)

• Byzantine leader could propose different chains to different validators, all supported by 

acks from Byzantine validators.  (➔ consistency violation)

• Byzantine validators could lie about messages received from other validators.
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What Signatures Can and Can’t Do



Issues:

• Byzantine leader could ignore read quorum requirement and make a proposal anyway. 

(➔ consistency violation)

• Byzantine leader could propose different chains to different validators, all supported by 

acks from Byzantine validators.  (➔ consistency violation)

• Byzantine validators could lie about messages received from other validators.

Good news: signatures ➔ don’t need to worry about issue #3 

(Byzantine validators can’t lie about messages sent by others).
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What Signatures Can and Can’t Do



Issues:

• Byzantine leader could ignore read quorum requirement and make a proposal anyway. 

(➔ consistency violation)

• Byzantine leader could propose different chains to different validators, all supported by 

acks from Byzantine validators.  (➔ consistency violation)

• Byzantine validators could lie about messages received from other validators.

Good news: signatures ➔ don’t need to worry about issue #3 

(Byzantine validators can’t lie about messages sent by others).

Bad news: even with signatures, SMR strictly harder with 

Byzantine faults than with crash faults.
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What Signatures Can and Can’t Do



• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions
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Recap: The Partially Synchronous Model



• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

• unknown transition time GST (“global stabilization time”) from 

asynchrony to synchrony (i.e., end of attack/outage)

– protocol must work no matter what GST is
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• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

• unknown transition time GST (“global stabilization time”) from 

asynchrony to synchrony (i.e., end of attack/outage)

– protocol must work no matter what GST is

Recall goals: 

• consistency, always (even pre-GST/“under attack”)
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• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

• unknown transition time GST (“global stabilization time”) from 

asynchrony to synchrony (i.e., end of attack/outage)

– protocol must work no matter what GST is

Recall goals: 

• consistency, always (even pre-GST/“under attack”)

• liveness soon after GST (once “normal conditions” resume)

– FLP ➔ need to give up one of consistency, liveness before GST
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Recap: The Partially Synchronous Model



Fact: crash faults + partial synchrony ➔ security threshold < 50%.

Suppose: validators in A don’t           

hear from any validators in B               

for a long time.

• should they finalize any new txs?

Catch-22:

• if validators in A wait ➔ possible liveness violation

– if post-GST and all validators in B have crashed (will wait forever)

• if validators in A proceed ➔ possible consistency violation

– if pre-GST and all messages A  B have been delayed
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Recap: Partial Synchrony + Crash Faults

A
(n/2 validators)

B
(n/2 validators)

perhaps, all 

have crashed

perhaps, all 

messages 

delayed



Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition:
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What Is Possible with Byzantine Faults?



Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions 

even if have heard from only n-f validators.

– other f might well be Byzantine, could otherwise stall protocol forever
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What Is Possible with Byzantine Faults?
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Post-GST Crashes or Pre-GST Delays?

n-f honest 

validators
will never send 

any messages, 

ever (including 

post-GST)

Scenario #1

f Byzantine 

validators



Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions 

even if have heard from only n-f validators.

– other f might well be Byzantine, could otherwise stall protocol forever
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Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions 

even if have heard from only n-f validators.

– other f might well be Byzantine, could otherwise stall protocol forever

2. ambiguity between crashes and long msg delays ➔ might well 

be that f of the n-f contributing validators are Byzantine
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What Is Possible with Byzantine Faults?
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Post-GST Crashes or Pre-GST Delays?

n-f honest 

validators
will never send 

any messages, 

ever (including 

post-GST)

f Byzantine 

validators

Scenario #1

n-2f honest 

validators

all messages 

delayed (still 

pre-GST)

f honest 

validators

Scenario #2

f Byzantine 

validators



Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions 

even if have heard from only n-f validators.

2. ambiguity between crashes and long msg delays ➔ might well 

be that f of the n-f contributing validators are Byzantine
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Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions 

even if have heard from only n-f validators.

2. ambiguity between crashes and long msg delays ➔ might well 

be that f of the n-f contributing validators are Byzantine

3. to avoid getting tricked, need strict majority of these n-f 

validators to be honest: (n-f)-f > f
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What Is Possible with Byzantine Faults?

honest Byzantine



Fact: Byzantine faults + partial synch ➔ security threshold < 33%.

– i.e., no hope unless > two-thirds of validators are non-faulty

Intuition: Suppose want to tolerate up to f Byzantine faults.

1. liveness ➔ protocol must eventually finalize new transactions 

even if have heard from only n-f validators.

2. ambiguity between crashes and long msg delays ➔ might well 

be that f of the n-f contributing validators are Byzantine

3. to avoid getting tricked, need strict majority of these n-f 

validators to be honest: (n-f)-f > f, i.e., f < n/3
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What Is Possible with Byzantine Faults?

honest Byzantine



Starting point: Protocol C (≈ Paxos/Raft).
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Starting point: Protocol C (≈ Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)
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Starting point: Protocol C (≈ Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to 

different validators, all supported by acks from Byzantine 

validators.  (➔ consistency violation)

57

Toward Tendermint



Starting point: Protocol C (≈ Paxos/Raft).

Issue #1: Byzantine leader could ignore read quorum requirement 

and make a proposal anyway. (➔ consistency violation)

Issue #2: Byzantine leader could propose different chains to 

different validators, all supported by acks from Byzantine 

validators.  (➔ consistency violation)

Issue #3: Byzantine validators could lie about messages received 

from other validators.

58

Toward Tendermint



Idea #1: every validator signs every message it sends.

– assume all validators know each others public keys (+ IDs + IP addrs)

– called a “public key infrastructure (PKI)” assumption
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Idea #1: every validator signs every message it sends.

– assume all validators know each others public keys (+ IDs + IP addrs)

– called a “public key infrastructure (PKI)” assumption

Recall: in Protocol C, crucial that every write quorum (size > n/2) 

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be  

up-to-date on all txs already finalized by some non-faulty validator
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Idea #1: every validator signs every message it sends.

– assume all validators know each others public keys (+ IDs + IP addrs)

– called a “public key infrastructure (PKI)” assumption

Recall: in Protocol C, crucial that every write quorum (size > n/2) 

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be  

up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately 

submit an out-of-date chain (ignoring its past write quorums).
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Recall: in Protocol C, crucial that every write quorum (size > n/2) 

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be  

up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately 

submit an out-of-date chain (ignoring its past write quorums).
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Key Ideas in Tendermint (con’d)



Recall: in Protocol C, crucial that every write quorum (size > n/2) 

intersects every subsequent read quorum (size > n/2).

– reason: once a leader is in a position to make a proposal, it must be  

up-to-date on all txs already finalized by some non-faulty validator

Issue: a Byzantine validator in a read quorum could deliberately 

submit an out-of-date chain (ignoring its past write quorums).

Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date
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Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2:

64

Key Ideas in Tendermint (con’d)



Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine.  [necessary]
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Key Ideas in Tendermint (con’d)



Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine.  [necessary]

(ii) increase all quorum sizes to > 2n/3 validators
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Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine.  [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness
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Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine.  [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property:
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Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine.  [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property: if S, T are quorums ➔ 

|S|, |T| > 2n/3 
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Key Ideas in Tendermint (con’d)



Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine.  [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property: if S, T are quorums ➔ 

|S|, |T| > 2n/3 ➔ S, T overlap in > n – n/3 – n/3 = n/3 validators
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Key Ideas in Tendermint (con’d)



Fix: ensure that every read quorum, write quorum overlap in at 

least one non-faulty validator.

– can count on this non-faulty validator to keep leader up-to-date

Idea #2: (i) assume < n/3 validators are Byzantine.  [necessary]

(ii) increase all quorum sizes to > 2n/3 validators

– note: given (i), (ii) does not immediately threaten liveness

• updated quorum intersection property: if S, T are quorums ➔ 

|S|, |T| > 2n/3 ➔ S, T overlap in > n – n/3 – n/3 = n/3 validators 

➔ S, T overlap in at least one non-faulty validator
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Key Ideas in Tendermint (con’d)



Idea #2: (i) assume < n/3 validators are Byzantine. 

(ii) increase all quorum sizes to > 2n/3 validators

– consequence: any two quorums have non-faulty validator in common
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Idea #2: (i) assume < n/3 validators are Byzantine. 

(ii) increase all quorum sizes to > 2n/3 validators

– consequence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the 

same view (despite equivocating leader, Byzantine acks).

• will ensure that simultaneous updates must be consistent
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Key Ideas in Tendermint (con’d)



Idea #2: (i) assume < n/3 validators are Byzantine. 

(ii) increase all quorum sizes to > 2n/3 validators

– consequence: any two quorums have non-faulty validator in common

Bonus: can’t have write quorums for two different chains in the 

same view (despite equivocating leader, Byzantine acks).

• will ensure that simultaneous updates must be consistent

• reason: non-faulty validators will ack only one proposal per view

– two write quorums ➔ have a non-faulty validator in common ➔ 

validator only acked one proposal ➔ both WQs support same proposal 

74

Key Ideas in Tendermint (con’d)



Idea #3: can’t trust leader to assemble a read quorum ➔ each 

validator assembles one itself before acking a proposal.
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Key Ideas in Tendermint (con’d)



Idea #3: can’t trust leader to assemble a read quorum ➔ each 

validator assembles one itself before acking a proposal.

• quorum certificate (QC):  > 2n/3 validators attesting that a 

proposal by leader is up-to-date (as far as they can tell)
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Key Ideas in Tendermint (con’d)



Idea #3: can’t trust leader to assemble a read quorum ➔ each 

validator assembles one itself before acking a proposal.

• quorum certificate (QC):  > 2n/3 validators attesting that a 

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata
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Idea #3: can’t trust leader to assemble a read quorum ➔ each 

validator assembles one itself before acking a proposal.

• quorum certificate (QC):  > 2n/3 validators attesting that a 

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view
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Idea #3: can’t trust leader to assemble a read quorum ➔ each 

validator assembles one itself before acking a proposal.

• quorum certificate (QC):  > 2n/3 validators attesting that a 

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view

– note: QCs don’t even make sense without idea #1 (signatures)
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Idea #3: can’t trust leader to assemble a read quorum ➔ each 

validator assembles one itself before acking a proposal.

• quorum certificate (QC):  > 2n/3 validators attesting that a 

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view

– note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

80

Key Ideas in Tendermint (con’d)

B1 Q1 B2 Q2 B3 Q3
…..



Idea #3: can’t trust leader to assemble a read quorum ➔ each 

validator assembles one itself before acking a proposal.

• quorum certificate (QC):  > 2n/3 validators attesting that a 

proposal by leader is up-to-date (as far as they can tell)

– QCs included in blockchain as metadata

– adds extra round to each view

– note: QCs don’t even make sense without idea #1 (signatures)

Worry: Byzantine validators will manipulate QC formation.

– good news: idea #2 ➔ impossible to have QCs for two different 

proposals in the same view (effectively, equivocation not possible) 81
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