
Lecture #6: Solving SMR with

Byzantine Faults in Partial Synchrony:

The Essence of Tendermint

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

1. The Tendermint protocol.

– basis of Cosmos and several other blockchain protocols

– available more or less off-the-shelf to build on

2. Analysis of the Tendermint protocol.

– achieves optimal Byzantine fault-tolerance in partial synchrony

– similar structure to Paxos/Raft analysis, but several new ideas

2

Goals for Lecture #6

SMR: version of consensus appropriate for a blockchain protocol.

• “state machine” = for us, current state of virtual machine

• “replication” = all validators perform same state transitions

• “clients” submit transactions (“txs”) to validators

• each validator maintains an append-only list of finalized txs

(a.k.a. “log” or “history”)

Goal: a protocol that

satisfies consistency

and liveness.
3

State Machine Replication (SMR)

Lecture #3: Protocol B solves SMR with crash faults in synchrony.

Lecture #4: Paxos/Raft, optimal crash-fault tolerance in partial synchrony.

Lecture #5: can’t achieve >33% Byzantine fault-tolerance in partial synchrony.
4

A Road Map to Practical SMR Protocols

crash faults +

synchrony

[security threshold ≈ 100%]

crash faults +

partially synchrony

[security threshold = 50%]

Byzantine faults +

partially synchrony
[security threshold ≤ 33%]

easier harder

Recall: need to assume < n/3 Byzantine validators.

5

Key Ideas in Tendermint

6

Post-GST Crashes or Pre-GST Delays?

n-f honest

validators
will never send

any messages,

ever (including

post-GST)

f Byzantine

validators

Scenario #1

n-2f honest

validators

all messages

delayed (still

pre-GST)

f honest

validators

Scenario #2

f Byzantine

validators

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

– assume all validators know each others public keys (+ IDs + IP addrs)

– called a “public key infrastructure (PKI)” assumption

7

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

8

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

– note: does not immediately threaten liveness

9

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

– note: does not immediately threaten liveness

– key point: any two quorums have non-faulty validator in common

10

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

– note: does not immediately threaten liveness

– key point: any two quorums have non-faulty validator in common

– consequence #1: leader proposal that respects a read quorum is up-to-

date (includes non-faulty participants from all previous write quorums)

11

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

– note: does not immediately threaten liveness

– key point: any two quorums have non-faulty validator in common

– consequence #1: leader proposal that respects a read quorum is up-to-

date (includes non-faulty participants from all previous write quorums)

• prevents inconsistencies between updates in different views

12

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

– key point: any two quorums have non-faulty validator in common

– consequence #1: leader proposal that respects a read quorum is up-to-

date (includes non-faulty participants from all previous write quorums)

• prevents inconsistencies between updates in different views

– consequence #2: can’t have write quorums for different proposals in the

same view (even with equivocating leader and Byzantine validators)
13

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

– key point: any two quorums have non-faulty validator in common

– consequence #1: leader proposal that respects a read quorum is up-to-

date (includes non-faulty participants from all previous write quorums)

• prevents inconsistencies between updates in different views

– consequence #2: can’t have write quorums for different proposals in the

same view (even with equivocating leader and Byzantine validators)

• prevents inconsistencies between updates in the same view
14

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

Idea #3: before acking a proposal, validator assembles its own

read quorum (recorded with a “quorum certificate (QC)”).

– attestations by > 2n/3 validators that proposal appears up-to-date

15

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

Idea #3: before acking a proposal, validator assembles its own

read quorum (recorded with a “quorum certificate (QC)”).

– attestations by > 2n/3 validators that proposal appears up-to-date

– reason: can’t trust Byzantine leader to assemble/respect a read quorum

16

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

Idea #3: before acking a proposal, validator assembles its own

read quorum (recorded with a “quorum certificate (QC)”).

– attestations by > 2n/3 validators that proposal appears up-to-date

– reason: can’t trust Byzantine leader to assemble/respect a read quorum

– will add extra round to each view (not strictly necessary)
17

Key Ideas in Tendermint

Recall: need to assume < n/3 Byzantine validators.

Idea #1: every validator signs every message it sends.

Idea #2: increase all quorum sizes to > 2n/3 validators.

Idea #3: before acking a proposal, validator assembles its own

read quorum (recorded with a “quorum certificate (QC)”).

– attestations by > 2n/3 validators that proposal appears up-to-date

– reason: can’t trust Byzantine leader to assemble/respect a read quorum

– will add extra round to each view (not strictly necessary)

– QCs included as metadata alongside blocks 18

Key Ideas in Tendermint

B1 Q1 B2 Q2 B3 Q3
….

Protocol D (≈ Tendermint) [code run by every validator]

19

The Tendermint Protocol

Protocol D (≈ Tendermint) [code run by every validator]

• define view = 4∆ consecutive timesteps

– extra phase for validators to assemble read quorum before acking

20

The Tendermint Protocol

Protocol D (≈ Tendermint) [code run by every validator]

• define view = 4∆ consecutive timesteps

– extra phase for validators to assemble read quorum before acking

• validator i maintains

– a local chain Ci of finalized txs [append-only]

21

The Tendermint Protocol

B1 B2Ci :

Protocol D (≈ Tendermint) [code run by every validator]

• define view = 4∆ consecutive timesteps

– extra phase for validators to assemble read quorum before acking

• validator i maintains

– a local chain Ci of finalized txs [append-only]

– a possibly longer chain Ai that it knows about

22

The Tendermint Protocol

B1 B2 B3

B1 B2Ci :

Ai :

Protocol D (≈ Tendermint) [code run by every validator]

• define view = 4∆ consecutive timesteps

– extra phase for validators to assemble read quorum before acking

• validator i maintains

– a local chain Ci of finalized txs [append-only]

– a possibly longer chain Ai that it knows about

– a QC for each block of Ci and Ai

23

The Tendermint Protocol

B1 Q1 B2 Q2 B3 Q3

B1 Q1 B2 Q2Ci :

Ai :

Protocol D (≈ Tendermint) [code run by every validator]

• define view = 4∆ consecutive timesteps

– extra phase for validators to assemble read quorum before acking

• validator i maintains

– a local chain Ci of finalized txs [append-only]

– a possibly longer chain Ai that it knows about

– a QC for each block of Ci and Ai

• validators take turns as leader (round-robin, one per view)

24

The Tendermint Protocol

B1 Q1 B2 Q2 B3 Q3

B1 Q1 B2 Q2Ci :

Ai :

Protocol D (≈ Tendermint) [code run by every validator]

• define view = 4∆ consecutive timesteps

– extra phase for validators to assemble read quorum before acking

• validator i maintains

– a local chain Ci of finalized txs [append-only]

– a possibly longer chain Ai that it knows about

– a QC for each block of Ci and Ai

• validators take turns as leader (round-robin, one per view)

• validators sign all messages

25

The Tendermint Protocol

B1 Q1 B2 Q2 B3 Q3

B1 Q1 B2 Q2Ci :

Ai :

Protocol D (≈ Tendermint) [code run by every validator]

• define view = 4∆ consecutive timesteps

– extra phase for validators to assemble read quorum before acking

• validator i maintains

– a local chain Ci of finalized txs [append-only]

– a possibly longer chain Ai that it knows about

– a QC for each block of Ci and Ai

• validators take turns as leader (round-robin, one per view)

• validators sign all messages

• all messages annotated with current view number 26

The Tendermint Protocol

B1 Q1 B2 Q2 B3 Q3

B1 Q1 B2 Q2Ci :

Ai :

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ

27

The Tendermint Protocol (con’d)

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i sends its current chain Ai to v’s leader ℓ

• at time 4∆ ⋅ 𝑣 + Δ: [performed only by v’s leader ℓ]

– let A = of the Ai’s received, the most recently created one

– let B := all not-yet-included (in A) valid txs ℓ knows about

– ℓ sends proposal (A,B) to all other validators

28

The Tendermint Protocol (con’d)

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣 + Δ: [performed only by v’s leader ℓ]

– let A = of the Ai’s received, the most recently created one

– let B := all not-yet-included (in A) valid txs ℓ knows about

– ℓ sends proposal (A,B) to all other validators

29

The Tendermint Protocol (con’d)

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣 + Δ: [performed only by v’s leader ℓ]

– let A = of the Ai’s received, the most recently created one

– let B := all not-yet-included (in A) valid txs ℓ knows about

– ℓ sends proposal (A,B) to all other validators

• at time 4∆ ⋅ 𝑣 + 2Δ:

– if validator i receives a proposal (A,B) from ℓ with A = Ai or with A more

recent than Ai by this time:

• send “(A,B) is up-to-date” message to all validators

30

The Tendermint Protocol (con’d)

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣 + 2Δ:

– if validator i receives a proposal (A,B) from ℓ with A = Ai or with A more

recent than Ai by this time:

• send “(A,B) is up-to-date” message to all validators

31

The Tendermint Protocol (con’d)

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣 + 2Δ:

– if validator i receives a proposal (A,B) from ℓ with A = Ai or with A more

recent than Ai by this time:

• send “(A,B) is up-to-date” message to all validators

• at time 4∆ ⋅ 𝑣 + 3Δ:

– if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time:

• package these messages into a quorum certificate (QC), Q

• send “ack (A,B,Q)” message to all validators

• reset Ai := (A,B,Q)
32

The Tendermint Protocol (con’d)

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣 + 3Δ:

– if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time:

• package these messages into a quorum certificate (QC), Q

• send “ack (A,B,Q)” message to all validators

• reset Ai := (A,B,Q)

33

The Tendermint Protocol (con’d)

Protocol D (≈ Tendermint) [code run by every validator]

• at time 4∆ ⋅ 𝑣 + 3Δ:

– if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time:

• package these messages into a quorum certificate (QC), Q

• send “ack (A,B,Q)” message to all validators

• reset Ai := (A,B,Q)

• at time 4∆ ⋅ 𝑣 + 4Δ:

– if validator i has received > 2n/3 “ack (A,B,Q)” messages:

• reset Ci := (A,B,Q) (and also Ai := (A,B,Q), if necessary)

34

The Tendermint Protocol (con’d)

35

Tendermint: Picture of One View

36

Tendermint: Picture of One View

∆

ℓall validators

catch-up

messages

(Ai’s)

37

Tendermint: Picture of One View

∆ ∆

ℓall validators all validators

catch-up

messages

(Ai’s)

leader’s

proposal(s)

(i.e., (A,B))

38

Tendermint: Picture of One View

∆ ∆ ∆

ℓall validators all validators

catch-up

messages

(Ai’s)

leader’s

proposal(s)

(i.e., (A,B))

all validators

“up-to-date”

messages

if A equals or is strictly more recent than A i

39

Tendermint: Picture of One View

∆ ∆ ∆

ℓall validators all validators

catch-up

messages

(Ai’s)

leader’s

proposal(s)

(i.e., (A,B))

all validators

“up-to-date”

messages

all validators

“ack”

messages

∆

if read quorum observed for proposal

if A equals or is strictly more recent than A i

40

Tendermint: Picture of One View

∆ ∆ ∆

finalize new txs here if sufficient “acks” received

(i.e., if observe a write quorum)

ℓall validators all validators

catch-up

messages

(Ai’s)

leader’s

proposal(s)

(i.e., (A,B))

all validators

“up-to-date”

messages

all validators

“ack”

messages

∆

if read quorum observed for proposal

if A equals or is strictly more recent than A i

• at time 4∆ ⋅ 𝑣:

– each validator i sends its current chain Ai to v’s leader ℓ

• at time 4∆ ⋅ 𝑣 + Δ:

– let A = of the Ai’s received, the most recently created one; let B := all not-yet-included (in A) valid txs ℓ knows about

– ℓ sends proposal (A,B) to all other validators

• at time 4∆ ⋅ 𝑣 + 2Δ:

– if validator i receives a proposal (A,B) from ℓ with A = Ai or with A more recent than Ai by this time:

• send “(A,B) is up-to-date” message to all validators

• at time 4∆ ⋅ 𝑣 + 3Δ:

– if validator i has heard > 2n/3 “up-to-date” msgs for (A,B) by this time (a read quorum):

• package these messages into a quorum certificate (QC), Q

• send “ack (A,B,Q)” message to all validators and reset Ai := (A,B,Q)

• at time 4∆ ⋅ 𝑣 + 4Δ:

– if validator i has received > 2n/3 “ack (A,B,Q)” messages (a write quorum):

• reset Ci := (A,B,Q) (and also Ai := (A,B,Q), if necessary)
41

Protocol D (≈ Tendermint)

• shared global clock (timesteps=0,1,2,…)

• known upper bound ∆ on message delays in normal conditions

• unknown transition time GST (“global stabilization time”) from

asynchrony to synchrony (i.e., end of attack/outage)

– protocol must work no matter what GST is

Recall goals:

• consistency, always (even pre-GST/“under attack”)

• liveness soon after GST (once “normal conditions” resume)

– FLP ➔ need to give up one of consistency, liveness before GST
42

Recap: The Partially Synchronous Model

43

Tendermint: Proof of Consistency

Key claim: for each view v:

1. All QCs formed in view v are for the same proposal (A,B).

44

Tendermint: Proof of Consistency

Key claim: for each view v:

1. All QCs formed in view v are for the same proposal (A,B).

– consequence: if any non-faulty Ci’s get updated in this view, all get

updated to the same proposal A* = (A,B,Q) made by v’s leader.

45

Tendermint: Proof of Consistency

Key claim: for each view v:

1. All QCs formed in view v are for the same proposal (A,B).

– consequence: if any non-faulty Ci’s get updated in this view, all get

updated to the same proposal A* = (A,B,Q) made by v’s leader.

2. in this case (i.e., ≥1 update in v), every QC created in a view

v’ > v is for a chain that extends A*.

46

Tendermint: Proof of Consistency

Key claim: for each view v:

1. All QCs formed in view v are for the same proposal (A,B).

– consequence: if any non-faulty Ci’s get updated in this view, all get

updated to the same proposal A* = (A,B,Q) made by v’s leader.

2. in this case (i.e., ≥1 update in v), every QC created in a view

v’ > v is for a chain that extends A*.

– consequence: all updates to non-faulty Ci’s in views v’ > v are to

chains that extend A*. [reason: never update without a QC]

47

Tendermint: Proof of Consistency

• consequence (1): if any non-faulty Ci’s get updated in this view,

all get updated to the same proposal A* = (A,B,Q).

• consequence (2): all updates to non-faulty Ci’s in views v’ > v

are to chains that extend A*.

Note: these consequences imply consistency:

48

Key Claim Implies Consistency

• consequence (1): if any non-faulty Ci’s get updated in this view,

all get updated to the same proposal A* = (A,B,Q).

• consequence (2): all updates to non-faulty Ci’s in views v’ > v

are to chains that extend A*.

Note: these consequences imply consistency:

• (2) ➔ each Ci is append-only (finalized txs never rolled back)

49

Key Claim Implies Consistency

• consequence (1): if any non-faulty Ci’s get updated in this view,

all get updated to the same proposal A* = (A,B,Q).

• consequence (2): all updates to non-faulty Ci’s in views v’ > v

are to chains that extend A*.

Note: these consequences imply consistency:

• (2) ➔ each Ci is append-only (finalized txs never rolled back)

• (1) ➔ simultaneous updates (i.e., in same view) are consistent

50

Key Claim Implies Consistency

• consequence (1): if any non-faulty Ci’s get updated in this view,

all get updated to the same proposal A* = (A,B,Q).

• consequence (2): all updates to non-faulty Ci’s in views v’ > v

are to chains that extend A*.

Note: these consequences imply consistency:

• (2) ➔ each Ci is append-only (finalized txs never rolled back)

• (1) ➔ simultaneous updates (i.e., in same view) are consistent

• (2) ➔ every update extends all updates from all previous views

51

Key Claim Implies Consistency

Claim: All QCs formed in view v are for the same proposal (A,B).

52

Proof of Claim (Part 1)

Claim: All QCs formed in view v are for the same proposal (A,B).

Proof: Let Q1, Q2 = two QCs formed in view v.

53

Proof of Claim (Part 1)

Claim: All QCs formed in view v are for the same proposal (A,B).

Proof: Let Q1, Q2 = two QCs formed in view v.

• let S = validators with “up-to-date” messages in Q1

• let T = validators with “up-to-date” messages in Q2

54

Proof of Claim (Part 1)

Claim: All QCs formed in view v are for the same proposal (A,B).

Proof: Let Q1, Q2 = two QCs formed in view v.

• let S = validators with “up-to-date” messages in Q1

• let T = validators with “up-to-date” messages in Q2

• |S|, |T| > 2n/3 [due to revised quorum thresholds]

55

Proof of Claim (Part 1)

Claim: All QCs formed in view v are for the same proposal (A,B).

Proof: Let Q1, Q2 = two QCs formed in view v.

• let S = validators with “up-to-date” messages in Q1

• let T = validators with “up-to-date” messages in Q2

• |S|, |T| > 2n/3 [due to revised quorum thresholds]

• > n/3 validators are in both S and T (<n/3 not in S, <n/3 not in T)

56

Proof of Claim (Part 1)

Claim: All QCs formed in view v are for the same proposal (A,B).

Proof: Let Q1, Q2 = two QCs formed in view v.

• let S = validators with “up-to-date” messages in Q1

• let T = validators with “up-to-date” messages in Q2

• |S|, |T| > 2n/3 [due to revised quorum thresholds]

• > n/3 validators are in both S and T (<n/3 not in S, <n/3 not in T)

• some non-faulty validator i is in both Q1 and Q2

57

Proof of Claim (Part 1)

Claim: All QCs formed in view v are for the same proposal (A,B).

Proof: Let Q1, Q2 = two QCs formed in view v.

• let S = validators with “up-to-date” messages in Q1

• let T = validators with “up-to-date” messages in Q2

• |S|, |T| > 2n/3 [due to revised quorum thresholds]

• > n/3 validators are in both S and T (<n/3 not in S, <n/3 not in T)

• some non-faulty validator i is in both Q1 and Q2

• since i sent an up-to-date message for only one leader

proposal (A,B), Q1 and Q2 must both be for (A,B)
58

Proof of Claim (Part 1)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

59

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages

60

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

61

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

62

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+1:

63

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+1: a validator j in U will send an “up-to-date” message

for a proposal (A,B) only if: (i) A := A* OR (ii) A more recent than A*

64

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+1: a validator j in U will send an “up-to-date” message

for a proposal (A,B) only if: (i) A := A* OR (ii) A more recent than A*

– (ii) is impossible (because A* created in the most recent view, v)

65

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+1: a validator j in U will send an “up-to-date” message

for a proposal (A,B) only if: (i) A := A* OR (ii) A more recent than A*

– (ii) is impossible (because A* created in the most recent view, v)

• if (A,B) doesn’t extend A* ➔ receives < 2n/3 “up-to-date” msgs
66

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+1: a validator j in U will send an “up-to-date” message

for a proposal (A,B) only if: (i) A := A* OR (ii) A more recent than A*

– (ii) is impossible (because A* created in the most recent view, v)

• if (A,B) doesn’t extend A* ➔ receives < 2n/3 “up-to-date” msgs

– no QC for such a proposal can be formed in this view 67

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+2: for each j in U, Aj is either A* or a chain + QC created

in view v+1 (which, as we just saw, must extend A*).

68

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+2: for each j in U, Aj is either A* or a chain + QC created

in view v+1 (which, as we just saw, must extend A*).

• if proposal (A,B) doesn’t extend A* ➔ receives < 2n/3 “up-to-

date” msgs [none from the > n/3 validators of U]

69

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In view v+2: for each j in U, Aj is either A* or a chain + QC created

in view v+1 (which, as we just saw, must extend A*).

• if proposal (A,B) doesn’t extend A* ➔ receives < 2n/3 “up-to-

date” msgs [none from the > n/3 validators of U]

– no QC for such a proposal can be formed in this view 70

Proof of Claim (Part 2)

Need to show: if any non-faulty Ci is updated to A* in view v ➔

every QC created in a view v’ > v is for a chain that extends A*.

• i updated Ci to A*
 in view v ➔ heard > 2n/3 “ack A*” messages,

including > n/3 from a set U of non-faulty validators

• all j in U set Aj := A* at time 4∆ ⋅ 𝑣 + 3∆

In general (by induction on v’ > v): for each j in U, Aj is either A* or

a chain+QC created in a view > v (which, inductively, extends A*).

• if proposal (A,B) doesn’t extend A* ➔ receives < 2n/3 “up-to-

date” msgs [none from the > n/3 validators of U]

– no QC for such a proposal can be formed in this view 71

Proof of Claim (Part 2)

Suppose tx z known to some non-faulty validator i at time step t.

72

Tendermint: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)

73

Tendermint: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

74

Tendermint: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

75

Tendermint: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– note: because all QCs from the same view are for the same proposal

(by part 1 of the consistency claim), A is unique (i.e., no ties possible)

76

Tendermint: Proof of Liveness

Suppose tx z known to some non-faulty validator i at time step t.

• let v be the next view that begins after GST and for which i is

the leader (must exist, why?)

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– note: because all QCs from the same view are for the same proposal

(by part 1 of the consistency claim), A is unique (i.e., no ties possible)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

77

Tendermint: Proof of Liveness

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– note: because all QCs from the same view are for the same proposal

(by part 1 of the consistency claim), A is unique (i.e., no ties possible)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

78

Tendermint: Proof of Liveness

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– note: because all QCs from the same view are for the same proposal

(by part 1 of the consistency claim), A is unique (i.e., no ties possible)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

• post-GST ➔ all non-faulty validators get (A,B) by 4∆ ⋅ 𝑣 + 2Δ

– by choice of A, all send “(A,B) up-to-date” messages at that time

79

Tendermint: Proof of Liveness

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

• post-GST ➔ all non-faulty validators get (A,B) by 4∆ ⋅ 𝑣 + 2Δ

– by choice of A, all send “(A,B) up-to-date” messages at that time

80

Tendermint: Proof of Liveness

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

• post-GST ➔ all non-faulty validators get (A,B) by 4∆ ⋅ 𝑣 + 2Δ

– by choice of A, all send “(A,B) up-to-date” messages at that time

• post-GST ➔ all non-faulty validators get > 2n/3 “(A,B) up-to-

date” messages by time 4∆ ⋅ 𝑣 + 3Δ

81

Tendermint: Proof of Liveness

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-

faulty validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

• post-GST ➔ all non-faulty validators get (A,B) by 4∆ ⋅ 𝑣 + 2Δ

– by choice of A, all send “(A,B) up-to-date” messages at that time

• post-GST ➔ all non-faulty validators get > 2n/3 “(A,B) up-to-

date” messages by time 4∆ ⋅ 𝑣 + 3Δ

– all send “ack (A,B,Q)” messages at that time

82

Tendermint: Proof of Liveness

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-faulty

validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

• post-GST ➔ all non-faulty validators get (A,B) by 4∆ ⋅ 𝑣 + 2Δ

– by choice of A, all send “(A,B) up-to-date” messages at that time

• post-GST ➔ all non-faulty validators get > 2n/3 “(A,B) up-to-date”

messages by time 4∆ ⋅ 𝑣 + 3Δ

– all send “ack (A,B,Q)” messages at that time

83

Tendermint: Proof of Liveness

• post-GST ➔ by time 4∆ ⋅ 𝑣 + Δ, i will receive Aj’s from all non-faulty

validators (+ possibly some Byzantine validators)

• let A = most recent of these (i.e., QC from the largest view)

– i makes a proposal (A,B) that includes the tx z (if not in A, then in B)

• post-GST ➔ all non-faulty validators get (A,B) by 4∆ ⋅ 𝑣 + 2Δ

– by choice of A, all send “(A,B) up-to-date” messages at that time

• post-GST ➔ all non-faulty validators get > 2n/3 “(A,B) up-to-date”

messages by time 4∆ ⋅ 𝑣 + 3Δ

– all send “ack (A,B,Q)” messages at that time

• post-GST ➔ all non-faulty validators j get > 2n/3 “ack (A,B,Q)” messages

by time 4∆ ⋅ 𝑣 + 4Δ, set Cj := (A,B,Q) [thereby finalizing tx z]
84

Tendermint: Proof of Liveness

	Slide 1: Lecture #6: Solving SMR with Byzantine Faults in Partial Synchrony: The Essence of Tendermint
	Slide 2: Goals for Lecture #6
	Slide 3: State Machine Replication (SMR)
	Slide 4: A Road Map to Practical SMR Protocols
	Slide 5: Key Ideas in Tendermint
	Slide 6: Post-GST Crashes or Pre-GST Delays?
	Slide 7: Key Ideas in Tendermint
	Slide 8: Key Ideas in Tendermint
	Slide 9: Key Ideas in Tendermint
	Slide 10: Key Ideas in Tendermint
	Slide 11: Key Ideas in Tendermint
	Slide 12: Key Ideas in Tendermint
	Slide 13: Key Ideas in Tendermint
	Slide 14: Key Ideas in Tendermint
	Slide 15: Key Ideas in Tendermint
	Slide 16: Key Ideas in Tendermint
	Slide 17: Key Ideas in Tendermint
	Slide 18: Key Ideas in Tendermint
	Slide 19: The Tendermint Protocol
	Slide 20: The Tendermint Protocol
	Slide 21: The Tendermint Protocol
	Slide 22: The Tendermint Protocol
	Slide 23: The Tendermint Protocol
	Slide 24: The Tendermint Protocol
	Slide 25: The Tendermint Protocol
	Slide 26: The Tendermint Protocol
	Slide 27: The Tendermint Protocol (con’d)
	Slide 28: The Tendermint Protocol (con’d)
	Slide 29: The Tendermint Protocol (con’d)
	Slide 30: The Tendermint Protocol (con’d)
	Slide 31: The Tendermint Protocol (con’d)
	Slide 32: The Tendermint Protocol (con’d)
	Slide 33: The Tendermint Protocol (con’d)
	Slide 34: The Tendermint Protocol (con’d)
	Slide 35: Tendermint: Picture of One View
	Slide 36: Tendermint: Picture of One View
	Slide 37: Tendermint: Picture of One View
	Slide 38: Tendermint: Picture of One View
	Slide 39: Tendermint: Picture of One View
	Slide 40: Tendermint: Picture of One View
	Slide 41: Protocol D (≈ Tendermint)
	Slide 42: Recap: The Partially Synchronous Model
	Slide 43: Tendermint: Proof of Consistency
	Slide 44: Tendermint: Proof of Consistency
	Slide 45: Tendermint: Proof of Consistency
	Slide 46: Tendermint: Proof of Consistency
	Slide 47: Tendermint: Proof of Consistency
	Slide 48: Key Claim Implies Consistency
	Slide 49: Key Claim Implies Consistency
	Slide 50: Key Claim Implies Consistency
	Slide 51: Key Claim Implies Consistency
	Slide 52: Proof of Claim (Part 1)
	Slide 53: Proof of Claim (Part 1)
	Slide 54: Proof of Claim (Part 1)
	Slide 55: Proof of Claim (Part 1)
	Slide 56: Proof of Claim (Part 1)
	Slide 57: Proof of Claim (Part 1)
	Slide 58: Proof of Claim (Part 1)
	Slide 59: Proof of Claim (Part 2)
	Slide 60: Proof of Claim (Part 2)
	Slide 61: Proof of Claim (Part 2)
	Slide 62: Proof of Claim (Part 2)
	Slide 63: Proof of Claim (Part 2)
	Slide 64: Proof of Claim (Part 2)
	Slide 65: Proof of Claim (Part 2)
	Slide 66: Proof of Claim (Part 2)
	Slide 67: Proof of Claim (Part 2)
	Slide 68: Proof of Claim (Part 2)
	Slide 69: Proof of Claim (Part 2)
	Slide 70: Proof of Claim (Part 2)
	Slide 71: Proof of Claim (Part 2)
	Slide 72: Tendermint: Proof of Liveness
	Slide 73: Tendermint: Proof of Liveness
	Slide 74: Tendermint: Proof of Liveness
	Slide 75: Tendermint: Proof of Liveness
	Slide 76: Tendermint: Proof of Liveness
	Slide 77: Tendermint: Proof of Liveness
	Slide 78: Tendermint: Proof of Liveness
	Slide 79: Tendermint: Proof of Liveness
	Slide 80: Tendermint: Proof of Liveness
	Slide 81: Tendermint: Proof of Liveness
	Slide 82: Tendermint: Proof of Liveness
	Slide 83: Tendermint: Proof of Liveness
	Slide 84: Tendermint: Proof of Liveness

