
Lecture #7:
Longest-Chain Consensus

Tim Roughgarden

COMS 4995-001:
The Science of Blockchains
URL: https://timroughgarden.org/s25/

• “PBFT-type” protocols (e.g., Tendermint)
– what we’ve been studying thus far
– inspired by 20th-century consensus protocols (like PBFT [Castro/Liskov 99])

2

Two Categories of Blockchain Protocols

• “PBFT-type” protocols (e.g., Tendermint)
– what we’ve been studying thus far
– inspired by 20th-century consensus protocols (like PBFT [Castro/Liskov 99])

• “longest-chain” protocols (e.g., Bitcoin)
– one of several innovations in Bitcoin
– not considered pre-2008

3

Two Categories of Blockchain Protocols

• “PBFT-type” protocols (e.g., Tendermint)
– what we’ve been studying thus far
– inspired by 20th-century consensus protocols (like PBFT [Castro/Liskov 99])

• “longest-chain” protocols (e.g., Bitcoin)
– one of several innovations in Bitcoin
– not considered pre-2008

• perspective: design patterns with different consistency-liveness
trade-offs; will fail in different ways (stalling vs. reorg/tx rollback)

4

Two Categories of Blockchain Protocols

1. The essence of longest-chain consensus.
– focus on permissioned implementation
– will hint at proof-of-work permissionless version used in Bitcoin

2. Three drawbacks of longest-chain consensus.
– loses consistency in asynchrony
– even in synchrony, requires waiting to finalize transactions txs
– Byzantine validators can control more than their fair share of blocks

3. Guarantees for longest-chain consensus.
– consistent and live in synchrony with < 50% Byzantine validators

5

Goals for Lecture #7

Longest-Chain Consensus [code run by every validator]

6

Longest-Chain Consensus

Longest-Chain Consensus [code run by every validator]
• B0 = “genesis block”

7

Longest-Chain Consensus

Longest-Chain Consensus [code run by every validator]
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader
• validators sign all messages

8

Longest-Chain Consensus

Longest-Chain Consensus [code run by every validator]
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader
• validators sign all messages
• validator i maintains in-tree Ti of valid blocks, rooted at B0

9

Longest-Chain Consensus

B0Ti :

Longest-Chain Consensus [code run by every validator]
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader
• validators sign all messages
• validator i maintains in-tree Ti of valid blocks, rooted at B0

– block B is valid in view v if:
• annotated with a view v’ ≤ v
• signed by leader of view v’
• annotated with a predecessor block B’’ from a view v’’ < v’

10

Longest-Chain Consensus

B0Ti :

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

11

Longest-Chain Consensus (con’d)

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and
forwards these blocks to all other validators

12

Longest-Chain Consensus (con’d)

B0Ti :

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree
• ℓ = leader of view v
• break ties arbitrarily

13

Longest-Chain Consensus (con’d)

B0Ti :

C = longest chain

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree
• ℓ = leader of view v
• break ties arbitrarily

– let B := all not-yet-included (in C)
txs ℓ knows about

14

Longest-Chain Consensus (con’d)

B0Ti :

C = longest chain

B

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree
• ℓ = leader of view v
• break ties arbitrarily

– let B := all not-yet-included (in C)
txs ℓ knows about

– ℓ adds B to its in-tree (extending C)
15

Longest-Chain Consensus (con’d)

B0Ti :

C = longest chain

B

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree
• ℓ = leader of view v
• break ties arbitrarily

– let B := all not-yet-included (in C)
txs ℓ knows about

– ℓ adds B to its in-tree (extending C)
– ℓ sends B to all other validators 16

Longest-Chain Consensus (con’d)

B0Ti :

C = longest chain

Sanity check: synchrony + no Byzantine validators è no forks.
B3B2B1B0

17

Forks in Longest-Chain Consensus

…..

Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine

B3B2B1B0

18

Forks in Longest-Chain Consensus

…..

B3B2B1B0 ….. Bv-2

Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine

B3B2B1B0

19

Forks in Longest-Chain Consensus

…..

B3B2B1B0 ….. Bv-2

Bv-1

Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends
chain other than the longest:

B3B2B1B0

20

Forks in Longest-Chain Consensus

…..

B3B2B1B0 ….. Bv-2

Bv-1

Bv

block by Byzantine validator

Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends
chain other than the longest:

Scenario #2: leader of view v-1 Byzantine

B3B2B1B0

21

Forks in Longest-Chain Consensus

…..

B3B2B1B0 ….. Bv-2

Bv-1

Bv

B3B2B1B0 ….. Bv-2

block by Byzantine validator

Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends
chain other than the longest:

Scenario #2: leader of view v-1 Byzantine è delays announcing
its block to v’s (honest) leader:

B3B2B1B0

22

Forks in Longest-Chain Consensus

…..

B3B2B1B0 ….. Bv-2

Bv-1

Bv

B3B2B1B0 ….. Bv-2

Bv-1

block by Byzantine validator

block by Byzantine validator

Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends
chain other than the longest:

Scenario #2: leader of view v-1 Byzantine è delays announcing
its block to v’s (honest) leader:

B3B2B1B0

23

Forks in Longest-Chain Consensus

…..

B3B2B1B0 ….. Bv-2

Bv-1

Bv

B3B2B1B0 ….. Bv-2

Bv-1

Bv

block by Byzantine validator

block by Byzantine validator

24

Which Transactions Are Finalized?

First attempt: finalized txs = all txs in the longest chain.

25

Which Transactions Are Finalized?

First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1
blocks on the longest chain:

26

Which Transactions Are Finalized?

First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1
blocks on the longest chain:

27

Which Transactions Are Finalized?

….. B

k-1 blocks

……………....

First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1
blocks on the longest chain:

28

Which Transactions Are Finalized?

….. B

k-1 blocks

……………....

……………....

k blocks

First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1
blocks on the longest chain:

More generally: true for any interval in which Byzantine leaders
outnumber honest leaders by ≥ k.

29

Which Transactions Are Finalized?

….. B

b+k-1 blocks

……………....

……………....

b+k blocks

Note: if Byzantine leaders outnumber honest leaders by ≥ k :

30

Which Transactions Are Finalized?

….. B

b+k-1 blocks

……………....

……………....

b+k blocks

Note: if Byzantine leaders outnumber honest leaders by ≥ k :

Thus: > 50% Byzantine validators è never safe to finalize a tx.

31

Which Transactions Are Finalized?

….. B

b+k-1 blocks

……………....

……………....

b+k blocks

Note: if Byzantine leaders outnumber honest leaders by ≥ k :

Thus: > 50% Byzantine validators è never safe to finalize a tx.
• “51% attack”: Byzantine validators can grow their own alternative

chain, overwrite all of history

32

Which Transactions Are Finalized?

….. B

b+k-1 blocks

……………....

……………....

b+k blocks

Note: if Byzantine leaders outnumber honest leaders by ≥ k :

Thus: > 50% Byzantine validators è never safe to finalize a tx.
• “51% attack”: Byzantine validators can grow their own alternative

chain, overwrite all of history
– è always assume < 50% Byzantine validators in longest-chain consensus

33

Which Transactions Are Finalized?

….. B

b+k-1 blocks

……………....

……………....

b+k blocks

34

Which Transactions Are Finalized?

Second attempt: for a security parameter k ≥ 1, finalized txs = all
txs in the longest chain, except for those in the last k blocks.

35

Which Transactions Are Finalized?

Second attempt: for a security parameter k ≥ 1, finalized txs = all
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded
number of blocks (so blocks that are deep enough should be safe)

36

Which Transactions Are Finalized?

Second attempt: for a security parameter k ≥ 1, finalized txs = all
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded
number of blocks (so blocks that are deep enough should be safe)

Question: how to set k? [note: no reference to k in protocol code]

37

Which Transactions Are Finalized?

Second attempt: for a security parameter k ≥ 1, finalized txs = all
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded
number of blocks (so blocks that are deep enough should be safe)

Question: how to set k? [note: no reference to k in protocol code]

Answer: user-specified, trades off between security and latency.
– bigger k è longer wait to finalize tx, less likely to ever be rolled back

38

Which Transactions Are Finalized?

Second attempt: for a security parameter k ≥ 1, finalized txs = all
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded
number of blocks (so blocks that are deep enough should be safe)

Question: how to set k? [note: no reference to k in protocol code]

Answer: user-specified, trades off between security and latency.
– bigger k è longer wait to finalize tx, less likely to ever be rolled back
– folklore: for Bitcoin, k=6 (though Coinbase uses k=1)

39

Which Transactions Are Finalized?

Recall: the partially synchronous model:
• shared global clock (timesteps=0,1,2,…)
• unknown transition time GST from asynchrony to synchrony
• known upper bound ∆ on message delays post-GST

40

Longest-Chain Consensus in Partial Synchrony

Recall: the partially synchronous model:
• shared global clock (timesteps=0,1,2,…)
• unknown transition time GST from asynchrony to synchrony
• known upper bound ∆ on message delays post-GST

Claim: longest-chain consensus is not consistent in partial
synchrony, even with only honest validators (!).

41

Longest-Chain Consensus in Partial Synchrony

Claim: longest-chain consensus is not consistent in partial
synchrony, even with only honest validators (!).

42

Longest-Chain Consensus in Partial Synchrony

Claim: longest-chain consensus is not consistent in partial
synchrony, even with only honest validators (!).

Example: Suppose current
chain is (still pre-GST):

43

Longest-Chain Consensus in Partial Synchrony

B2B1B0 ….. Bv

Claim: longest-chain consensus is not consistent in partial
synchrony, even with only honest validators (!).

Example: Suppose current
chain is (still pre-GST):

– let X,Y = partition of validator set, suppose all XóY messages delayed
for a long time (a.k.a. “network partition” – possible since pre-GST)

44

Longest-Chain Consensus in Partial Synchrony

B2B1B0 ….. Bv

Claim: longest-chain consensus is not consistent in partial
synchrony, even with only honest validators (!).

Example: Suppose current
chain is (still pre-GST):

– let X,Y = partition of validator set, suppose all XóY messages delayed
for a long time (a.k.a. “network partition” – possible since pre-GST)

– each of X,Y continue to finalize their own (incompatible) blocks
45

Longest-Chain Consensus in Partial Synchrony

B2B1B0 ….. Bv

created by X, unknown to Y

……………....

Claim: longest-chain consensus is not consistent in partial
synchrony, even with only honest validators (!).

Example: Suppose current
chain is (still pre-GST):

– let X,Y = partition of validator set, suppose all XóY messages delayed
for a long time (a.k.a. “network partition” – possible since pre-GST)

– each of X,Y continue to finalize their own (incompatible) blocks,
eventually with > k blocks on each branch (è consistency violation) 46

Longest-Chain Consensus in Partial Synchrony

B2B1B0 ….. Bv

created by X, unknown to Y

……………....

……………....

created by Y, unknown to X

Longest-chain consensus in partial synchrony:
• bad news: lose consistency

47

Consistency-Liveness Trade-Offs

Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends

48

Consistency-Liveness Trade-Offs

Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends

Implication of FLP Theorem: in partial synchrony, can’t guarantee
both consistency and liveness pre-GST.

49

Consistency-Liveness Trade-Offs

Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends

Implication of FLP Theorem: in partial synchrony, can’t guarantee
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

50

Consistency-Liveness Trade-Offs

Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends

Implication of FLP Theorem: in partial synchrony, can’t guarantee
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs 51

Consistency-Liveness Trade-Offs

Implication of FLP Theorem: in partial synchrony, can’t guarantee
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs

52

Consistency-Liveness Trade-Offs (con’d)

Implication of FLP Theorem: in partial synchrony, can’t guarantee
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs

Analog: the CAP Principle from distributed systems.
• can only pick two of {consistency, availability, partition-tolerance}
• which to give up on is application-specific (e.g., a bank vs. amazon.com)

53

Consistency-Liveness Trade-Offs (con’d)

Implication of FLP Theorem: in partial synchrony, can’t guarantee
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs

Analog: the CAP Principle from distributed systems.
• can only pick two of {consistency, availability, partition-tolerance}
• which to give up on is application-specific (e.g., a bank vs. amazon.com)

– Bitcoin: favors liveness despite hosting a valuable cryptocurrency (mismatch?)
54

Consistency-Liveness Trade-Offs (con’d)

Setup: synchronous model, < 50% Byzantine validators.

55

Chain Quality

Setup: synchronous model, < 50% Byzantine validators.

Definition: quality of a chain = fraction of blocks that were created
by honest validators. [as a function of the fraction 𝛼 of Byzantine validators]
• import: blocks by Byzantine validators may censor certain txs, or be empty

56

Chain Quality

Setup: synchronous model, < 50% Byzantine validators.

Definition: quality of a chain = fraction of blocks that were created
by honest validators. [as a function of the fraction 𝛼 of Byzantine validators]
• import: blocks by Byzantine validators may censor certain txs, or be empty

– example: in Tendermint, for 𝛼 < ⁄! ", post-GST chain quality is ≥ 1 − 𝛼

57

Chain Quality

Setup: synchronous model, < 50% Byzantine validators.

Definition: quality of a chain = fraction of blocks that were created
by honest validators. [as a function of the fraction 𝛼 of Byzantine validators]
• import: blocks by Byzantine validators may censor certain txs, or be empty

– example: in Tendermint, for 𝛼 < ⁄! ", post-GST chain quality is ≥ 1 − 𝛼

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

58

Chain Quality

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

59

Chain Quality

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in
the round-robin ordering.

60

Chain Quality

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in
the round-robin ordering.
• honest validators add (1 − 𝛼)𝑛 new blocks to longest chain:

61

Chain Quality

B0 ….. ……………....

(1 − 𝛼)𝑛 blocks

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in
the round-robin ordering.
• honest validators add (1 − 𝛼)𝑛 new blocks to longest chain:

62

Chain Quality

B0 ….. ……………....

1 − 𝛼 𝑛 − 𝛼𝑛 + 1 ≈ 1 − 2𝛼 𝑛 blocks 𝛼𝑛 − 1 blocks

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in
the round-robin ordering.
• honest validators add (1 − 𝛼)𝑛 new blocks to longest chain:

• Byzantine validators “cancel” the last ≈ 𝛼𝑛 such blocks and
replace them with 𝛼𝑛 blocks of their own

63

Chain Quality

……………....

B0 ….. ……………....

𝛼𝑛 blocks (by Byzantine validators)

1 − 𝛼 𝑛 − 𝛼𝑛 + 1 ≈ 1 − 2𝛼 𝑛 blocks

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: honest validators add (1 − 𝛼)𝑛 blocks to longest chain:

• Byzantine validators “cancel” the last ≈ 𝛼𝑛 such blocks and
replace them with 𝛼𝑛 blocks of their own
– longest chain grows by ≈ (1 − 𝛼)𝑛 blocks, of which ≈ (1 − 2𝛼)𝑛 were

created by honest validators è chain quality ≈ ⁄!,-.
!,.

64

Chain Quality

……………....

B0 ….. ……………....

𝛼𝑛 blocks (by Byzantine validators)

1 − 𝛼 𝑛 − 𝛼𝑛 + 1 ≈ 1 − 2𝛼 𝑛 blocks

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

65

Guarantees for Longest-Chain Consensus

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)

66

Guarantees for Longest-Chain Consensus

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.

67

Guarantees for Longest-Chain Consensus

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.

68

Guarantees for Longest-Chain Consensus

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict

majority of the leaders are honest. [e.g., (n/2)-1 suffices]

69

Guarantees for Longest-Chain Consensus

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict

majority of the leaders are honest. [e.g., (n/2)-1 suffices]

Conclusion: longest-chain consensus is consistent,
70

Guarantees for Longest-Chain Consensus

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict

majority of the leaders are honest. [e.g., (n/2)-1 suffices]

Conclusion: longest-chain consensus is consistent, live,
71

Guarantees for Longest-Chain Consensus

Recall: for a security parameter k ≥ 1, finalized txs = all txs in the
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict

majority of the leaders are honest. [e.g., (n/2)-1 suffices]

Conclusion: longest-chain consensus is consistent, live, and
guarantees chain quality ≥ !"#$

!"$
. 72

Guarantees for Longest-Chain Consensus

Longest-chain consensus: synchrony, <50% Byzantine validators,
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

73

Notes on the Proof

Longest-chain consensus: synchrony, <50% Byzantine validators,
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
• any two longest chains disagree only on their last ≤ k blocks

74

Notes on the Proof

Longest-chain consensus: synchrony, <50% Byzantine validators,
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
• any two longest chains disagree only on their last ≤ k blocks

75

Notes on the Proof

……………....

B0 ….. ……………....

k blocks

OK:

Longest-chain consensus: synchrony, <50% Byzantine validators,
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
• any two longest chains disagree only on their last ≤ k blocks

76

Notes on the Proof

……………....

B0 ….. ……………....

> k blocks

not
OK!:

…..

Longest-chain consensus: synchrony, <50% Byzantine validators,
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
– any two longest chains disagree only on their last ≤ k blocks

Easier version: proof-of-work implementation.
– PoW cryptographically prevents leader equivocation (cf., signatures)

77

Notes on the Proof

Longest-chain consensus: synchrony, <50% Byzantine validators,
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
– any two longest chains disagree only on their last ≤ k blocks

Easier version: proof-of-work implementation.
– PoW cryptographically prevents leader equivocation (cf., signatures)

Harder version: permissioned/proof-of-stake implementations.
– Byzantine leaders can equivocate, but guarantees still hold (harder proofs)

78

Notes on the Proof

