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• “PBFT-type” protocols (e.g., Tendermint)
– what we’ve been studying thus far
– inspired by 20th-century consensus protocols (like PBFT [Castro/Liskov 99])

• “longest-chain” protocols (e.g., Bitcoin)
– one of several innovations in Bitcoin
– not considered pre-2008

• perspective: design patterns with different consistency-liveness 
trade-offs; will fail in different ways (stalling vs. reorg/tx rollback)
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1. The essence of longest-chain consensus.
– focus on permissioned implementation
– will hint at proof-of-work permissionless version used in Bitcoin

2. Three drawbacks of longest-chain consensus.
– loses consistency in asynchrony
– even in synchrony, requires waiting to finalize transactions txs
– Byzantine validators can control more than their fair share of blocks

3. Guarantees for longest-chain consensus.
– consistent and live in synchrony with < 50% Byzantine validators
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Longest-Chain Consensus [code run by every validator]
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Longest-Chain Consensus [code run by every validator]
• B0 = “genesis block”
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Longest-Chain Consensus [code run by every validator]
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader 
• validators sign all messages
• validator i maintains in-tree Ti of valid blocks, rooted at B0
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Longest-Chain Consensus [code run by every validator]
• B0 = “genesis block”
• define view = ∆ timesteps
• validators take turns as leader 
• validators sign all messages
• validator i maintains in-tree Ti of valid blocks, rooted at B0

– block B is valid in view v if:
• annotated with a view v’ ≤ v
• signed by leader of view v’
• annotated with a predecessor block B’’ from a view v’’ < v’ 
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Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]
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Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and 
forwards these blocks to all other validators
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Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and 
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree 
• ℓ = leader of view v
• break ties arbitrarily
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Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and 
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree 
• ℓ = leader of view v
• break ties arbitrarily

– let B := all not-yet-included (in C)
txs ℓ knows about
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B

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and 
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree 
• ℓ = leader of view v
• break ties arbitrarily

– let B := all not-yet-included (in C)
txs ℓ knows about

– ℓ adds B to its in-tree (extending C)
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B

Longest-Chain Consensus [code run by every validator]
• at time ∆ ⋅ 𝑣: [i.e., at beginning of view v]

– each validator i updates Ti with any new blocks it’s heard about, and 
forwards these blocks to all other validators

– let C = longest chain in ℓ’s in-tree 
• ℓ = leader of view v
• break ties arbitrarily

– let B := all not-yet-included (in C)
txs ℓ knows about

– ℓ adds B to its in-tree (extending C)
– ℓ sends B to all other validators 16
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Sanity check: synchrony + no Byzantine validators è no forks.
B3B2B1B0
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Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine

B3B2B1B0
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Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine

B3B2B1B0
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Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends 
chain other than the longest:

B3B2B1B0
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Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends 
chain other than the longest:

Scenario #2: leader of view v-1 Byzantine

B3B2B1B0
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Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends 
chain other than the longest:

Scenario #2: leader of view v-1 Byzantine è delays announcing 
its block to v’s (honest) leader:

B3B2B1B0
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Sanity check: synchrony + no Byzantine validators è no forks.

Scenario #1: leader of view v Byzantine è deliberately extends 
chain other than the longest:

Scenario #2: leader of view v-1 Byzantine è delays announcing 
its block to v’s (honest) leader:

B3B2B1B0
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First attempt: finalized txs = all txs in the longest chain.
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First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1 
blocks on the longest chain:
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First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1 
blocks on the longest chain:
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First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1 
blocks on the longest chain:
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First attempt: finalized txs = all txs in the longest chain.

Note: k Byzantine leaders in a row è can “cancel” the last k-1 
blocks on the longest chain:

More generally: true for any interval in which Byzantine leaders 
outnumber honest leaders by ≥ k.
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Note: if Byzantine leaders outnumber honest leaders by ≥ k :
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Note: if Byzantine leaders outnumber honest leaders by ≥ k :

Thus: > 50% Byzantine validators è never safe to finalize a tx.
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Note: if Byzantine leaders outnumber honest leaders by ≥ k :

Thus: > 50% Byzantine validators è never safe to finalize a tx.
• “51% attack”: Byzantine validators can grow their own alternative 

chain, overwrite all of history
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Note: if Byzantine leaders outnumber honest leaders by ≥ k :

Thus: > 50% Byzantine validators è never safe to finalize a tx.
• “51% attack”: Byzantine validators can grow their own alternative 

chain, overwrite all of history
– è always assume < 50% Byzantine validators in longest-chain consensus
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Second attempt: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.
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Second attempt: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded 
number of blocks (so blocks that are deep enough should be safe)
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Second attempt: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded 
number of blocks (so blocks that are deep enough should be safe)

Question: how to set k?     [note: no reference to k in protocol code]
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Second attempt: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded 
number of blocks (so blocks that are deep enough should be safe)

Question: how to set k?     [note: no reference to k in protocol code]

Answer: user-specified, trades off between security and latency.
– bigger k è longer wait to finalize tx, less likely to ever be rolled back
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Second attempt: for a security parameter k ≥ 1, finalized txs = all 
txs in the longest chain, except for those in the last k blocks.
• last k blocks of the longest chain tentative, under negotiation

– hope: <50% Byzantine validators è can only roll back bounded 
number of blocks (so blocks that are deep enough should be safe)

Question: how to set k?     [note: no reference to k in protocol code]

Answer: user-specified, trades off between security and latency.
– bigger k è longer wait to finalize tx, less likely to ever be rolled back
– folklore: for Bitcoin, k=6  (though Coinbase uses k=1)
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Recall: the partially synchronous model:
• shared global clock (timesteps=0,1,2,…)
• unknown transition time GST from asynchrony to synchrony 
• known upper bound ∆ on message delays post-GST
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Recall: the partially synchronous model:
• shared global clock (timesteps=0,1,2,…)
• unknown transition time GST from asynchrony to synchrony 
• known upper bound ∆ on message delays post-GST

Claim: longest-chain consensus is not consistent in partial 
synchrony, even with only honest validators (!).
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Claim: longest-chain consensus is not consistent in partial 
synchrony, even with only honest validators (!).
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Claim: longest-chain consensus is not consistent in partial 
synchrony, even with only honest validators (!).

Example: Suppose current 
chain is (still pre-GST):
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Claim: longest-chain consensus is not consistent in partial 
synchrony, even with only honest validators (!).

Example: Suppose current 
chain is (still pre-GST):

– let X,Y = partition of validator set, suppose all XóY messages delayed 
for a long time (a.k.a. “network partition” – possible since pre-GST)
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Claim: longest-chain consensus is not consistent in partial 
synchrony, even with only honest validators (!).

Example: Suppose current 
chain is (still pre-GST):

– let X,Y = partition of validator set, suppose all XóY messages delayed 
for a long time (a.k.a. “network partition” – possible since pre-GST)

– each of X,Y continue to finalize their own (incompatible) blocks
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Claim: longest-chain consensus is not consistent in partial 
synchrony, even with only honest validators (!).

Example: Suppose current 
chain is (still pre-GST):

– let X,Y = partition of validator set, suppose all XóY messages delayed 
for a long time (a.k.a. “network partition” – possible since pre-GST)

– each of X,Y continue to finalize their own (incompatible) blocks, 
eventually with > k blocks on each branch (è consistency violation) 46
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Longest-chain consensus in partial synchrony:
• bad news: lose consistency
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Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends
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Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends

Implication of FLP Theorem: in partial synchrony, can’t guarantee 
both consistency and liveness pre-GST.
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Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends

Implication of FLP Theorem: in partial synchrony, can’t guarantee 
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony
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Longest-chain consensus in partial synchrony:
• bad news: lose consistency
• good news: continues to make progress during network partition

– txs on the longer of the two branches remain finalized after partition ends

Implication of FLP Theorem: in partial synchrony, can’t guarantee 
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs 51
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Implication of FLP Theorem: in partial synchrony, can’t guarantee 
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs
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Implication of FLP Theorem: in partial synchrony, can’t guarantee 
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs

Analog: the CAP Principle from distributed systems.
• can only pick two of {consistency, availability, partition-tolerance}
• which to give up on is application-specific (e.g., a bank vs. amazon.com)
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Implication of FLP Theorem: in partial synchrony, can’t guarantee 
both consistency and liveness pre-GST.
• Tendermint: favors consistency over liveness pre-GST

– drawback: may stall during periods of asynchrony

• longest-chain consensus: favors liveness over consistency pre-GST
– drawback: asynchrony è may reorg/roll back thought-to-be-finalized txs

Analog: the CAP Principle from distributed systems.
• can only pick two of {consistency, availability, partition-tolerance}
• which to give up on is application-specific (e.g., a bank vs. amazon.com)

– Bitcoin: favors liveness despite hosting a valuable cryptocurrency (mismatch?)
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Setup: synchronous model, < 50% Byzantine validators.
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Setup: synchronous model, < 50% Byzantine validators.

Definition: quality of a chain = fraction of blocks that were created 
by honest validators.  [as a function of the fraction 𝛼 of Byzantine validators]
• import: blocks by Byzantine validators may censor certain txs, or be empty
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Setup: synchronous model, < 50% Byzantine validators.

Definition: quality of a chain = fraction of blocks that were created 
by honest validators.  [as a function of the fraction 𝛼 of Byzantine validators]
• import: blocks by Byzantine validators may censor certain txs, or be empty

– example: in Tendermint, for 𝛼 < ⁄! ", post-GST chain quality is  ≥ 1 − 𝛼
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Setup: synchronous model, < 50% Byzantine validators.

Definition: quality of a chain = fraction of blocks that were created 
by honest validators.  [as a function of the fraction 𝛼 of Byzantine validators]
• import: blocks by Byzantine validators may censor certain txs, or be empty

– example: in Tendermint, for 𝛼 < ⁄! ", post-GST chain quality is  ≥ 1 − 𝛼

Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.
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Bad news: longest-chain è chain quality can be as bad as !"#$
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.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in 
the round-robin ordering.
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Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in 
the round-robin ordering.
• honest validators add (1 − 𝛼)𝑛 new blocks to longest chain:
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Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in 
the round-robin ordering.
• honest validators add (1 − 𝛼)𝑛 new blocks to longest chain:
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Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: suppose 𝛼𝑛 Byzantine validators appear consecutively in 
the round-robin ordering.
• honest validators add (1 − 𝛼)𝑛 new blocks to longest chain:

• Byzantine validators “cancel” the last ≈ 𝛼𝑛 such blocks and 
replace them with 𝛼𝑛 blocks of their own
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Bad news: longest-chain è chain quality can be as bad as !"#$
!"$

.

Example: honest validators add (1 − 𝛼)𝑛 blocks to longest chain:

• Byzantine validators “cancel” the last ≈ 𝛼𝑛 such blocks and 
replace them with 𝛼𝑛 blocks of their own
– longest chain grows by ≈ (1 − 𝛼)𝑛 blocks, of which ≈ (1 − 2𝛼)𝑛 were 

created by honest validators è chain quality ≈ ⁄!,-.
!,.
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest.  [e.g., (n/2)-1 suffices]
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest.  [e.g., (n/2)-1 suffices]

Conclusion: longest-chain consensus is consistent, 
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest.  [e.g., (n/2)-1 suffices]

Conclusion: longest-chain consensus is consistent, live, 
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Recall: for a security parameter k ≥ 1, finalized txs = all txs in the 
longest chain, except for those in the last k blocks.

Assumptions: (all necessary, as we’ve seen)
1. Synchronous network.
2. < 50% Byzantine validators.
3. k large enough that, in every interval of ≥ 2k+2 views, a strict 

majority of the leaders are honest.  [e.g., (n/2)-1 suffices]

Conclusion: longest-chain consensus is consistent, live, and 
guarantees chain quality ≥ !"#$

!"$
. 72
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Longest-chain consensus: synchrony, <50% Byzantine validators,  
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

73

Notes on the Proof



Longest-chain consensus: synchrony, <50% Byzantine validators,  
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
• any two longest chains disagree only on their last ≤ k blocks
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Longest-chain consensus: synchrony, <50% Byzantine validators,  
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
• any two longest chains disagree only on their last ≤ k blocks
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Longest-chain consensus: synchrony, <50% Byzantine validators,  
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
• any two longest chains disagree only on their last ≤ k blocks
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Longest-chain consensus: synchrony, <50% Byzantine validators,       
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
– any two longest chains disagree only on their last ≤ k blocks

Easier version: proof-of-work implementation.
– PoW cryptographically prevents leader equivocation (cf., signatures)
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Longest-chain consensus: synchrony, <50% Byzantine validators,       
k sufficiently large è consistent, live, chain quality ≥ !"#$

!"$
.

Key property: the common prefix property.
– any two longest chains disagree only on their last ≤ k blocks

Easier version: proof-of-work implementation.
– PoW cryptographically prevents leader equivocation (cf., signatures)

Harder version: permissioned/proof-of-stake implementations.
– Byzantine leaders can equivocate, but guarantees still hold (harder proofs)
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