Lecture #8:
UTXOs and Accounts

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Tim Roughgarden

Responsibilities of a Blockchain Protocol

Consensus: decide on a sequence (aka “chain”) of blocks.
« note: all validators must agree on this sequence!

* blocks keeping getting added (one-by-one) as long as there are
transactions to process

« SMR, Tendermint vs. longest-chain consensus, etc.

transactions
(submitted by clients)

The Consensus Layer

tx1: 1010.....111

tx2: 0110.....110

AN

transactions
(submitted by clients)

tx3: 1110.....000

blockchain protocol

(consensus layer)

tx4: 0010.....101

output log of ordered and
finalized transactions

tx2

tx3

tx1

tx4

Responsibilities of a Blockchain Protocol

Consensus: decide on a sequence (aka “chain”) of blocks.
« note: all validators must agree on this sequence!

* blocks keeping getting added (one-by-one) as long as there are
transactions to process

« SMR, Tendermint vs. longest-chain consensus, etc.

Execution: keep state of the virtual machine up-to-date.

* new block added =» execute the corresponding snippets of
code (do computations, update variable values, etc.)

« subject of this week (concludes Part | of course)

The Computer in the Sky

simulated (virtual) computer

network of physical computers
+ blockchain protocol

The Execution Layer

tx2

tx3

tx1

tx4

consensus transaction sequence

The Execution Layer

tx2

tx3

tx1

tx4

consensus transaction sequence

- |2

@@=

blockchain protocol
(execution layer)
[replicated at each
physical machine]

The Execution Layer

tx2

tx3

tx1

tx4

consensus transaction sequence

@l@@

O g=a

blockchain protocol
(execution layer)
[replicated at each
physical machine]

simulated (virtual) computer
[replicated at each physical
machine]

Recap: A Cartoon of Web3

user

[

applications/smairt contracts

blockchain protocol/virtual machine

Internet

Recap: A Cartoon of Web3

user

[

applications/smairt contracts
blockchain protocol/virtual machine
Internet

Blockchain protocol:

 like an operating system, a blockchain protocol:
— acts as a “master program” to coordinate all apps/smart contracts
— provides a virtual machine to developers of applications

10

Recap: A Cartoon of Web3

user

[

applications/smairt contracts
blockchain protocol/virtual machine
Internet

Blockchain protocol:

 like an operating system, a blockchain protocol:
— acts as a “master program” to coordinate all apps/smart contracts
— provides a virtual machine to developers of applications

* like the Internet, “"decentralized” -- the product of collaboration
between many physical machines, no one owner/operator 1

A Cartoon of Web3 (Refined)

user

1

applications/smart contracts
blockchain [_ : :
orotocol execution layer/virtual machine
consensus layer

Internet

Blockchain protocol:

 like an operating system, a blockchain protocol:
— acts as a “master program” to coordinate all apps/smart contracts
— provides a virtual machine to developers of applications

 “decentralized” like the Internet

Goals for Lecture #8

1. The UTXO model (used, e.qg., in Bitcoin).
— counterintuitive but elegant VM specialized for payments

2. Measuring the size of a transaction.
— Idea: what resources are required (now and forever) by a transaction?
— In practice, very tricky!

3. The account-based model (used in Ethereum and Solana).
— explicit notion of account IDs and balances, programs as accounts

4. Metering computation.

13

How to Think About the Execution Layer

Questions:

14

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

15

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?
* how are transactions described (both high-level and low-level)?

16

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?
* how are transactions described (both high-level and low-level)?
« what state transition results from executing a transaction?

17

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

* how are transactions described (both high-level and low-level)?
« what state transition results from executing a transaction?

* how does a validator represent state and carry out transitions?

18

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

* how are transactions described (both high-level and low-level)?
« what state transition results from executing a transaction?

* how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”
consider a single validator processing a transaction seguence.

— separation between consensus and execution varies with protocol

19

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?
* how are transactions described (both high-level and low-level)?
« what state transition results from executing a transaction?

* how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”
consider a single validator processing a transaction seguence.

— separation between consensus and execution varies with protocol

Next: warm-up with deep dive on Bitcoin’s “execution layer.”

20

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

21

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

Spec for execution layer (natural guess):

 current state described by key-value store
— keys = account IDs, values = account balances

22

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

Spec for execution layer (natural guess):

 current state described by key-value store
— keys = account IDs, values = account balances

 transaction described by (sender ID, recipient ID, amount)
— validity conditions: both IDs exist, sender balance = amount

23

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

Spec for execution layer (natural guess):

 current state described by key-value store
— keys = account IDs, values = account balances

 transaction described by (sender ID, recipient ID, amount)
— validity conditions: both IDs exist, sender balance = amount

e executing transaction updates balances of sender, recipient

24

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

rociniant

bUULIIIu LU AT TOUUULIVILN UPUMLU\J MNAUIAAIITIvoe o Ul Jouldliuvuut, IL:UIPI\:IIL

octLitinAa trancactinn LindAatoe halanecone nf candaor

—ex

25

Bitcoin Transactions

Bitcoin transaction: described by:

tx ID=1713

26

Bitcoin Transactions

Bitcoin transaction: described by:
e ONhe or more Inputs

input 1

input 2

tx ID=1713

27

Bitcoin Transactions

Bitcoin transaction: described by:
e ONhe or more Inputs
* One or more outputs

input 1

input 2

tx ID=1713

output 1

output 2

output 3

28

Bitcoin Transactions

Bitcoin transaction: described by:

input 1

e ONhe or more Inputs

input 2

* One or more outputs

tx ID=1713

output 1

output 2

output 3

« format for one output
— value (in BTC)

— spending conditions [typically = a public key, but can be more complex]

29

Bitcoin Transactions

Bitcoin transaction: described by:

input 1

e ONhe or more Inputs

input 2

* One or more outputs

tx ID=1713

output 1

output 2

output 3

« format for one output
— value (in BTC)

— spending conditions [typically = a public key, but can be more complex]

« format for one input

— output of some other tx [should be unspent! = “UTXO"]
— “witness” satisfying output's spending condition [typically, = a signature]

30

Bitcoin Transactions

Bitcoin transaction: described by:
e outputs = (value, spending conditions)
* Inputs = (UTXO, witness)

Conditions for validity:

input 1

input 2

tx ID=1713

output 1

output 2

output 3

31

Bitcoin Transactions

Bitcoin transaction: described by:
e outputs = (value, spending conditions)
* Inputs = (UTXO, witness)

Conditions for validity:
« all inputs reference current UTXOs

input 1

input 2

tx ID=1713

output 1

output 2

output 3

32

Bitcoin Transactions

Bitcoin transaction: described by:
e outputs = (value, spending conditions)
* Inputs = (UTXO, witness)

input 1

input 2

tx ID=1713

output 1

output 2

output 3

Conditions for validity:
« all inputs reference current UTXOs

« sum of input values = sum of output values [difference = tx fee]

— common that one of the outputs is a “change address”

33

Bitcoin Transactions

Bitcoin transaction: described by:
e outputs = (value, spending conditions)
* Inputs = (UTXO, witness)

input 1

input 2

tx ID=1713

output 1

output 2

output 3

Conditions for validity:
« all inputs reference current UTXOs

« sum of input values = sum of output values [difference = tx fee]

— common that one of the outputs is a “change address”

 for each input, witness satisfies UTXO’s spending conditions

34

UTXOs as an Execution Layer

“State” of the Bitcoin protocol: current set of UTXOs.
* no explicit notion of accounts, user IDs, or balances

35

UTXOs as an Execution Layer

“State” of the Bitcoin protocol: current set of UTXOs.
* no explicit notion of accounts, user IDs, or balances

‘Executing” a Bitcoin transaction: [i.e., state transition]
* remove inputs of transaction from the UTXO set
« add outputs of transaction to the UTXO set

36

UTXOs as an Execution Layer

“State” of the Bitcoin protocol: current set of UTXOs.
* no explicit notion of accounts, user IDs, or balances

‘Executing” a Bitcoin transaction: [i.e., state transition]
* remove inputs of transaction from the UTXO set
« add outputs of transaction to the UTXO set

Note: protocol does not prescribe specific representation of state
or implementation of state transitions (e.g., checking tx validity).

37

UTXOs as an Execution Layer

“State” of the Bitcoin protocol: current set of UTXOs.
* no explicit notion of accounts, user IDs, or balances

‘Executing” a Bitcoin transaction: [i.e., state transition]
* remove inputs of transaction from the UTXO set
« add outputs of transaction to the UTXO set

Note: protocol does not prescribe specific representation of state
or implementation of state transitions (e.g., checking tx validity).

« canonical implementation = “Bitcoin core”

38

Transaction Size

Fact: some transactions more “complex” than others.

39

Transaction Size

Fact: some transactions more “complex” than others.

« ideally, quantify heterogeneity via the “size” of a transaction
— required to define a “maximum block size”
— sensible to charge fees on a “per-unit-size” (rather than “per-tx”) basis

40

Transaction Size

Fact: some transactions more “complex” than others.

« ideally, quantify heterogeneity via the “size” of a transaction
— required to define a “maximum block size”
— sensible to charge fees on a “per-unit-size” (rather than “per-tx”) basis

ldea: “tx size” = amount of resources required to process it.

41

Transaction Size

Fact: some transactions more “complex” than others.

« ideally, quantify heterogeneity via the “size” of a transaction
— required to define a “maximum block size”
— sensible to charge fees on a “per-unit-size” (rather than “per-tx”) basis

ldea: “tx size” = amount of resources required to process it.

Challenge: multiple types of resources required:
— resources at the consensus layer (bandwidth)
— resources at the execution layer (computation, memory access)
— resources for long-term storage (at validators or elsewhere)

42

Transaction Size

Fact: some transactions more “complex” than others.
« ideally, quantify heterogeneity via the “size” of a transaction

ldea: “tx size” = amount of resources required to process it.
Challenge: multiple types of resources required.

Further challenge: resource consumption may depend on
external-to-protocol factors (e.g., specific client implementation
and/or validator architecture).

— in practice, “size” often defined w.r.t. some canonical implementation

43

Transaction Size Iin Bitcoin

Bitcoin (2009-2017): tx size := description length (in bytes).
 typical tx size 250 bytes
 maximum block size =1 MB =» 4000 tx/block (< 7 txs/sec)

44

Transaction Size Iin Bitcoin

Bitcoin (2009-2017): tx size := description length (in bytes).
 typical tx size 250 bytes
 maximum block size =1 MB =» 4000 tx/block (< 7 txs/sec)

The blocksize wars (2015-2017): heated debate over whether to
Increase block size (e.g., to 2MB or 8 MB).

— lowers barrier to participating, but raises barrier to validating

— benefits of innovating vs. benefits of hardening

— led to Bitcoin Cash (fork of Bitcoin with bigger blocks, now irrelevant)

45

Transaction Size in Bitcoin (con’d)

Bitcoin (2009-2017): tx size := description length (in bytes).

The blocksize wars (2015-2017): heated debate over whether to increase
block size (e.g., to 2MB or 8 MB).

46

Transaction Size in Bitcoin (con’d)

Bitcoin (2009-2017): tx size := description length (in bytes).

The blocksize wars (2015-2017): heated debate over whether to increase
block size (e.g., to 2MB or 8 MB).

SegWit (2017): redefined “size” of a transaction to:

25*(# of bytes used for withess data) + (# of additional bytes used)

— = maximum block size now effectively 4MB (if entirely withess data)

47

Transaction Size in Bitcoin (con’d)

Bitcoin (2009-2017): tx size := description length (in bytes).

The blocksize wars (2015-2017): heated debate over whether to increase
block size (e.g., to 2MB or 8 MB).

SegWit (2017): redefined “size” of a transaction to:

25*(# of bytes used for withess data) + (# of additional bytes used)

— = maximum block size now effectively 4MB (if entirely withess data)

* |dea: validator can discard witnesses after checking tx validity

— “archival nodes” should still keep witness data for posterity I8

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25%# of bytes used for witness data) + (# of
additional bytes used)=» maximum block size now effectively 4AMB.

49

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25%# of bytes used for witness data) + (# of
additional bytes used)=» maximum block size now effectively 4AMB.

Taproot (2021): more general/flexible format for witness data.

30

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25%# of bytes used for witness data) + (# of
additional bytes used)=» maximum block size now effectively 4AMB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

ol

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25%# of bytes used for witness data) + (# of
additional bytes used)=» maximum block size now effectively 4AMB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

— Idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that
they can be viewed as non-fungible rather than fungible

52

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25%# of bytes used for witness data) + (# of
additional bytes used)=» maximum block size now effectively 4AMB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

— Idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that
they can be viewed as non-fungible rather than fungible

— Idea #2: embed NFT data (e.g., Image) into withess data of a Taproot tx

53

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25%# of bytes used for witness data) + (# of
additional bytes used)=» maximum block size now effectively 4AMB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

— Idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that
they can be viewed as non-fungible rather than fungible

— Idea #2: embed NFT data (e.g., Image) into withess data of a Taproot tx
— debate: are these good for Bitcoin?

o4

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25%# of bytes used for witness data) + (# of
additional bytes used)=» maximum block size now effectively 4AMB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

— Idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that
they can be viewed as non-fungible rather than fungible

— Idea #2: embed NFT data (e.g., Image) into withess data of a Taproot tx

Point: definition of transaction size can fundamentally affect how
a blockchain protocol is used! 55

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:

56

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:

« a set of current accounts (indexed by accountlD, e.g. a pk)
— generally, an account could correspond to a user or a program/contract

S7

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:
« a set of current accounts (indexed by accountlD, e.g. a pk)
— generally, an account could correspond to a user or a program/contract

 the state of each of these accounts, e.g.:

— balance in native cryptocurrency (ETH, SOL, etc.)
— arbitrary persistent and mutable data
— VM code (perhaps immutable)

58

Account-Based Execution Layers

ldea: “state” of an account-based protocol specified by:

« a set of current accounts (indexed by accountlD, e.g. a pk)
— generally, an account could correspond to a user or a program/contract

 the state of each of these accounts, e.g.:
— balance in native cryptocurrency (ETH, SOL, etc.)
— arbitrary persistent and mutable data
— VM code (perhaps immutable)

Example: in Ethereum, a user account (“EOA”) has no code, only

data is a “nonce” [= # of txs sent by account, prevents “replay attacks”].

« all other data on user stored in contracts’ accounts >

Typical Transaction Ingredients

Transaction: sent by a user (to a user, or a program). Includes:

60

Typical Transaction Ingredients

Transaction: sent by a user (to a user, or a program). Includes:
« signature by the sender (can back out pk/ID from signature)
* recipient (specified by account ID, user or contract)

61

Typical Transaction Ingredients

Transaction: sent by a user (to a user, or a program). Includes:

« signature by the sender (can back out pk/ID from signature)
* recipient (specified by account ID, user or contract)

« value (in native currency)

« data (e.g., which function to call and with which arguments)

62

Transaction: sent by a user (to a user, or a program). Includes:

Typical Transaction Ingredients

signature by the sender (can back out pk/ID from signature)
recipient (specified by account ID, user or contract)

value (in native currency)

data (e.g., which function to call and with which arguments)
declaration of resources to be used

transaction fee

63

Transaction: sent by a user (to a user, or a program). Includes:

Typical Transaction Ingredients

signature by the sender (can back out pk/ID from signature)
recipient (specified by account ID, user or contract)

value (in native currency)

data (e.g., which function to call and with which arguments)
declaration of resources to be used

transaction fee

Note: If programs can be arbitrary code, corresponding state
transition can be extremely complex.

64

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

65

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

66

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

67

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

« associate an amount of “gas” with each EVM opcode
— EVM opcodes = instruction set for VM code in Ethereum’s VM
— add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

68

Metering Computation

Question: If programs can be arbitrary code, what about the
halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

« associate an amount of “gas” with each EVM opcode
— EVM opcodes = instruction set for VM code in Ethereum’s VM
— add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

« user prepays for gas (part of the tx description)
* run out of gas mid-execution = tx aborted and rolled back e

	Slide 1: Lecture #8: UTXOs and Accounts
	Slide 2: Responsibilities of a Blockchain Protocol
	Slide 3: The Consensus Layer
	Slide 4: Responsibilities of a Blockchain Protocol
	Slide 5: The Computer in the Sky
	Slide 6: The Execution Layer
	Slide 7: The Execution Layer
	Slide 8: The Execution Layer
	Slide 9: Recap: A Cartoon of Web3
	Slide 10: Recap: A Cartoon of Web3
	Slide 11: Recap: A Cartoon of Web3
	Slide 12: A Cartoon of Web3 (Refined)
	Slide 13: Goals for Lecture #8
	Slide 14: How to Think About the Execution Layer
	Slide 15: How to Think About the Execution Layer
	Slide 16: How to Think About the Execution Layer
	Slide 17: How to Think About the Execution Layer
	Slide 18: How to Think About the Execution Layer
	Slide 19: How to Think About the Execution Layer
	Slide 20: How to Think About the Execution Layer
	Slide 21: Bitcoin Transactions
	Slide 22: Bitcoin Transactions
	Slide 23: Bitcoin Transactions
	Slide 24: Bitcoin Transactions
	Slide 25: Bitcoin Transactions
	Slide 26: Bitcoin Transactions
	Slide 27: Bitcoin Transactions
	Slide 28: Bitcoin Transactions
	Slide 29: Bitcoin Transactions
	Slide 30: Bitcoin Transactions
	Slide 31: Bitcoin Transactions
	Slide 32: Bitcoin Transactions
	Slide 33: Bitcoin Transactions
	Slide 34: Bitcoin Transactions
	Slide 35: UTXOs as an Execution Layer
	Slide 36: UTXOs as an Execution Layer
	Slide 37: UTXOs as an Execution Layer
	Slide 38: UTXOs as an Execution Layer
	Slide 39: Transaction Size
	Slide 40: Transaction Size
	Slide 41: Transaction Size
	Slide 42: Transaction Size
	Slide 43: Transaction Size
	Slide 44: Transaction Size in Bitcoin
	Slide 45: Transaction Size in Bitcoin
	Slide 46: Transaction Size in Bitcoin (con’d)
	Slide 47: Transaction Size in Bitcoin (con’d)
	Slide 48: Transaction Size in Bitcoin (con’d)
	Slide 49: Transaction Size in Bitcoin (con’d)
	Slide 50: Transaction Size in Bitcoin (con’d)
	Slide 51: Transaction Size in Bitcoin (con’d)
	Slide 52: Transaction Size in Bitcoin (con’d)
	Slide 53: Transaction Size in Bitcoin (con’d)
	Slide 54: Transaction Size in Bitcoin (con’d)
	Slide 55: Transaction Size in Bitcoin (con’d)
	Slide 56: Account-Based Execution Layers
	Slide 57: Account-Based Execution Layers
	Slide 58: Account-Based Execution Layers
	Slide 59: Account-Based Execution Layers
	Slide 60: Typical Transaction Ingredients
	Slide 61: Typical Transaction Ingredients
	Slide 62: Typical Transaction Ingredients
	Slide 63: Typical Transaction Ingredients
	Slide 64: Typical Transaction Ingredients
	Slide 65: Metering Computation
	Slide 66: Metering Computation
	Slide 67: Metering Computation
	Slide 68: Metering Computation
	Slide 69: Metering Computation

