
Lecture #8:

UTXOs and Accounts

Tim Roughgarden

COMS 4995-001:

The Science of Blockchains
URL: https://timroughgarden.org/s25/

Consensus: decide on a sequence (aka “chain”) of blocks.

• note: all validators must agree on this sequence!

• blocks keeping getting added (one-by-one) as long as there are

transactions to process

• SMR, Tendermint vs. longest-chain consensus, etc.

2

Responsibilities of a Blockchain Protocol

3

The Consensus Layer

blockchain protocol

(consensus layer)

tx1: 1010…..111

tx2: 0110…..110

tx3: 1110…..000

tx4: 0010…..101

tx2 tx3 tx1 tx4

transactions

(submitted by clients)
transactions

(submitted by clients)

output log of ordered and

finalized transactions

Consensus: decide on a sequence (aka “chain”) of blocks.

• note: all validators must agree on this sequence!

• blocks keeping getting added (one-by-one) as long as there are

transactions to process

• SMR, Tendermint vs. longest-chain consensus, etc.

Execution: keep state of the virtual machine up-to-date.

• new block added ➔ execute the corresponding snippets of

code (do computations, update variable values, etc.)

• subject of this week (concludes Part I of course)
4

Responsibilities of a Blockchain Protocol

5

The Computer in the Sky

network of physical computers

+ blockchain protocol

simulated (virtual) computer

6

The Execution Layer

tx2 tx3 tx1 tx4

consensus transaction sequence

7

The Execution Layer

blockchain protocol

(execution layer)

[replicated at each

physical machine]

tx2 tx3 tx1 tx4

consensus transaction sequence

8

The Execution Layer

blockchain protocol

(execution layer)

[replicated at each

physical machine]

tx2 tx3 tx1 tx4

simulated (virtual) computer

[replicated at each physical

machine]

consensus transaction sequence

9

Recap: A Cartoon of Web3

applications/smart contracts

blockchain protocol/virtual machine

Internet

user

Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

10

Recap: A Cartoon of Web3

applications/smart contracts

blockchain protocol/virtual machine

Internet

user

Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

• like the Internet, “decentralized” -- the product of collaboration

between many physical machines, no one owner/operator 11

Recap: A Cartoon of Web3

applications/smart contracts

blockchain protocol/virtual machine

Internet

user

Blockchain protocol:

• like an operating system, a blockchain protocol:

– acts as a “master program” to coordinate all apps/smart contracts

– provides a virtual machine to developers of applications

• “decentralized” like the Internet 12

A Cartoon of Web3 (Refined)

applications/smart contracts

execution layer/virtual machine

Internet

user

consensus layer

blockchain

protocol

1. The UTXO model (used, e.g., in Bitcoin).

– counterintuitive but elegant VM specialized for payments

2. Measuring the size of a transaction.

– idea: what resources are required (now and forever) by a transaction?

– in practice, very tricky!

3. The account-based model (used in Ethereum and Solana).

– explicit notion of account IDs and balances, programs as accounts

4. Metering computation.
13

Goals for Lecture #8

Questions:

14

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

15

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

16

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

17

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

18

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”

consider a single validator processing a transaction sequence.

– separation between consensus and execution varies with protocol

19

How to Think About the Execution Layer

Questions: what are the possible “states” of the virtual machine?

• how are transactions described (both high-level and low-level)?

• what state transition results from executing a transaction?

• how does a validator represent state and carry out transitions?

Note: will now treat the consensus layer as a “black box,”

consider a single validator processing a transaction sequence.

– separation between consensus and execution varies with protocol

Next: warm-up with deep dive on Bitcoin’s “execution layer.”

20

How to Think About the Execution Layer

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

21

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

Spec for execution layer (natural guess):

• current state described by key-value store

– keys = account IDs, values = account balances

22

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

Spec for execution layer (natural guess):

• current state described by key-value store

– keys = account IDs, values = account balances

• transaction described by (sender ID, recipient ID, amount)

– validity conditions: both IDs exist, sender balance ≥ amount

23

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

Spec for execution layer (natural guess):

• current state described by key-value store

– keys = account IDs, values = account balances

• transaction described by (sender ID, recipient ID, amount)

– validity conditions: both IDs exist, sender balance ≥ amount

• executing transaction updates balances of sender, recipient

24

Bitcoin Transactions

Mental model for Bitcoin transaction: Alice sends x BTC to Bob.

Spec for execution layer (natural guess):

• current state described by key-value store

– keys = account IDs, values = account balances

• transaction described by (sender ID, recipient ID, amount)

– validity conditions: both IDs exist, sender balance ≥ amount

• executing transaction updates balances of sender, recipient

25

Bitcoin Transactions

Bitcoin transaction: described by:

26

Bitcoin Transactions

tx ID = 1713

Bitcoin transaction: described by:

• one or more inputs

27

Bitcoin Transactions

tx ID = 1713

input 1

input 2

Bitcoin transaction: described by:

• one or more inputs

• one or more outputs

28

Bitcoin Transactions

tx ID = 1713

input 1

output 3
input 2

output 2

output 1

Bitcoin transaction: described by:

• one or more inputs

• one or more outputs

• format for one output

– value (in BTC)

– spending conditions [typically ≈ a public key, but can be more complex]

29

Bitcoin Transactions

tx ID = 1713

input 1

output 3
input 2

output 2

output 1

Bitcoin transaction: described by:

• one or more inputs

• one or more outputs

• format for one output

– value (in BTC)

– spending conditions [typically ≈ a public key, but can be more complex]

• format for one input

– output of some other tx [should be unspent! ➔ “UTXO”]

– “witness” satisfying output’s spending condition [typically, ≈ a signature]

30

Bitcoin Transactions

tx ID = 1713

input 1

output 3
input 2

output 2

output 1

Bitcoin transaction: described by:

• outputs = (value, spending conditions)

• inputs = (UTXO, witness)

Conditions for validity:

31

Bitcoin Transactions

tx ID = 1713

input 1

output 3
input 2

output 2

output 1

Bitcoin transaction: described by:

• outputs = (value, spending conditions)

• inputs = (UTXO, witness)

Conditions for validity:

• all inputs reference current UTXOs

32

Bitcoin Transactions

tx ID = 1713

input 1

output 3
input 2

output 2

output 1

Bitcoin transaction: described by:

• outputs = (value, spending conditions)

• inputs = (UTXO, witness)

Conditions for validity:

• all inputs reference current UTXOs

• sum of input values ≥ sum of output values [difference = tx fee]

– common that one of the outputs is a “change address”

33

Bitcoin Transactions

tx ID = 1713

input 1

output 3
input 2

output 2

output 1

Bitcoin transaction: described by:

• outputs = (value, spending conditions)

• inputs = (UTXO, witness)

Conditions for validity:

• all inputs reference current UTXOs

• sum of input values ≥ sum of output values [difference = tx fee]

– common that one of the outputs is a “change address”

• for each input, witness satisfies UTXO’s spending conditions

34

Bitcoin Transactions

tx ID = 1713

input 1

output 3
input 2

output 2

output 1

“State” of the Bitcoin protocol: current set of UTXOs.

• no explicit notion of accounts, user IDs, or balances

35

UTXOs as an Execution Layer

“State” of the Bitcoin protocol: current set of UTXOs.

• no explicit notion of accounts, user IDs, or balances

“Executing” a Bitcoin transaction: [i.e., state transition]

• remove inputs of transaction from the UTXO set

• add outputs of transaction to the UTXO set

36

UTXOs as an Execution Layer

“State” of the Bitcoin protocol: current set of UTXOs.

• no explicit notion of accounts, user IDs, or balances

“Executing” a Bitcoin transaction: [i.e., state transition]

• remove inputs of transaction from the UTXO set

• add outputs of transaction to the UTXO set

Note: protocol does not prescribe specific representation of state

or implementation of state transitions (e.g., checking tx validity).

37

UTXOs as an Execution Layer

“State” of the Bitcoin protocol: current set of UTXOs.

• no explicit notion of accounts, user IDs, or balances

“Executing” a Bitcoin transaction: [i.e., state transition]

• remove inputs of transaction from the UTXO set

• add outputs of transaction to the UTXO set

Note: protocol does not prescribe specific representation of state

or implementation of state transitions (e.g., checking tx validity).

• canonical implementation = “Bitcoin core”
38

UTXOs as an Execution Layer

Fact: some transactions more “complex” than others.

39

Transaction Size

Fact: some transactions more “complex” than others.

• ideally, quantify heterogeneity via the “size” of a transaction

– required to define a “maximum block size”

– sensible to charge fees on a “per-unit-size” (rather than “per-tx”) basis

40

Transaction Size

Fact: some transactions more “complex” than others.

• ideally, quantify heterogeneity via the “size” of a transaction

– required to define a “maximum block size”

– sensible to charge fees on a “per-unit-size” (rather than “per-tx”) basis

Idea: “tx size” ≈ amount of resources required to process it.

41

Transaction Size

Fact: some transactions more “complex” than others.

• ideally, quantify heterogeneity via the “size” of a transaction

– required to define a “maximum block size”

– sensible to charge fees on a “per-unit-size” (rather than “per-tx”) basis

Idea: “tx size” ≈ amount of resources required to process it.

Challenge: multiple types of resources required:

– resources at the consensus layer (bandwidth)

– resources at the execution layer (computation, memory access)

– resources for long-term storage (at validators or elsewhere) 42

Transaction Size

Fact: some transactions more “complex” than others.

• ideally, quantify heterogeneity via the “size” of a transaction

Idea: “tx size” ≈ amount of resources required to process it.

Challenge: multiple types of resources required.

Further challenge: resource consumption may depend on

external-to-protocol factors (e.g., specific client implementation

and/or validator architecture).

– in practice, “size” often defined w.r.t. some canonical implementation
43

Transaction Size

Bitcoin (2009-2017): tx size := description length (in bytes).

• typical tx size 250 bytes

• maximum block size = 1 MB ➔ 4000 tx/block (< 7 txs/sec)

44

Transaction Size in Bitcoin

Bitcoin (2009-2017): tx size := description length (in bytes).

• typical tx size 250 bytes

• maximum block size = 1 MB ➔ 4000 tx/block (< 7 txs/sec)

The blocksize wars (2015-2017): heated debate over whether to

increase block size (e.g., to 2MB or 8 MB).

– lowers barrier to participating, but raises barrier to validating

– benefits of innovating vs. benefits of hardening

– led to Bitcoin Cash (fork of Bitcoin with bigger blocks, now irrelevant)

45

Transaction Size in Bitcoin

Bitcoin (2009-2017): tx size := description length (in bytes).

The blocksize wars (2015-2017): heated debate over whether to increase

block size (e.g., to 2MB or 8 MB).

46

Transaction Size in Bitcoin (con’d)

Bitcoin (2009-2017): tx size := description length (in bytes).

The blocksize wars (2015-2017): heated debate over whether to increase

block size (e.g., to 2MB or 8 MB).

SegWit (2017): redefined “size” of a transaction to:

 .25*(# of bytes used for witness data) + (# of additional bytes used)

– ➔ maximum block size now effectively 4MB (if entirely witness data)

47

Transaction Size in Bitcoin (con’d)

Bitcoin (2009-2017): tx size := description length (in bytes).

The blocksize wars (2015-2017): heated debate over whether to increase

block size (e.g., to 2MB or 8 MB).

SegWit (2017): redefined “size” of a transaction to:

 .25*(# of bytes used for witness data) + (# of additional bytes used)

– ➔ maximum block size now effectively 4MB (if entirely witness data)

• idea: validator can discard witnesses after checking tx validity

– “archival nodes” should still keep witness data for posterity
48

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25*(# of bytes used for witness data) + (# of

additional bytes used) ➔ maximum block size now effectively 4MB.

49

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25*(# of bytes used for witness data) + (# of

additional bytes used) ➔ maximum block size now effectively 4MB.

Taproot (2021): more general/flexible format for witness data.

50

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25*(# of bytes used for witness data) + (# of

additional bytes used) ➔ maximum block size now effectively 4MB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

51

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25*(# of bytes used for witness data) + (# of

additional bytes used) ➔ maximum block size now effectively 4MB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

– idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that

they can be viewed as non-fungible rather than fungible

52

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25*(# of bytes used for witness data) + (# of

additional bytes used) ➔ maximum block size now effectively 4MB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

– idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that

they can be viewed as non-fungible rather than fungible

– idea #2: embed NFT data (e.g., image) into witness data of a Taproot tx

53

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25*(# of bytes used for witness data) + (# of

additional bytes used) ➔ maximum block size now effectively 4MB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

– idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that

they can be viewed as non-fungible rather than fungible

– idea #2: embed NFT data (e.g., image) into witness data of a Taproot tx

– debate: are these good for Bitcoin?

54

Transaction Size in Bitcoin (con’d)

SegWit (2017): size := .25*(# of bytes used for witness data) + (# of

additional bytes used) ➔ maximum block size now effectively 4MB.

Taproot (2021): more general/flexible format for witness data.

Ordinals/inscriptions: basically, NFTs (up to 4MB) on Bitcoin!

– idea #1: ascribe “serial numbers” to Bitcoins (actually, satoshis) so that

they can be viewed as non-fungible rather than fungible

– idea #2: embed NFT data (e.g., image) into witness data of a Taproot tx

Point: definition of transaction size can fundamentally affect how

a blockchain protocol is used! 55

Transaction Size in Bitcoin (con’d)

Idea: “state” of an account-based protocol specified by:

56

Account-Based Execution Layers

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

– generally, an account could correspond to a user or a program/contract

57

Account-Based Execution Layers

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

– generally, an account could correspond to a user or a program/contract

• the state of each of these accounts, e.g.:

– balance in native cryptocurrency (ETH, SOL, etc.)

– arbitrary persistent and mutable data

– VM code (perhaps immutable)

58

Account-Based Execution Layers

Idea: “state” of an account-based protocol specified by:

• a set of current accounts (indexed by accountID, e.g. a pk)

– generally, an account could correspond to a user or a program/contract

• the state of each of these accounts, e.g.:

– balance in native cryptocurrency (ETH, SOL, etc.)

– arbitrary persistent and mutable data

– VM code (perhaps immutable)

Example: in Ethereum, a user account (“EOA”) has no code, only

data is a “nonce” [= # of txs sent by account, prevents “replay attacks”].

• all other data on user stored in contracts’ accounts 59

Account-Based Execution Layers

Transaction: sent by a user (to a user, or a program). Includes:

60

Typical Transaction Ingredients

Transaction: sent by a user (to a user, or a program). Includes:

• signature by the sender (can back out pk/ID from signature)

• recipient (specified by account ID, user or contract)

61

Typical Transaction Ingredients

Transaction: sent by a user (to a user, or a program). Includes:

• signature by the sender (can back out pk/ID from signature)

• recipient (specified by account ID, user or contract)

• value (in native currency)

• data (e.g., which function to call and with which arguments)

62

Typical Transaction Ingredients

Transaction: sent by a user (to a user, or a program). Includes:

• signature by the sender (can back out pk/ID from signature)

• recipient (specified by account ID, user or contract)

• value (in native currency)

• data (e.g., which function to call and with which arguments)

• declaration of resources to be used

• transaction fee

63

Typical Transaction Ingredients

Transaction: sent by a user (to a user, or a program). Includes:

• signature by the sender (can back out pk/ID from signature)

• recipient (specified by account ID, user or contract)

• value (in native currency)

• data (e.g., which function to call and with which arguments)

• declaration of resources to be used

• transaction fee

Note: if programs can be arbitrary code, corresponding state

transition can be extremely complex.
64

Typical Transaction Ingredients

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

65

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

66

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

67

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

• associate an amount of “gas” with each EVM opcode

– EVM opcodes = instruction set for VM code in Ethereum’s VM

– add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

68

Metering Computation

Question: if programs can be arbitrary code, what about the

halting problem? [could a tx force an infinite loop in the VM?]

Solution: associate a cost with each VM instruction, paid by user.

Example: in Ethereum:

• associate an amount of “gas” with each EVM opcode

– EVM opcodes = instruction set for VM code in Ethereum’s VM

– add two numbers = 3 units of gas; evaluate SHA-256 = 30 units

• user prepays for gas (part of the tx description)

• run out of gas mid-execution ➔ tx aborted and rolled back 69

Metering Computation

	Slide 1: Lecture #8: UTXOs and Accounts
	Slide 2: Responsibilities of a Blockchain Protocol
	Slide 3: The Consensus Layer
	Slide 4: Responsibilities of a Blockchain Protocol
	Slide 5: The Computer in the Sky
	Slide 6: The Execution Layer
	Slide 7: The Execution Layer
	Slide 8: The Execution Layer
	Slide 9: Recap: A Cartoon of Web3
	Slide 10: Recap: A Cartoon of Web3
	Slide 11: Recap: A Cartoon of Web3
	Slide 12: A Cartoon of Web3 (Refined)
	Slide 13: Goals for Lecture #8
	Slide 14: How to Think About the Execution Layer
	Slide 15: How to Think About the Execution Layer
	Slide 16: How to Think About the Execution Layer
	Slide 17: How to Think About the Execution Layer
	Slide 18: How to Think About the Execution Layer
	Slide 19: How to Think About the Execution Layer
	Slide 20: How to Think About the Execution Layer
	Slide 21: Bitcoin Transactions
	Slide 22: Bitcoin Transactions
	Slide 23: Bitcoin Transactions
	Slide 24: Bitcoin Transactions
	Slide 25: Bitcoin Transactions
	Slide 26: Bitcoin Transactions
	Slide 27: Bitcoin Transactions
	Slide 28: Bitcoin Transactions
	Slide 29: Bitcoin Transactions
	Slide 30: Bitcoin Transactions
	Slide 31: Bitcoin Transactions
	Slide 32: Bitcoin Transactions
	Slide 33: Bitcoin Transactions
	Slide 34: Bitcoin Transactions
	Slide 35: UTXOs as an Execution Layer
	Slide 36: UTXOs as an Execution Layer
	Slide 37: UTXOs as an Execution Layer
	Slide 38: UTXOs as an Execution Layer
	Slide 39: Transaction Size
	Slide 40: Transaction Size
	Slide 41: Transaction Size
	Slide 42: Transaction Size
	Slide 43: Transaction Size
	Slide 44: Transaction Size in Bitcoin
	Slide 45: Transaction Size in Bitcoin
	Slide 46: Transaction Size in Bitcoin (con’d)
	Slide 47: Transaction Size in Bitcoin (con’d)
	Slide 48: Transaction Size in Bitcoin (con’d)
	Slide 49: Transaction Size in Bitcoin (con’d)
	Slide 50: Transaction Size in Bitcoin (con’d)
	Slide 51: Transaction Size in Bitcoin (con’d)
	Slide 52: Transaction Size in Bitcoin (con’d)
	Slide 53: Transaction Size in Bitcoin (con’d)
	Slide 54: Transaction Size in Bitcoin (con’d)
	Slide 55: Transaction Size in Bitcoin (con’d)
	Slide 56: Account-Based Execution Layers
	Slide 57: Account-Based Execution Layers
	Slide 58: Account-Based Execution Layers
	Slide 59: Account-Based Execution Layers
	Slide 60: Typical Transaction Ingredients
	Slide 61: Typical Transaction Ingredients
	Slide 62: Typical Transaction Ingredients
	Slide 63: Typical Transaction Ingredients
	Slide 64: Typical Transaction Ingredients
	Slide 65: Metering Computation
	Slide 66: Metering Computation
	Slide 67: Metering Computation
	Slide 68: Metering Computation
	Slide 69: Metering Computation

